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MULTIPARAMETER QUANTUM GROUPS,

BOSONIZATIONS AND COCYCLE DEFORMATIONS

GASTÓN ANDRÉS GARCÍA

Abstract. The multiparameter quantized enveloping algebras Uq(gA) con-

structed by Pei, Hu and Rosso [Quantum affine algebras, extended affine
Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence,

2010] are presented as the pointed Hopf algebras Ũ(Dred, `) defined by An-

druskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The
result is applied to show that under a certain assumption Uq(gA) depends, up

to cocycle deformation, on only one parameter in each connected component

of the associated Dynkin diagram. In the special case that gA is simple, this
was already shown by Pei, Hu and Rosso in an alternative way.

1. Introduction

Let A,H be two complex Hopf algebras with bijective antipode and let π : A→
H be a Hopf algebra projection that admits a Hopf algebra section ι : H → A.
Then A ' R#H, the Radford–Majid product or bosonization of R over H, where
R = Acoπ is a braided Hopf algebra in the category of Yetter–Drinfeld modules
H
HYD over H. Conversely, given a braided Hopf algebra R in H

HYD, its bosonization
R#H is an ordinary Hopf algebra with a projection to H, see [28]. This fact plays
a crucial role in the classification of finite-dimensional pointed Hopf algebras [9]
and in the description of quantum groups arising from deformation of enveloping
algebras of semisimple Lie algebras, in particular their quantum Borel subalgebras.

Let A be a Hopf algebra with bijective antipode such that its coradical A0 is a
Hopf subalgebra. Then the graded object grA associated to the coradical filtration
is again a Hopf algebra and grA ' R#A0. A key point in the lifting method to
classify pointed Hopf algebras, where A0 is a group algebra, relies on the description
of R as a Nichols algebra. If A is a pointed Hopf algebra such that grA ' R#A0,
it is said that A is a lifting of R over A0. This procedure can be generalized for
other types of filtrations, such as the standard filtration, see [2].

Let H be a Hopf algebra with bijective antipode and R ∈ H
HYD a braided

Hopf algebra. An open question concerning this problem is whether all possible
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2 G. A. GARCÍA

liftings of a bosonization R#H can be obtained by a (left) 2-cocycle deformation
on the multiplication. Positive answers were obtained for H = CΓ, a group algebra
over a finite group Γ, by different authors using different methods. Among them,
[19, 23, 24] solved the case when Γ is abelian and R is a quantum linear space, [17]
when Γ is a symmetric group Sn with n ≥ 3, [16] when Γ is a dihedral group Dm
with m = 4t ≥ 12, and [18] for pointed Hopf algebras associated to affine racks.
Moreover, in [1] a systematic procedure to construct liftings as cocycle deformations
via Hopf–Galois objects is described. Variations of this problem were also studied
by other authors; see for example [10, 11] and references therein.

Hence, a natural question is to describe the set Z2(A,C) of Hopf 2-cocycles on
a bosonization A = R#H. Since H is a Hopf subalgebra of A, the restriction of
any Hopf 2-cocycle on A gives a Hopf 2-cocycle on H. This restriction admits a
section that gives an injective map Z2(H,C) ↪→ Z2(A,C). In particular, any Hopf
2-cocycle σ on H defines a Hopf 2-cocycle σ̃ on A.

Let θ be a positive integer. Let Uq(gA) be the multiparameter quantum group
associated to a generalized Cartan matrix A defined in [27], with q = (qij)1≤i,j≤θ
and qij ∈ C×, qii 6= 1 for all 1 ≤ i, j ≤ θ. In order to treat these quantum
groups in a unified way, we describe them explicitly in Theorem 3.8 as a family of

reductive pointed Hopf algebras Ũ(Dred, `) given in [5]. These are also associated
to the generalized Cartan matrix A. A similar description is given in [20] using
bicharacters. This allows us to study Uq(gA) as a quotient of a bosonization of a
pre-Nichols algebra.

Using results on cocyles on bosonizations, we show in Theorem 3.6 that if qii
is a positive real number for all 1 ≤ i ≤ θ, the algebras Ũ(Dred, `) depend, up to
cocycle deformation, on only one parameter on each connected component of the
Dynkin diagram associated to A. This relation was previously described in [8] and
[29] as a twist-equivalence between the matrices associated to the braiding. Here
we re-interpret them as 2-cocycle deformations.

As a consequence, we prove that the algebras Uq(gA) depend, up to cocycle
deformation, on only one parameter on each connected component of the Dynk-
ing diagram. In case gA is simple, we obtain a result of Pei, Hu and Rosso [27,
Theorem 28] — see Theorem 3.8 and Corollaries 3.9, 3.11.

