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DIFFERENTIAL OPERATORS ON SMOOTH SCHEMES AND
EMBEDDED SINGULARITIES.

ORLANDO VILLAMAYOR U.

En recuerdo de Angel Larrotonda

Abstract. Differential operators on smooth schemes have played a central
role in the study of embedded desingularization.

J. Giraud provides an alternative approach to the form of induction used
by Hironaka in his Desingularization Theorem (over fields of characteristic
zero). In doing so, Giraud introduces technics based on differential operators.
This result was important for the development of algorithms of desingular-
ization in the late 80’s (i.e. for constructive proofs of Hironaka’s theorem).

More recently, differential operators appear in the work of J. Wlodarczyk

([35]), and also on the notes of J. Kollár ([25]).
The form of induction used in Hironaka’s Desingularization Theorem,

which is a form of elimination of one variable, is called maximal contact.
Unfortunately it can only be formulated over fields of characteristic zero.

In this paper we report on an alternative approach to elimination of one
variable, which makes use of higher differential operators. These results open
the way to new invariants for singularities over fields of positive characteristic
([34]).
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Part 1. Introduction.

Let V be a smooth scheme over a field k of characteristic zero, and let X ⊂
V be a singular subscheme. Hironaka proves embedded desingularization of X ,
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2 ORLANDO VILLAMAYOR U.

considering as invariants the Hilbert-Samuel functions at the points of X . His proof
is based on the reduction of Hilbert Samuel functions by monoidal transformations
([22]).

There is second theorem of Hironaka, used in his proof of reduction of Hilbert
Samuel functions, which is called Log-resolution of ideals in smooth schemes. For
this second theorem, which we discuss below, the invariant considered is the order
of the ideal at the points of the smooth scheme.

In [17], both theorems are linked in a different way. In fact, if X ⊂ V is
defined by a sheaf of ideals JOV , then desingularization is proved by considering
the order of the ideal J at points in W , and hence avoiding the use of Hilbert
Samuel functions.

Let V be a smooth scheme over a field k, and let J ⊂ OV be a non-zero sheaf
of ideals. Define a function

ordJ : V → Z

where ordJ (x) denotes the order of Jx at the local regular ring OV,x. Let b denote
the biggest value achieved by this function (the biggest order of J). The pair
(J, b) is the object of interest in Log principalization of ideals. There is a closed
set attached to this pair in V , namely the set of points where J has order b; and
there is also a notion of transformation of such pairs by blowing up suitable regular
centers.

We will attach to (J, b) a graded subring of OV [W ] (sheaf of polynomial rings),
namely a graded algebra (Rees algebra) of the form

⊕r≥0IrW
r,

defined uniquely in terms of J and b.
Actually the Rees algebras that we will consider are closely related to Kollárs

notion of tuned ideals.
We will show that there is a closed set in V naturally attached to such Rees

algebra, and also a notion of transformation. Of course the interest here is on the
case of smooth schemes over fields of positive characteristic, where a weak form of
elimination of one variable is discussed.

For any non-negative integer s the sheaf of k-linear differential operators, say
Diffs

k , is coherent and locally free over V .
There is a natural identification, say Diff0

k = OV , and for each s ≥ 0 there is
a natural inclusions Diffs

k ⊂ Diffs+1
k .

If U is an affine open set in V , each D ∈ Diffs
k(U) is a differential operator:

D : OV (U) → OV (U). We define an extension of a sheaf of ideals J ⊂ OV , say
Diffs

k(J), so that over the affine open set U , Diffs
k(J)(U) is the extension of

J(U) defined by adding all elements D(f), for all D ∈ Diffs
k(U) and f ∈ J(U).

So Diff0(J) = J , and Diffs(J) ⊂ Diffs+1(J) as sheaves of ideals in OV .
Let V (J) ⊂ V be the closed set defined by J ∈ OV . So

V (J) ⊃ V (Diff1(J)) ⊃ · · · ⊃ V (Diffs−1(J)) ⊃ V (Diffs(J)) . . .

It is simple to check that the order of the ideal at the local regular ring OV,x is
≥ s if and only if x ∈ V (Diffs−1(J)).
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DIFFERENTIAL OPERATORS ON SMOOTH SCHEMES 3

The previous observations say that ordJ : V → Z is an upper-semi-continuous
function, and that the highest order of J (at points x ∈ V ) is b, if V (Diff b(J)) = ∅
and V (Diff b−1(J)) �= ∅. Let

V
π←− V1

∪ ∪
Y π−1(Y ) = H

denote the blow up of W at a smooth irreducible sub-scheme Y , and H is the
exceptional hypersurface. If Y ⊂ V (Diff b−1(J))) we say that π is b-permissible.
In such case

JOV1 = I(H)bJ1,

where I(H) is the sheaf of functions vanishing along the exceptional hypersurface
H .

If π is b-permissible,J1has at most order b at points of W1 (i.e. that V (Diffb(J1))

= ∅). If, in addition, J1 has no point of order b, then we say that π defines a b-
simplification of J .

If V (Diff b−1(J1)) �= ∅, let V1
π1←− V2 denote the monoidal transformation with

center Y1 ⊂ V (Diff b(J1)). We say that π1 is b-permissible, and set

J1OV2 = I(H1)bJ2.