The paper is organized as follows. In Section 2 we fix notation and recall some
known facts on Hopf 2-cocycles, Yetter–Drinfeld modules, Nichols algebras and
bosonizations. In particular, in Subsection 2.4 we treat cocycle deformations of
Hopf algebras given by bosonizations A = R#H and describe the relation between
Z2(A,C) and Z2(H,C). At the end of this section we provide an example on
finite-dimensional pointed Hopf algebras over symmetric groups. In Section 3 we

first introduce the family of pointed Hopf algebras Ũ(Dred, `) given in [5] and prove
Theorem 3.6. Then we explicitly describe the multiparameter quantum groups
Uq(gA) as a family of these pointed Hopf algebras and apply to them the results
on cocycle deformations.

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



MULTIPARAMETER QUANTUM GROUPS, BOSONIZATIONS, COCYCLES 3

2. Preliminaries

In this section we fix notation and recall some definitions and known results that
are used along the paper.

2.1. Conventions. We work over the field C of complex numbers, although most
of our study could be carried out over a general algebraically closed field of charac-
teristic zero. We denote by C× the group of units of C. If Γ is a group, we denote

by Γ̂ the character group. By convention, N = {0, 1, . . .}. If A is an algebra and
g ∈ A is invertible, then g . a = gag−1, a ∈ A, denotes the inner automorphism
defined by g.

Our references for the theory of Hopf algebras are [26, 30, 28]. We use standard
notation for Hopf algebras; the comultiplication is denoted by ∆ and the antipode
by S. The left adjoint representation of H on itself is the algebra map ad : H →
End(H), adl x(y) = x(1)yS(x(2)), x, y ∈ H; we shall write ad for adl, omitting the
subscript l unless strictly needed. There is also a right adjoint action given by
adr x(y) = S(x(1))yx(2). Note that both adl and adr are multiplicative. The set
of group-like elements of a coalgebra C is denoted by G(C). We also denote by
C+ = Ker ε the augmentation ideal of C, where ε : C → C is the counit of C. Let
g, h ∈ G(H); the set of (g, h)-primitive elements is given by Pg,h(H) = {x ∈ H :
∆(x) = x⊗ g + h⊗ x}. We call P1,1(H) = P (H) the set of primitive elements.

Let A
π−→ H be a Hopf algebra map; then

AcoH = Acoπ = {a ∈ A | (id⊗π)∆(a) = a⊗ 1}
denotes the subalgebra of right coinvariants and coHA = coπA denotes the subal-
gebra of left coinvariants.

For n > 0 and q ∈ C×, q 6= 1, define

(n)q =
qn − 1

q − 1
= qn−1 + · · ·+ q + 1,

(n)q! = (n)q(n− 1)q · · · (2)q(1)q and (0)q = 1,(
n

k

)
q

=
(n)q

(k)q(n− k)q
.

It is well-known that(
n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

=

(
n− 1

k

)
q

+ qn−k
(
n− 1

k − 1

)
q

. (1)

A braided vector space is a pair (V, c) with V a vector space and c ∈ Aut(V ⊗
V ) that satisfies the braid equation, that is (c ⊗ id)(id⊗c)(c ⊗ id) = (id⊗c)(c ⊗
id)(id⊗c) ∈ End(V ⊗ V ⊗ V ).

Let (C,⊗, a, l, r,1) be a monoidal category and denote by τ : C × C → C × C the
flip functor given by τ(X,Y ) = (Y,X) for all X,Y ∈ C. A braiding on C is a natural
isomorphism c : ⊗ → ⊗τ that satisfies the hexagon axiom for any U, V,W ∈ C:

aV,W,U cU,V⊗W aU,V,W = (idV ⊗cU,W ) aV,U,W (cU,V ⊗ idW ),

a−1
W,U,V cU⊗V,W a−1

U,V,W = (cU,W ⊗ idV ) a−1
U,W,V (idU ⊗cV,W ).
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A braided monoidal category is a pair (C, c) where C is a monoidal category and c
is a braiding on C; see [21, Ch. XIII] for details. If C is strict, the equalities above
are equivalent to

cU,V⊗W = (idV ⊗cU,W ) (cU,V ⊗ idW ), cU⊗V,W = (cU,W ⊗ idV ) (idU ⊗cV,W ).

In particular, if V ∈ C then (V, cV,V ) is a braided vector space.

2.2. Deforming cocycles. Let A be a Hopf algebra. Recall that a convolution
invertible linear map σ in HomC(A⊗A,C) is a normalized Hopf 2-cocycle if

σ(b(1), c(1))σ(a, b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c)

and σ(a, 1) = ε(a) = σ(1, a) for all a, b, c ∈ A; see [26, Sec. 7.1].
Using a 2-cocycle σ it is possible to define a new algebra structure on A by

deforming the multiplication, which we denote by Aσ. Moreover, Aσ is indeed a
Hopf algebra with A = Aσ as coalgebras, deformed multiplication mσ = σ∗m∗σ−1 :
A⊗A→ A given by

mσ(a, b) = a ·σ b = σ(a(1), b(1))a(2)b(2)σ
−1(a(3), b(3)) for all a, b ∈ A,

and antipode Sσ = σ ∗ S ∗ σ−1 : A→ A given by (see [14] for details)

Sσ(a) = σ(a(1),S(a(2)))S(a(3))σ
−1(S(a(4)), a(5)) for all a ∈ A.

We denote by Z2(A,C) the set of normalized Hopf 2-cocycles on A. Let τ, σ :
A ⊗ A → C be two linear maps. We denote by τ ∗ σ : A ⊗ A → C the linear
map given by the convolution, that is (τ ∗ σ)(a, b) = τ(a(1), b(1))σ(a(2), b(2)) for all
a, b ∈ A.

Remark 2.1. Assume A = CΓ, with Γ a group. Then a normalized Hopf 2-cocycle
on A is equivalent to a 2-cocycle ϕ ∈ Z2(Γ,C), that is a map ϕ : Γ×Γ→ C× such
that, for all g, h, t ∈ Γ,

ϕ(g, h)ϕ(gh, t) = ϕ(h, t)ϕ(g, ht) and ϕ(g, e) = ϕ(e, g) = 1.

2.3. Yetter–Drinfeld modules, Nichols algebras and bosonization. Let H
be a Hopf algebra with bijective antipode. A Yetter–Drinfeld module over H
is a left H-module and a left H-comodule with comodule structure denoted by
δ : V → H ⊗ V , v 7→ v(−1) ⊗ v(0), such that

δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0) for all v ∈ V, h ∈ H.

Let HHYD be the category of Yetter–Drinfeld modules over H with H-linear and H-
colinear maps as morphisms. The category H

HYD is monoidal and braided. Indeed,
if V,W ∈ H

HYD, then V ⊗W is the tensor product over C with the diagonal action
and coaction of H and braiding cV,W : V ⊗W →W ⊗ V , v ⊗w 7→ v(−1) ·w ⊗ v(0)

for all v ∈ V,w ∈W .
If H = CΓ is a group algebra of a group Γ, we denote this category simply by

Γ
ΓYD. In this case, V ∈ Γ

ΓYD corresponds to a Γ-graded vector space V =
⊕

g∈Γ Vg
which is a left Γ-module such that each homogeneous component Vg, g ∈ Γ, is
stable under the action of Γ. Here, the Γ-grading yields the left CΓ-comodule
structure by δ : V → CΓ ⊗ V , δ(v) = g ⊗ v if v is homogeneous of degree g ∈ Γ.
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MULTIPARAMETER QUANTUM GROUPS, BOSONIZATIONS, COCYCLES 5

For V,W ∈ Γ
ΓYD, the braiding is given by cV,W (v ⊗ w) = g · w ⊗ v, for all v ∈ Vg,

w ∈W and g ∈ Γ. If Γ is finite, then Γ
ΓYD is a semisimple category.

Let V ∈ Γ
ΓYD and g ∈ Γ, χ ∈ Γ̂. We denote by

V χg = {v ∈ V : δ(v) = g ⊗ v, h · v = χ(h)v ∀h ∈ Γ},

the Yetter–Drinfeld submodule given by the g-homogeneous elements with diagonal
action of Γ given by χ. In case Γ is finite abelian, the pairs (g, χ) with g ∈ Γ

and χ ∈ Γ̂ parametrize the simple modules and for all V ∈ Γ
ΓYD we have that

V =
⊕

g∈Γ,χ∈Γ̂ V
χ
g .