It turns out that J2 has at most points of order b. If it does, define a b-permissible
transformation at some smooth irreducible center Y2 ⊂ V (Diff b−1(J2))).

For J and b as before, we define, by iteration, a b-permissible sequence

V
π←− V1

π1←− V2
π2←− . . . Vr

πr←− Vr+1,

and a factorization Jn−1OVn = I(Hn)bJn.
Let Hi ⊂ Vn denote the strict transform of exceptional hypersurface Hi ⊂ Vi−1.

Note that:
1) {H, H1, . . . , Hn−1} are the irreducible components of the exceptional locus

of V ← Vn.
2) The total transform of J relates to Jn by an expression of the form

JOVn = I(H)a0I(H1)a1 · · · I(Hn−1)a0Jn.

We say that this b-permissible sequence defines a b-simplication of J ⊂ OV if
∪Hi has normal crossings, and V (Diff b−1(Jn)) = ∅ (i.e. Jn has order at most
b− 1 at Wn).

When k is a field of characteristic zero, and b is the highest order of a sheaf
of ideals J ⊂ OV , Hironaka proves that there is a b-simplification. Furthermore,
taking this as starting point, he indicates how to achieve resolution of singularities.

Hironaka’s theorem of resolution of singularities is existential, precisely because
his proof of b-simplification is existential.

The achievement of constructive resolution of singularities was to provide an
algorithm. So given J ⊂ OV and b as before, as input, the algorithm defines a
b-simplification.

An advantage of a constructive proof of resolution of singularities, over the
original existential proof, is that constructive resolutions are equivariant, they
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provide resolution en étale topology, they are compatible with change of base field
etc. (see [32]).

Another advantage of the algorithm of b-simplification, already mentioned above,
is that it simplifies the proof of desingularization ([17]).

The key point for b-simplification, already used in Hironaka’s proof, is a form of
induction. In fact, Hironaka proves b-simplification, by induction on the dimension
of the ambient space V . To simplify matters, assume that J is locally principal,
and let b denote the highest order of J along points in V , which is now smooth
over a field of characteristic zero. Let

{ordJ ≥ b}
denote the closed set {x ∈ V/ordJ (x) ≥ b} (or say = b).

Fix a closed point x ∈ {ordJ ≥ b}, and a regular system of parameters
{x1, x2, . . . , xn} at OV,x. For any α = (α1, . . . , αn) ∈ Nn, set |α| = α1 + · · ·+ αn,
and

∆α = (
1

α1!
· · · 1

αn!
)

∂α1

∂α1x1
· · · ∂αn

∂αnxn
.

If Jx is locally generated by f ∈ OV,x, then f has order b at OV,x, and

(Diff b−1(J))x = 〈f, ∆α(f)/0 ≤ |α| < b〉.
The key point is that, the order of (Diff b−1(J))x at OV,x is one. This holds when
k is a field of characteristic zero.

Recall that V (Diff b−1(< f >)) = {ordJ ≥ b} locally at x. One way to check
that (Diff b−1(J))x has order one at OV,x, is to check this at the completion ÔV,x,
say R = k′[[x1, .., xn]]. We may choose the system of parameters so that, for a
suitable unit u:

u.f = f1 = Zb + a1Z
b−1 + · · ·+ ab ∈ S[Z]

S = k[[x1, .., xn−1]], and Z = xn.
As k is a field of characteristic zero, S[Z] = S[Z1], where Z1 = Z + 1

b a1, and

f1 = Zb
1 + a′

2Z
b−2
1 + · · ·+ a′

b.

Then:
A) Z1 ∈ Diff b−1(f) (in fact ∂b−1f

∂b−1Z
∈ Diff b−1(f)). In particular the ideal

Diff b−1(f) has order one at x, and the closed set {ordJ ≥ b} is locally included
in a smooth scheme of dimension n− 1.

B)(Elimination.) {ord f ≥ b}(⊂ V (Z1)) can be described as

{ord f ≥ b} = ∩2≤i≤b{ord a′
i ≥ b− i}.

C) (Stability of elimination.) Both A), and the description in B), are preserved
by any b-permissible sequence of transformations.

We will not go into details of A), B) and C). But let us point out the elimination
of one variable in (B). In fact the closed set {ord f ≥ b} defined in terms of f , is
also described as ∩2≤i≤b{ord a′

i ≥ b − i}, where now the a′
i involve one variable

less.
As indicated above, A),B), and C), together, conform the essential reason and

argument in resolution of singularities in characteristic zero. They rely entirely on
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DIFFERENTIAL OPERATORS ON SMOOTH SCHEMES 5

the hypothesis of characteristic zero. For instance A) does not hold over fields of
positive characteristic; so there is no way to formulate this form of induction over
arbitrary fields.

The objective of these notes is to report on an entirely different approach to
induction, which can at least be formulated over arbitrary fields.

Suppose, for simplicity, that V is affine, that f is global in OV , and that b is the
highest order of J = 〈f〉. We reformulate the study b-sequences of transformations
over J . In doing so we replace J by a graded ring subring of OV [W ]. In this case
we consider the subring

OV [fW b](⊂ OV [W ]).