Since H
HYD is a braided monoidal category, we may consider Hopf algebras in

H
HYD. For V ∈ H

HYD, the tensor algebra T (V ) = ⊕n≥0T
n(V ) is an N-graded

algebra and coalgebra in the braided category H
HYD where the elements of V =

T (V )(1) are primitive.
Let (V, c) be a finite-dimensional braided vector space. We say that the braiding

c : V ⊗ V → V ⊗ V is diagonal [8, Def. 1.1] if there exists a basis x1, . . . , xθ of
V and non-zero scalars qij such that c(xi ⊗ xj) = qijxj ⊗ xi for all 1 ≤ i, j ≤ θ.
The braiding is called generic if it is diagonal and qii is not a root of unity for all
1 ≤ i ≤ θ, and it is called positive if it is generic and qii is a positive real number for
all 1 ≤ i ≤ θ. We say that two finite-dimensional braided vector spaces of diagonal
type (V, c) and (W,d) with matrices (qij) and (q̂ij) are twist-equivalent [7, Def. 3.8]
if dimV = dimW , qii = q̂ii, and

qijqji = q̂ij q̂ji for all 1 ≤ i, j ≤ θ.

We are particularly interested in one class of braided Hopf algebras in these
categories, which turn out to be crucial in the theory: the (pre-) Nichols algebras.

Definition 2.2. Let I(V ) ⊆ T (V ) be the largest N-graded ideal and coideal such
that I(V ) ∩ V = 0. We call B(V ) = T (V )/I(V ) the Nichols algebra of V . In
particular, B(V ) =

⊕
n≥0 B

n(V ) is an N-graded Hopf algebra in H
HYD.

Given a braided vector space (V, c), one may construct the Nichols algebra
B(V, c) = B(V ) in a way similar to the construction above, by taking a quotient
of the tensor algebra T (V ) by the homogeneous two-sided ideal given by the kernel
of a homogeneous symmetrizer: Let Bn be the braid group of n letters. Since c
satisfies the braid equation, it induces a representation of Bn, ρn : Bn → GL(V ⊗n)
for each n ≥ 2. Consider the morphisms

Qn =
∑
σ∈Sn

ρn(M(σ)) ∈ End(V ⊗n),

where M : Sn → Bn is the Matsumoto section corresponding to the canonical
projection Bn � Sn. Then the Nichols algebra B(V ) is the quotient of the tensor
algebra T (V ) by the two-sided ideal J =

⊕
n≥2 KerQn.

A pre-Nichols algebra is an intermediate graded braided Hopf algebra between
T (V ) and B(V ); see [23, 24].
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6 G. A. GARCÍA

Let R be a Hopf algebra in H
HYD with multiplication mR. For x, y ∈ P (R), we

define the braided adjoint action of x on y by

adc(x)(y) = mR(x⊗ y)−mR ◦ cR⊗R(x⊗ y) = xy − (x(−1) · y)x(0).

This element is also called the braided commutator of x and y.

2.3.1. Bosonization and Hopf algebras with a projection. Let R be a Hopf algebra
in H

HYD. The procedure to obtain a usual Hopf algebra from the braided Hopf al-
gebra R and H is called bosonization or Radford–Majid product, and it is usually
denoted by R#H. As a vector space, R#H = R⊗H and the multiplication and co-
multiplication are given by the smash-product and smash-coproduct, respectively.
That is, for all r, s ∈ R and g, h ∈ H, we have

(r#g)(s#h) = r(g(1) · s)#g(2)h,

∆(r#g) = r(1)#(r(2))(−1)g(1) ⊗ (r(2))(0)#g(2),

S(r#g) = (1#SH(r(−1)g))(SR(r(0))#1),

where ∆R(r) = r(1) ⊗ r(2) denotes the comultiplication in R ∈ H
HYD and SR the

antipode. Clearly, the map ι : H → R#H given by ι(h) = 1#h for all h ∈ H is an
injective Hopf algebra map, and the map π : R#H → H given by π(r#h) = εR(r)h
for all r ∈ R, h ∈ H is a surjective Hopf algebra such that π ◦ ι = idH . Moreover,
it holds that R = (R#H)coπ.

Conversely, let A be a Hopf algebra with bijective antipode and π : A → H a
Hopf algebra epimorphism admiting a Hopf algebra section ι : H → A such that
π ◦ ι = idH . Then R = Acoπ is a braided Hopf algebra in H

HYD called the diagram
of A and A ' R#H as Hopf algebras. See [28, 11.6] for more details.

2.4. On cocycle deformations and bosonizations. In this subsection we col-
lect some results on the construction of 2-cocycles on bosonizations of Hopf alge-
bras.

Let H be a Hopf algebra with bijective antipode, R a braided Hopf algebra
in H

HYD and A = R#H. To avoid any confusion, in this section we denote by
⇀: H ⊗R→ R the action of H on R.