In general, if V is affine, we define a Rees algebra as a subring of OV [W ] gen-
erated by a finite set, say

{f1W
n1 , f2W

n2 , . . . , fsW
ns}.

These subrings can also be expressed as
⊕

k≥0 IkW k, I0 = OV , and each Ik is
an ideal. We say that

⊕
k≥0 IkW k has differential structure, say Diff-structure, if

D(IN ) ⊂ IN−r for 0 ≤ r ≤ N , and D ∈ Diffr
k .

Diff-structures appear in [23] and [24](see 4.2), and they are closely related to
the notion of tuned ideals introduced by J Kollár.

It is easy to show that any Rees algebra spans a smallest Diff-structure contain-
ing it. Diff-structures are known to have important geometric properties, which
make them objects of particular interest. In this paper we report on a character-
istic free form of elimination defined for Diff-structures (see (B) above).

We also study here a natural compatibility of monoidal transforms and Diff-
structures. This is done via Taylor development in positive characteristic (see also
[33]). So it makes sense to formulate stability of elimination (see (C) above) over
arbitrary fields. Here results are stronger over fields of characteristic zero, where
they provide an alternative approach to induction in desingularization theorems.

New invariants for singularities arise, in positive characteristic, when studying
this form of elimination in the setting of Diff-structures.

1. Monoidal transformations and Hironaka’s topology.

Fix a smooth scheme V over a field k, an ideal J ⊂ OV , and a positive integer
b. Hironaka attaches to these data, say (J, b), a closed set, say

{ordJ ≥ b} := {x ∈ V/νx(Jx) ≥ b}
where νx(Jx) denote the order of J at the local regular ring OV,x.

Given (J, b) and (J ′, b′), then

{ordJ ≥ b} ∩ {ordJ′ ≥ b′} = {ordK ≥ c}
where K = Jb′ + J ′b, and c = b · b′. Set formally (J, b)� (J ′, b′) = (K, c).

There is also a notion of permissible transformation on these data (J, b). Let Y
be a smooth subscheme in V , included in the closed {ordJ ≥ b}, and let

Rev. Un. Mat. Argentina, Vol 46-2



6 ORLANDO VILLAMAYOR U.

V
π←− V1

∪ ∪
Y π−1(Y ) = H,

(1.0.1)

be the blow up of V at a smooth sub-scheme Y . Note that

JOV1 = I(H)bJ1,

where I(H) is the sheaf of functions vanishing along the exceptional hypersurface
H .

We call (J1, b) the transform of (J, b) by the permissible monoidal transforma-
tion.

If π is permissible for both (J, b) and (J ′, b′), then it is permissible for (K, c).
Moreover, if (J1, b), (J ′

1, b), and (K1, c) denote the transforms, then (J1, b) �
(J ′

1, b
′) = (K1, c).

We now define a Rees algebra over V to be a graded noetherian subring of
OV [W ], say:

G =
⊕

k≥0

IkW k,

where I0 = OV and each Ik is a sheaf of ideals. And we assume that at any affine
open set U ⊂ V , there is a finite set

F = {f1W
n1 , . . . , fsW

ns},
ni ≥ 1 and fi ∈ OV (U), so that the restriction of G to U is

OV (U)[f1W
n1 , . . . , fsW

ns ](⊂ OV (U)[W ]).

To a Rees algebra G we attach a closed set:

Sing(G) := {x ∈ V/νx(Ik) ≥ k, for any k ≥ 1},
where νx(Ik) denotes the order of the ideal Ik at the local regular ring OV,x.

Remark 1.1. Rees algebras are related to Rees rings. A Rees algebra is a Rees
ring if, given any affine open set U ⊂ V , and F = {f1W

n1 , . . . , fsW
ns} as above,

all degrees ni are one.
In general Rees algebras are integral closures of Rees rings in a suitable sense.

In fact, if N is a positive integer divisible by all ni, it is easy to check that

OV (U)[f1W
n1 , . . . , fsW

ns ] = ⊕r≥0IrW
r(⊂ OV (U)[W ]),

is integral over the Rees sub-ring OV (U)[INWN ](⊂ OV (U)[WN ]).

Proposition 1.2. Given an affine open U ⊂ V , and F = {f1W
n1 , . . . , fsW

ns}
as above,

Sing(G) ∩ U = ∩1≤i≤s{ord(fi) ≥ ni}.
Proof. It is clear that νx(fi) ≥ ni for x ∈ Sing(G), 0 ≤ i ≤ s. So

Sing(G) ∩ U ⊂ ∩1≤i≤s{ord(fi) ≥ ni}.
On the other hand, for any index N ≥ 1, IN (U)WN is generated by elements

of the form GN (f1W
n1 , . . . , fsW

ns), where GN (Y1, . . . , Ys) ∈ OU [Y1, . . . , Ys] is
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DIFFERENTIAL OPERATORS ON SMOOTH SCHEMES 7

weighted homogeneous of degree N , provided each Yj has weight nj . The reverse
inclusion is now clear.

A monoidal transformation (1.0.1) is said to be permissible for G if Y ⊂ Sing(G).
In such case, for each index k ≥ 1, there is a sheaf of ideals, say I

(1)
k ⊂ OV1 , so

that
IkOV1 = I(H)kI

(1)
k .