Let σ ∈ Z2(H,C). Then the map σ̃ : A⊗A→ C given by

σ̃(r#h, s#k) = σ(h, k)εR(r)εR(s) for all r, s ∈ R, h, k ∈ H,

is a normalized Hopf 2-cocycle such that σ̃|H⊗H = σ. Moreover, Hσ is a Hopf
subalgebra of Aσ̃ and the map Z2(H,C) → Z2(A,C) given by σ 7→ σ̃ gives a
section of the map Z2(A,C)→ Z2(H,C) induced by the restriction; in particular,
it is injective. See e.g. [24, Section 5], [13, Prop. 4.2].

Proposition 2.3. [24, Prop. 5.2] Let σ and σ̃ be as above. Then Aσ̃ = Rσ#Hσ,
where Rσ = R as coalgebras, and the product is given by

a ·σ b = σ(a(−1), b(−1))a(0)b(0) for all a, b ∈ R. (2)
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MULTIPARAMETER QUANTUM GROUPS, BOSONIZATIONS, COCYCLES 7

Moreover, Rσ ∈ Hσ
Hσ
YD with the action of Hσ given by

h ⇀σ a = σ(h(1), a(−1))(h(2) ⇀ a(0))(0)σ
−1((h(2) ⇀ a(0))(−1), h(3))

for all h ∈ Hσ, a ∈ Rσ. (3)

�

Remark 2.4. In case R is a (pre-) Nichols algebra, by [1] and [22, Thm. 2.7 and
Cor. 3.4] Rσ is also a (pre-) Nichols algebra and the action is described by (3).

Remark 2.5. Assume H = CΓ and σ ∈ Z2(Γ,C). Let h ∈ Γ and a ∈ R be a
homogeneous element of degree g ∈ Γ; in particular, δ(a) = g ⊗ a and ∆A(a) =
a⊗ 1 + g ⊗ a. Then (3) yields

h ⇀σ a = h ·σ a ·σ h−1 = σ(h, g)σ−1(hgh−1, h)h ⇀ a. (4)

Remark 2.6. In [12] the authors introduced another type of cocycle deformation
on a Hopf algebra, which is closely related to the one given above. We describe
it shortly. Let Γ be an abelian group and A a Hopf algebra that is Γ × Γ-graded.
Given any ϕ ∈ Z2(Γ,C), define a new product on A by

h ∗
ϕ
k := ϕ(η, κ)ϕ

(
η′, κ′

)−1
h · k (5)

for all homogeneous h, k ∈ H with degrees
(
η, η′

)
,
(
κ, κ′

)
∈ Γ × Γ. With this

multiplication, the new algebra A(ϕ) is a Hopf algebra with the same coalgebra
structure and unit as A. Assume A = R#CΓ is given by a bosonization over an
abelian group Γ. Then, the coaction of CΓ on the elements of R induces a Γ × Γ
grading on A with deg g = (g, g) for all g ∈ Γ and deg(x) = (g, 1) if δ(x) = g ⊗ x,
with x ∈ R a homogeneous element, and we have that A(ϕ) = Aϕ̃, where ϕ̃ is the
Hopf 2-cocycle on A induced by ϕ. In particular, for x, y homogeneous elements of
R of degree g and h respectively, we have that

x ∗
ϕ
y = ϕ(g, h)ϕ(1, 1)−1xy = ϕ(x(−1), y(−1))x(0)y(0),

which coincides with formula (2).

Remark 2.7. Let A be a Hopf algebra and σ ∈ Z2(A,C), τ ∈ Z2(Aσ,C). Then
τ ∗σ ∈ Z2(A,C). As is known, the set Z2(A,C) is not a group in general. It is the
case if the cocycles are lazy ; see for example [13]. Nevertheless, there is a groupoid
structure on the set of all Hopf 2-cocycles.

Let Z be the groupoid whose objects are Hopf algebras A and arrows labelled
by the set of 2-cocycles {ασ : A → Aσ : σ ∈ Z2(A,C)}. The source and target
maps are given by s(ασ) = A, t(ασ) = Aσ, and the composition by ατ ◦ασ = ατ∗σ
for σ ∈ Z2(A,C) and τ ∈ Z2(Aσ,C).

Clearly, the identity arrow is given by idA = αεA , and since (Aσ)σ−1 = Aσ∗σ−1 =
A = Aσ−1∗σ = (Aσ−1)σ, each arrow is invertible with inverse ασ−1 : Aσ → A.