One can easily check that

G1 =
⊕

k≥0

I
(1)
k W k

is a Rees algebra over V1, which we call the transform of G.

Let G =
⊕

k≥0 IkW k be a Rees algebra on V , U ⊂ V an affine open set, and
let F = {f1W

n1 , . . . , fsW
ns} be such that the restriction of G to U is

OV (U)[f1W
n1 , . . . , fsW

ns ](⊂ OV (U)[W ]).

Proposition 1.3. Let V ← V1 be a permissible transformation of G. There is an
open covering of π−1(U) by affine sets U (l), so that:

1) 〈fi〉 = I(H ∩ U (l))ni〈f ′
i〉 for suitable f ′

i ∈ OV1(U (l)).
2) The restriction of G1 to U (l) is

OV1(U
(l))[f ′

1W
n1 , . . . , f ′

sW
ns ](⊂ OV1(U

(l))[W ]).

Proof. 1) follows from Prop 1.2. For 2) argue as in the proof of Prop 1.2, by using
the fact that each ideal IN is generated by weighted homogeneous polynomials on
the element of F .

Given two Rees algebras over V , say G =
⊕

k≥0 IkW k and G′ =
⊕

k≥0 JkW k,
set Kk = Ik + Jk in OV , and define:

G � G′ =
⊕

k≥0

K ′
kW k,

as the subalgebra of OV [W ] generated by {KkW k, k ≥ 0}.
One can check that:
1) Sing(G�G′) = Sing(G)∩Sing(G′). In particular, if π in (1.0.1) is permissible

for G � G′, it is also permissible for G and for G′.
2) Set π as in 1), and let (G � G′)1, G1, and G′1 denote the transforms at V1.

Then:
(G � G′)1 = G1 � G′1.

2. Integral closure of Rees algebras and a notion of equivalence.

We say that two Rees algebras over V , say G =
L

k≥0 IkW k and G′ =
L

k≥0 JkW k,

are equivalent, if both have the same integral closure in OV [W ].
If G and G′ are equivalent, then:
1) Sing(G) = Sing(G′). In particular, π in (1.0.1) is permissible for G if and

only if it is so for G′.
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8 ORLANDO VILLAMAYOR U.

2) Set π as in 1), and let G1 and G′1 denote the transforms at V1. Then G1 and
G′1 are equivalent over V1.

This shows that equivalent Rees algebras define the same closed sets, and the
same holds after any sequence of permissible transformations.

Given a smooth scheme V , and (J, b) as in 1, we consider the Rees algebra
generated over OV by JW b (as graded subring of OV [W ]).

Proposition 2.1. If G and G′ are the Rees algebras corresponding to Hironaka’s
pairs (J, b) and (J ′, b′), then G � G′ is equivalent to the Rees algebra assigned to
(J, b)� (J ′, b′).

Proof. Fix an affine open set U in V , {f1, . . . , fs} ∈ OV (U) generators of J(U),
and {g1, . . . , gr} ∈ OV (U) generators of J ′(U). Then:

i) The restriction of G to U is

OV (U)[f1W
b, . . . , fsW

b](⊂ OV (U)[W ]).

ii) The restriction of G′ is

OV (U)[g1W
b′ , . . . , grW

b′ ](⊂ OV (U)[W ]).

iii) The restriction of G � G′ to U is

OV (U)[f1W
b, . . . , fsW

b, g1W
b′ , . . . , grW

b′ ](⊂ OV (U)[W ]).

iv) The restriction of the Rees algebra assigned to (J, b)� (J ′, b′) is generated
by

{(fα1
1 · · · fαs

s ) ·W bb′ ; (gβ1
1 · · · gβs

s ) ·W bb′/α1 + · · ·+ αs = b′; β1 + · · ·+ βr = b}.
One can finally check that both algebras in (iii) and (iv) have the same integral

closure in OV (U)[W ].

3. On differential structures and Kollár’s tuned ideals.

Here V is smooth over a field k, so for each non-negative integer r there is a
locally free sheaf of differential operators of order r, say Diffr

k .

Definition 3.1. We say that a Rees algebra
⊕

InWn is a Diff-structure relative
to the field k, if:

i) In ⊃ In+1.
ii) There is open covering of V by affine open sets {Ui}, and for any D ∈

Diff (r)(Ui), and any h ∈ In(Ui), then D(h) ∈ In−r(Ui) provided n ≥ r.

Given a sheaf of ideals I ∈ OV there is a natural definition of an extension, say
Diff (r)(I) (see Introduction). Note that (ii) can be reformulated by

ii’) Diff (r)(In) ⊂ In−r for each n, and 0 ≤ r ≤ n.
Fix a closed point x ∈ V , and a regular system of parameters {x1, . . . , xn}

at OV,x. The residue field, say k′ is a finite extension of k, and the completion
ÔV,x = k′[[x1, . . . , xn]].
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DIFFERENTIAL OPERATORS ON SMOOTH SCHEMES 9

The Taylor development is the continuous k′-linear ring homomorphism:

Tay : k′[[x1, . . . , xn]]→ k′[[x1, . . . , xn, T1, . . . , Tn]]

that map xi to xi + Ti, 1 ≤ i ≤ n. So for f ∈ k′[[x1, . . . , xn]], Tay(f(x)) =∑
α∈Nn gαT α, with gα ∈ k′[[x1, . . . , xn]].
Define, for each α ∈ Nn, ∆α(f) = gα. It turns out that

∆α(OV,x) ⊂ OV,x,

and that {∆α, α ∈ (N)n, 0 ≤ |α| ≤ c} generate the OZ,x-module Diff c
k(OZ,x) (i.e.

generate Diff c
k locally at x).