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



8 G. A. GARCÍA

2.4.1. An example on pointed Hopf algebras over Sn. We describe now an example
where two non-isomorphic families of finite-dimensional pointed Hopf algebras over
Sn are cocycle deformation of each other. The 2-cocycle is given by the product
of a 2-cocycle associated to a Hochschild 2-cocycle on a Nichols algebra and a
group 2-cocycle found by Vendramin [31] which serves as twisting of the 2-cocycle
asociated to the rack of transpositions in Sn. For this purpose we need to introduce
first some terminology (see [3, Def. 1.1] for more details).

Racks and Nichols algebras. A rack is a pair (X,B), where X is a non-empty set
and B : X ×X → X is a function, such that φi = iB (·) : X → X is a bijection for
all i ∈ X satisfying that iB (j B k) = (iB j)B (iB k) for all i, j, k ∈ X. A group
G is a rack with x . y = xyx−1 for all x, y ∈ G. If G = Sn, then we denote by Onj
the conjugacy class of all j-cycles in Sn.

Let (X,B) be a rack. A rack 2-cocycle q : X×X → C×, (i, j) 7→ qij is a function
such that

qi,jBk qj,k = qiBj,iBk qi,k, for all i, j, k ∈ X.
It determines a braiding cq on the vector space CX with basis {xi}i∈X by cq(xi ⊗
xj) = qijxiBj ⊗ xi for all i, j ∈ X. We denote this braided vector space (CX, cq)
by M(X, q) and the Nichols algebra associated with it by B(X, q).

Let X be a subrack of a conjugacy class O in Γ, q a rack 2-cocycle on X and
ϕ ∈ Z2(Γ,C). Then the map qϕ : X ×X → C× given by

qϕxy = ϕ(x, y)ϕ−1(x . y, x)qxy, for all x, y ∈ X, (6)

is a rack 2-cocycle.
If X is any rack, q a rack 2-cocycle on X and ϕ : X ×X → C×, then define qϕ

by (6). It can be shown that qϕ is a rack 2-cocycle if and only if

ϕ(x, z)ϕ(x . y, x . z)ϕ(x . (y . z), x)ϕ(y . z, y)

= ϕ(y, z)ϕ(x, y . z)ϕ(x . (y . z), x . y)ϕ(x . z, x)

for any x, y, z ∈ X. If X is a subrack of a group Γ and ϕ ∈ Z2(Γ,C), then ϕ|X×X
satisfies the equation above.

Definition 2.8. Let q, q′ : X ×X → C× be rack 2-cocycles on X. We say that q
and q′ are twist equivalent if there exists ϕ : X × X → C× such that q′ = qϕ as
in (6).

On Nichols algebras over Sn. Let X = On2 be the rack of transpositions with n ≥ 3
and consider the cocycles:

−1 : On2 ×On2 → C×, (j, i) 7→ sg(j) = −1;

χ : On2 ×On2 → C×, (j, i) 7→ χi(j) =

{
1, if i = (a, b) and j(a) < j(b),

−1, if i = (a, b) and j(a) > j(b),

for all i, j ∈ On2 . By [25, Ex. 6.4], [4, Theorem 6.12], the Nichols algebras are given
by
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(a) B(On2 ,−1); generated by the elements {x(`m)}1≤`<m≤n satisfying for all
1 ≤ a < b < c ≤ n, 1 ≤ e < f ≤ n, {a, b} ∩ {e, f} = ∅ the identities

0 = x2
(ab) = x(ab)x(ef) + x(ef)x(ab) = x(ab)x(bc) + x(bc)x(ac) + x(ac)x(ab).

(b) B(On2 , χ); generated by the elements {x(`m)}1≤`<m≤n satisfying for all
1 ≤ a < b < c ≤ n, 1 ≤ e < f ≤ n, {a, b} ∩ {e, f} = ∅ the identities

0 = x2
(ab) = x(ab)x(ef) − x(ef)x(ab) = x(ab)x(bc) − x(bc)x(ac) − x(ac)x(ab),

0 = x(bc)x(ab) − x(ac)x(bc) − x(ab)x(ac).

For 3 ≤ n ≤ 5 these Nichols algebras are finite-dimensional. If n > 5 it is not
known if this is the case. It turns out that the cocycles associated to them are
twist equivalent.

Theorem 2.9. [31, Theorem 3.8] Let n ≥ 4. The rack 2-cocycles χ and −1
associated to On2 are twist equivalent. �

Remark 2.10. The twist given by Theorem 2.9 is defined using a group 2-cocycle
ϕ ∈ Z2(Sn,C). In particular, −1 = ϕ(x, y)ϕ−1(x . y, x)χ(x, y) for all x, y ∈ On2 .