Theorem 3.2. For any Rees algebra G over a smooth scheme V , there is a Diff-
structure, say G(G) such that:

i) G ⊂ G(G).
ii) If G ⊂ G′ and G′ is a Diff-structure, then G(G) ⊂ G′.
Furthermore, if x ∈ V is a closed point, and {x1, . . . , xn} is a regular system of

parameters at OV,x, and G is locally generated by

F = {gniW
ni , ni > 0, 1 ≤ i ≤ m},

then

F ′ = {∆α(gni)W
n′

i−α/gniW
ni ∈ F , α = (α1, α2, . . . , αn) ∈ (N)n, and 0 ≤ |α| < n′

i ≤ ni}
(3.2.1)

generates G(G) locally at x.
Remark 3.3. The localdescriptionintheTheorem shows thatSing(G) = Sing(G(G)).

In fact, as G ⊂ G(G), it is clear that Sing(G) ⊃ Sing(G(G)). For the converse
note that if νx(gni) ≥ ni, then ∆α(gni) has order at least ni− |α| at the local ring
OV,x.

3.4. In general G ⊂ G(G), and equality holds if G is already a Diff-structure.
Let G =

⊕
k≥0 IrW

r be a Diff-structure, in particular it is integral over a Rees
subring, say OV [INWN ] for suitable N (see 1.1). These ideals IN are called tuned
ideals in [25], page 45.

The previous Theorem defines an operator G that extends Rees algebras into
Diff-structures. Another natural operator we have considered on Rees algebras it
that defined by taking normalization. The next Theorem relates both notions of
extensions.

Theorem 3.5. Let G and G′ be equivalent Rees algebras on a smooth scheme V ,
then G(G) and G(G′) are also equivalent (in the sense of 2).

(see Th 6.12 [33]).

Definition 3.6. Fix G =
⊕

Ik ·W k, a Rees algebra on V , and let V ←− V ′ be a
morphism of smooth schemes. We define the total transform of G to be

π−1(G) =
⊕

IkOV ′ ·W k.

Namely the Rees algebra defined by the total transforms of the ideals In, n ≥ 0.
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10 ORLANDO VILLAMAYOR U.

Theorem 3.7. Let V ′ π−→ V be a morphism of smooth schemes, then:
i) if G is a Diff-structure on V , the total transform π−1(G) is a Diff-structure

on V ′.
ii) Sing(π−1(G)) = π−1(Sing(G)).
(See Th 5.4 [33])

4. On differential structures and monoidal transformations.

Let us briefly recall some previous results, where now J ⊂ OV be the sheaf of
ideals defining a hypersurface X in the smooth scheme V .

So Diff0(J) = J , and for each positive integer s there is an inclusion Diffs(J)
⊂ Diffs+1(J) as sheaves of ideals inOV , and hence V (Diffs(J)) ⊃ V (Diffs+1(J)).

Recall that b is the highest multiplicity at points of X , if and only if V (Diff b(J))
= ∅ and V (Diff b−1(J)) �= ∅ (i.e. if and only if Diff b(J) = OV and Diff b−1(J)
is a proper sheaf of ideals).

The closed set of interest is the set of b-fold points of X (i.e. V (Diff b−1(J))).
Consider now a b-permissible transformation, say

V
π←− V1

∪ ∪
Y π−1(Y ) = H

(i.e. the blow up of V at a smooth sub-scheme Y ). In such case

JOW1 = I(H)bJ1,

where I(H) is the sheaf of functions vanishing along the exceptional hypersurface
H .

In this case J1 is the sheaf of ideals defining a hypersurface X1 ⊂ V1, which is
the strict transform of the hypersurface X .

It is not hard to check that J1 has at most order b at points of V1 (i.e. that
V (Diff b(J1)) = ∅). If, in addition, J1 has no point of order b, then we say that
π defines a b-simplification of J . At any rate, the closed set of interest is the set
of b-fold points X1.

If V (Diff b−1(J1)) �= ∅, let V1
π1←− V2 denote the monoidal transformation with

center Y1 ⊂ V (Diff b−1(J1)). So π1 is b- permissible, and set

J1OV2 = I(H1)bJ2.

So again J2 has at most points of order b, and if it does, define a b-permissible
transformation at some smooth center Y2 ⊂ V (Diff b−1(J2))).

So for J and b as before, we define, by iteration, a b-permissible sequence

V
π←− V1

π1←− V2
π2←− . . . Vr

πr←− Vr+1,

and a factorization Jn−1OVn = I(Hn)bJn. Where Jn is the sheaf of ideals defining
a hypersurface Xi ⊂ Vi, which is the strict transform of X .

From the point of view of resolution it is clear that our interest is to define a
b-permissible sequence so that Xr+1 has no b-fold points.
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We say that a b-permissible sequence defines a b-simplication of J ⊂ OW if the
jacobian of V ← Vr+1 has normal crossings, and V (Diff b−1(Jr+1)) = ∅ (i.e. if
Xr+1 has at most points of multiplicity b− 1).

Hironaka attaches to the original data J and b the pair (J, b). The closed set
assigned to this pair in V is {ordJ ≥ b} = V (Diff b−1(J)). In our case, the b-fold
points of the hypersurface X .

We attached to the original data a Rees algebra (up to integral closure), namely
G = OV [JW b]. And to this Rees algebra a closed set in V , namely Sing(G), which
is again V (Diff b−1(J)).

Moreover, we extended G to a Diff-structure G(G), and Sing(G) = Sing(G(G))
(Th. 3.2).

Let us focus on the b-permissible transformation π. The transform of Hironaka’s
pair is the pair (J1, b). The transformation π is also permissible for both G and
G(G), defining transforms of Rees algebras, say G1 and G(G)1 on V1.

Note that, in our setting, J1 is the ideal defining defining X1, which is the strict
transform of X . The closed set assigned to (J1, b) is the set of b-fold points of
X1. On the other hand, G1 = OV1 [J1W

b], is such that Sing(G1) is again the set
of b-fold points X1. A similar relation holds between pairs (Ji, b) and the Rees
algebras Gi (transform of G), for any b-permissible sequence.

The natural question is on how do the successive transforms of G(G) relate to
the transforms of G. The following theorem will address this question (see Th
7.6 [33]). It proves that the G-operator on Rees algebras is, in a natural way,
compatible with transformation.

Theorem 4.1. (J. Giraud) Let G be a Rees algebra on a smooth scheme V , and
let V ←− V1 be a permissible (moniodal) transformation for G. Let G1 and G(G)1
denote the transforms of G and G(G). Then:

1) G1 ⊂ G(G)1.
2) G(G1) = G(G(G)1).

4.2. Hironaka considers the notion of Diff-structures in [23] and also in [24]. In
this last paper he provides an interesting geometric interpretation of the elements
of the integral closure of a Diff-structure, say G(G), which we briefly discuss below.

Recall that given an ideal J in a smooth scheme V , and a positive integer
b, Hironaka defines a pair (J, b) (actually a closely related notion of idealistic
exponent). As mentioned in Section 1, there is a closed set in V attached to the
pair, and also a notion of permissible transforms of pairs.

We have assign a Rees algebra to (J, b), say G = OV [JW b]; and a closed set to
G, namely Sing(G). We have also defined transformations of of Rees algebras, in
accordance to transformations of pairs.

Here we have discussed integral closure of Rees algebras, and also a G-operator
on Rees algebras, as two different manners to extend a Rees algebra.

These two forms of extension of Rees algebras have a very particular geometric
property. In fact, both extended algebras define the same closed set, and hence
both admit the same transformations. Furthermore, the closed set defined by the
transform of G by a sequence of transformation, is the same closed set defined by
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the transform of the integral closure of G. Theorem 4.1 asserts that the same holds
for the transform of G-extension of G.

So given G, it is quite natural to iterate both operators, by taking successively
integral closure and Diff-structures, to obtain larger and larger extensions of G
with this geometric property.

The result of Hironaka in [24] says that the G(G) is the biggest extension of
G with this property. Namely that Sing(G) = Sing(G(G)), and that the same
equality of singular locus holds after any sequence of transformations. Theorem
4.1 can also be proved using this geometric characterization of G(G). The approach
in [33] is different, and does not make use the concept of infinitely near singular
point, but rather on technics that will also be useful for [34].

5. Idealistic exponents versus basic objects.

Recall that two ideals, say I and J , in a normal domain R have the same integral
closure if they are equal for any extension to a valuation ring (i.e. if IS = JS
for any ring homomorphism R → S on a valuation ring S). The notion extends
naturally to sheaves of ideals.

Hironaka considers the following equivalence on pairs (J, b) and (J ′, b′) over a
smooth scheme V .

Definition 5.1. The pairs (J, b) and (J ′, b′) are idealistic equivalent on V if Jb′

and (J ′)b have the same integral closure.

Proposition 5.2. Let (J, b) and (J ′, b′) be idealistic equivalent. Then:
1) Sing(J, b) = Sing(J ′, b′).
Note, in particular, that any monoidal transform V ← V1 on a center Y ⊂

Sing(J, b) = Sing(J ′, b′) defines transforms, say (J1, b) and ((J ′)1, b′) on V1.
2)The pairs (J1, b) and ((J ′)1, b′) are idealistic equivalent on V1.

If two pairs (J, b) and (J ′, b′) be idealistic equivalent over V , the same holds for
the restrictions to any open subset of V , and also for restrictions in the sense of
etale topology, and even for smooth topology (i.e. pull-backs by smooth morphisms
W → V ).

Note that if (J, b) and (J ′, b′) are idealistic equivalent, the they define the same
closed set on V (i.e. Sing(J, b) = Sing(J ′, b′)), and the same holds for monoidal
transformations, pull-backs by smooth schemes, and hence by concatenation of
both kinds of transformations. When this last condition holds on the singular
locus of two pairs we say that they define the same close sets.