Cocycles on pointed Hopf algebras over Sn. Assume n ≥ 4. Let ϕ ∈ Z2(Sn,C)
be the group 2-cocycle given in Remark 2.10. Denote again by ϕ the associated
Hopf 2-cocycle in Z2(CSn,C) and by ϕ̃ ∈ Z2(A,C) the Hopf 2-cocycle on the
bosonization A = B(On2 , χ)#CSn. Then by Proposition 2.3 we have that

B(On2 ,−1)#CSn ' B(On2 , χ)ϕ#CSn ' (B(On2 , χ)#CSn)ϕ̃.

Let Λ,Γ ∈ C and t = (Λ,Γ). Denote by H(Q−1
n [t]) the algebra generated by

{ai, hr : i ∈ On2 , r ∈ Sn} satisfying the following relations for r, s, j ∈ Sn and
i ∈ On2 :

he = 1, hrhs = hrs, hjai = −aj.ihj , a2
(12) = 0,

a(12)a(34) + a(34)a(12) = Λ(1− h(12)h(34)),

a(12)a(23) + a(23)a(13) + a(13)a(12) = Γ(1− h(12)h(23)).

This algebra is indeed a Hopf algebra with the structure determined by hσ being
a grouplike element and aσ being a (1, hσ)-primitive for all σ ∈ On2 . Consequently,
it is a pointed Hopf algebra with diagram B(On2 ,−1); see [15] for details. If t =
(2λ, 3λ) with λ ∈ C×, we know that H(Q−1

n [t]) is a cocycle deformation of the
bosonization B(On2 ,−1)#CSn. The explicit cocycle is given in the theorem below;
it was also shown in [17] by other methods.

Briefly, let X be a rack, q a rack 2-cocycle and {xτ}τ∈X be homogeneous ele-

ments in V = M(X, q) ∈ Sn
SnYD. Then the linear combination of tensor products of

linear functionals δτ given by δτ (xµ) = δτ,µ for all µ, τ ∈ X give rise to a Hochschild
2-cocycle η =

∑
τ,µ∈X aτ,µdτ ⊗ µ by defining it via

η(Bm(V )⊗Bn(V )) = 0 if (m,n) 6= (1, 1).

If this cocycle is invariant under the action of Sn, i.e. ηh(x, y) = η(h(1) ⇀
x, h(2) ⇀ y) = η(x, y) for all x, y ∈ B(V ) and h ∈ Sn, then one may define a

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)
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Hochschild 2-cocycle on A = B(V )#CSn by

η̃(x#h, y#k) = η(x, h ⇀ y)ε(k) for all x, y ∈ B(V ), h, k ∈ Sn.

Moreover, σ = eη̃ =
∑∞
i=0

η̃∗i

i! : A⊗ A→ C is a well-defined convolution invertible

map with convolution inverse e−η̃. By [16, Corollary 2.6] this map σ = eη̃ is a Hopf
2-cocycle. See [16, 2.1] for more details.

Theorem 2.11. [16, Theorem 4.10 (i)] Let A = B(On2 ,−1)#CSn and σλ =
eη̃λ a Hopf 2-cocycle with ηλ = λ

3

∑
µ,τ∈On2

dτ ⊗ dµ and λ ∈ C. Then Aσλ '
H(Q−1

n [(2λ, 3λ)]) for n ≥ 4. �

We end this section with the following result.

Corollary 2.12. Let σλ = eη̃λ ∈ Z2(B(On2 ,−1)#CSn,C) and
ϕ̃ ∈ Z2(B(On2 , χ)#CSn,C) be the Hopf 2-cocycles defined above. Then

H(Q−1
n [(2λ, 3λ)]) ' (B(On2 , χ)#CSn)σλ∗ϕ̃.

Proof. Since σλ = eη̃λ is a Hopf 2-cocycle on B(On2 ,−1)#CSn and this algebra
is isomorphic to (B(On2 , χ)#CSn)ϕ̃ for ϕ ∈ Z2(Sn,C), the claim follows by Re-
mark 2.7. �

3. Multiparameter quantum groups, pre-Nichols algebras and
cocycle deformations

In this section we show explicitly that certain classes of multiparameter quantum
groups can be described using the theory of pointed Hopf algebras developed by
Andruskiewitsch and Schneider [9, 5].

First we introduce these families of pointed Hopf algebras and then show that
under some assumptions they are cocycle deformations of certain (one-parameter)
families of pointed Hopf algebras.