Definition 5.3. Two pairs (J, b) and (J ′, b′) are basically equivalent on V , if the
define the same close sets.

The proposition says that if two pairs are idealistic equivalent over V , then they
are basically equivalent.

An idealistic exponent, as defined by Hironaka in [23], is an equivalence class
of pairs in the sense of idealistic equivalence. Whereas the notion of equivalence
among basic objects (see [31] or [32]) is the second one. In fact, the key point for
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constructive desingularization was to define an algorithm of resolutions of pairs
(J, b), so that two basically equivalent pairs undergo exactly the same resolution.

5.4. There are two notions of equivalence on the context of Rees algebras over V .
The first, already formulated in Section 2:

Definition 5.5. Two Rees algebras over V , say G =
⊕

k≥0 IkW k and G′ =⊕
k≥0 JkW k, are integrally equivalent, if both have the same integral closure.

Proposition 5.6. Let G and G′ be two integrally equivalent Rees algebras over V
Then:

1) Sing(G) = Sing(G′).
Note, in particular, that any monoidal transform V ← V1 on a center Y ⊂

Sing(G) = Sing(G′) defines transforms, say (G)1 and (G′)1 on V1.
2)(G)1 and (G′)1 are integrally equivalent on V1.

If G and G′ are integrally equivalent on V , the same holds for any open restric-
tion, and also for pull-backs by smooth morphisms W → V .

On the other hand, as (G)1 and (G′)1 are integrally equivalent, the they define
the same closed set on V1 (the same singular locus), and the same holds for further
monoidal transformations, pull-backs by smooth schemes, and concatenations of
both kinds of transformations.

When this condition holds on the singular locus of two Rees algebras over V ,
we say that they define the same close sets.

Definition 5.7. Two Rees algebras over V , say G =
⊕

k≥0 IkW k and G′ =⊕
k≥0 JkW k, are basically equivalent, if both define the same closed sets.

The previous Proposition asserts that if G =
⊕

k≥0 IkW k and G′ =
⊕

k≥0 JkW k

are integrally equivalent, then they are basically equivalent.

5.8. We assign to a pair (J, b) over a smooth scheme V the Rees algebra, say:

G(J,b) = OV [JbW b],

which is a graded subalgebra in OV [W ].

Proposition 5.9. 1) Two pairs (J, b) and (J ′, b′) are idealistically equivalent over
a smooth scheme V , if and only if the Rees algebras G(J,b) and G(J′,b′) are integrally
equivalent.

2) Two pairs (J, b) and (J ′, b′) are basically equivalent over V , if and only if the
Rees algebras G(J,b) and G(J′,b′) are basically equivalent.

6. Projection of differential structures and elimination of one
variable.

6.1. The notion of Rees algebra G =
⊕

k≥1 IkW k parallels that of idealistic
exponents in [23], and the notion of singular locus Sing(G), is the natural analog
for that defined for idealistic exponents.
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We finally introduce a function, again a natural analog to that defined for
idealistic exponents. Fix x ∈ Sing (G). Given fnWn ∈ InWn, set

ordx(fn) =
νx(fn)

n
∈ Q;

called the order of fn (weighted by n), where νx denotes the order at the local
regular ring OZ,x. As x ∈ Sing (G) it follows that ordx(fn) ≥ 1. We also define

ordx(G) = inf{ordx(fn); fnWn ∈ InWn}.
So, in general ordx(G) ≥ 1 for any x ∈ Sing (G).

Proposition 6.2. 1) If G is a Rees algebra generated over OZ by F = {gniW
ni ,

ni > 0, 1 ≤ i ≤ m}, then

ordx(G) = inf{ordx(gni); 1 ≤ i ≤ m}.
And if N is any common multiple of all ni, 1 ≤ i ≤ m, then ordx(G) = ν(IN )

N .
2) If G and G′ are graded structures with the same integral closure (e.g. if

G ⊂ G′ is a finite extension), then, for any x ∈ Sing(G)(= Sing(G′))
ordx(G) = ordx(G′).

3) Set G(G) = G′′ =
⊕

I ′′n ·Wn (the extension of G to a differential structure),
then for any x ∈ Sing(G)(= Sing(G′′)).

ordx(G) = ordx(G′′).
6.3. Let G be a Rees algebra, and fix a closed point x ∈ Sing(G). We assume
that at a affine open neighborhood of the point, say U ⊂ V , there is a finite set
F = {f1W

n1 , . . . , fsW
ns}, ni ≥ 1 and fi ∈ OV (U), so that the restriction of G to

U is
OV (U)[f1W

n1 , . . . , fsW
ns ](⊂ OV (U)[W ]).

Let
Gx =

⊕
Ik ·W k(⊂ OV,x[W ])

be the localization of G at x. As x ∈ Sing(G), the order of Ik at OV,x is at least
k. We say that G is simple at the singular point x, if for some positive index k,
Ik has order k. This amounts to saying that ordx(G) = 1; or equivalently, that for
some fcW

nc ∈ F , the element fc has order nc at OV,x.
Recall that V (Diffnc−1(< fc >)) ⊂ Sing(G) locally at x.
We may choose the system of parameters {x1, . . . , xn} at x, so that at the

completion ÔV,x, say R = k′[[x1, .., xn]]:

u.fc = Znc + a1Z
nc−1 + · · ·+ anc ∈ S[Z]

S = k[[x1, .., xn−1]], and Z = xn; where u is a unit of R.
A similar result holds at a suitable étale neighborhood of x. We may assume that

fc1 is a monic polynomial of degree c1 in S[Z], and of order c1 in S[Z]<MS,Z> ⊂ R,
where S is regular.

Let π : V → V ′ be a smooth morphism defined at an étale neighborhood of x,
where V ′ is smooth, dim V ′=dim V -1. We say that π is transversal to G at x, if
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the previous setting holds for R = ÔV,x, S = ÔV ′,π(x); and for some fcW
nc ∈ F ,

where fc has order nc at OV,x.
In these conditions, a transversal morphism π, induces a finite morphism

π : Spec(S[Z]/〈fc1(Z)〉)→ Spec(S)〉.
Here we view H = Spec(S[Z]/〈fc1(Z)〉) as a hypersurface in V , and locally at

x, Sing(G) is included in the c1-fold points of this hypersurface. So

{ord fc1 ≥ nc1} := V (Diff ci−1(〈fc1(Z)〉)) ⊂ H.

In this setting the finite morphism π is one to one over a closed subset of Y ,
namely on the image of the c1-fold points. Set

Spec(S[Z]/ < fc1(Z) >) π−→ Spec(S)
∪ ∪

{ord fc1 ≥ nc1} 1 to 1−→ π({ord fc1 ≥ nc1})
(6.3.1)

Since Sing(G) ⊂ {ord fc1 ≥ nc1}, π induces a one to one map, say

Sing(G) 1 to 1−→ π(Sing(G)),
for any transversal morphism π : Spec(S[Z])→ Spec(S).

Theorem 6.4. Let G be a Diff-structure over a smooth scheme V , and x ∈
Sing(G) a closed point which we assume to be simple. Let π : V → V ′ be a
smooth morphism defined at an étale neighborhood of x, where V ′ is smooth, dim
V ′=dim V -1. Assume that π is transversal at x. Then:

1) At a suitable neighborhood of π(x), there is a Rees algebra RG over the smooth
scheme V ′, so that π(Sing(G)) = Sing(RG).

2) The morphism π induces a one-to-one map from Sing(G) to Sing(RG). Fur-
thermore, setting S = OV ′,π(x), and S[Z] as before, then the one-to-one map is
that described above.

The formulation of the theorem is independent of the choice of fc1 of order
nc1 at OV,x. However given a finite morphisms as that in (6.3.1), and a smooth
center Y1 ⊂ Sing(RG), there is a unique and smooth center Y ⊂ Sing(G) mapping
isomorphically to Y1 via π (and hence via π). Set Y1 = π(Y ).

So both Y in V , and π(Y ) in Spec(S), are regular centers.
Let now V ← V1, and Spec(S)← U1, denote the monoidal transformations at

Y and π(Y ) respectively; and let H ′ denote the strict transform of H . The hyper-
surface H ′ has at most points of multiplicity nc1 . Let F (⊂ H ′) denotes the closed
set of points of multiplicity nc1 . After replacing V1 by a suitable neighborhood of
F , we may assume that there is a finite morphism, say H ′ → U1, compatible with
π.

As the regular center Y was chosen in Sing(G), then a weighted transform, say

G1 =
⊕

I(1)
n ·W k(⊂ OV1 [W ])

is defined, and Sing(G1) ⊂ F . So locally at a point y ∈ Sing(G1) there is a finite
morphism

π′ : Spec(S′[Z]/〈f ′
c1

(Z)〉)→ U1,
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where f ′
c1

is a strict transform of fc1 . Let G′1 be the Diff-structure generated by
G1. According to the previous Theorem, locally at π′(y) there is an elimination
algebra, say

RG′
1
⊂ OU1,π′(y)[W ].

On the other hand, Y1 = π(Y ) ⊂ Sing(RG), so there is also a weighted trans-
form

(RG)1 ⊂ OU1 [W ].

The question now is to relate the Rees algebra (RG)1 with RG′
1
, locally at the

point π(y).

Proposition 6.5. With the setting as above:
1) There is a natural inclusion (RG)1 ⊂ RG′

1
.

2) Over fields of characteristic zero both (RG)1 and RG′
1

define the same Diff-
structure, up to integral closure.

Here (RG)1 is the transform of RG by one monoidal transformation. If we could
guarantee that Sing(RG)1 = π′(Sing(G1), we could identify the singular locus of
G1 (i.e. of G′1) with the singular locus of the transform of RG . If furthermore, this
link between G and RG is preserved by any sequence of monoidal transformations,
then we have achieved a way of representing the singular locus of G which is stable
by monoidal transformations.

Part 2) in the previous Proposition ensures that this is the case over fields of
characteristic zero, providing an alternative form of stability of elimination (see
(C) in Introduction). This is not the case over fields of positive characteristic, but
it is the starting point for new invariants in that context.
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