3.1. On pointed Hopf algebras associated to generalized Cartan matrices.
Let θ be a positive integer and (aij)1≤i,j≤θ a generalized Cartan matrix, that is,
a matrix with integer entries such that aii = 2 for all 1 ≤ i ≤ θ, and for all
1 ≤ i, j ≤ θ, i 6= j, aij ≤ 0, and if aij = 0, then aji = 0.

Definition 3.1. [5, Def. 3.2] A reduced YD-datum of Cartan type

Dred = D(Γ, (Li)1≤i≤θ, (Ki)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ)

consists of an abelian group Γ, Ki, Li ∈ Γ and characters χi ∈ Γ̂ = Hom(Γ,C×)
satisfying for all 1 ≤ i, j ≤ θ that

KiLi 6= 1, qij = χj(Ki) = χi(Lj),

qijqji = q
aij
ii , qii 6= 1, 0 ≤ −aij < ord(qii) ≤ ∞.

A reduced YD-datum Dred is called generic if χi(Ki) = qii is not a root of unity, for
all 1 ≤ i ≤ θ. A linking parameter ` for Dred is a family ` = (`i)1≤i≤θ of non-zero
elements in C.
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Let I = {1, 2, . . . , θ}. We have an equivalence relation on I: for i 6= j ∈ I we
say that i ∼ j if and only if there are i1, . . . , it ∈ I with t ≥ 2, i1 = i, it = j and
qik,ik+1

qik+1,ik 6= 1 for all 1 ≤ k < t. We denote by X the set of equivalence classes.
This equivalence can be described as usual in terms of the Cartan matrix. Indeed,
for all 1 ≤ i, j ≤ θ, i ∼ j if and only if there are i1, . . . , it ∈ I, t ≥ 2 with i1 = i,
it = j, and aik,ik+1

6= 0 for all 1 ≤ k < t.
A reduced YD-datum of Cartan type is said of DJ-type (Drinfeld–Jimbo type)

if the Cartan matrix is symmetrizable, i.e. there exist di relatively prime positive
integers such that diaij = djaji for all 1 ≤ i, j ≤ θ, and for all I ∈ X there exists
qI ∈ C× such that

qij = q
diaij
I for all i ∈ I, 1 ≤ j ≤ θ.

In particular, qij = 1 if aij = 0. We denote this datum by

Dq = (Γ, (Li)1≤i≤θ, (Ki)1≤i≤θ, (qI)I∈X , (aij)1≤i,j≤θ).

Definition 3.2. [9, Def. 2.4] Let

Dred = (Γ, (Li)1≤i≤θ, (Ki)1≤i≤θ, (χi)1≤i≤θ, (aij)1≤i,j≤θ)

be a reduced YD-datum of Cartan type and ` = (`i)1≤i≤θ a linking parameter.

Ũ(Dred, `) = Ũ is the algebra generated by the elements g ∈ Γ, xi, yi with 1 ≤ i ≤ θ,
satisfying the relations

g±1h±1 = h±1g±1, g±1g∓1 = 1,

gxig
−1 = χi(g)xi, gyig

−1 = χi(g)−1yi,

xiyj − χ−1
j (Ki)yjxi = −δij`i(KiLi − 1),

adc(xi)
1−aij (xj) = 0, adc(yi)

1−aij (yj) = 0,

for all g, h ∈ Γ, 1 ≤ i, j ≤ θ, where

adc(xi)(xj) = xixj − χj(Ki)xjxi = xixj − qijxjxi, 1 ≤ i, j ≤ θ,
adc(yi)(yj) = yiyj − χ−1

j (Li)yjyi = yiyj − q−1
ji yjyi, 1 ≤ i, j ≤ θ.

The algebra Ũ is a Hopf algebra with its structure determined by g ∈ Γ being
grouplike, xi being (1,Ki)-primitive and yi being (1, Li)-primitive for all 1 ≤ i ≤ θ.
In particular, it is a pointed Hopf algebra with G(Ũ) = Γ.

Remark 3.3. The data (Γ, (Li)1≤i≤θ, (Ki)1≤i≤θ, (χi)1≤i≤θ) is called simply a YD-
reduced datum. Let V,W be vector spaces with basis {xi}1≤i≤θ and {yi}1≤i≤θ,
respectively. Then any YD-reduced datum defines on V and W a Yetter–Drinfeld

module structure over CΓ given by xi ∈ V χiKi and yi ∈W
χ−1
i

Li
for all 1 ≤ i ≤ θ, that

is,

δ(xi) = Ki ⊗ xi, g · xi = χi(g)xi,

δ(yi) = Li ⊗ yi, g · yi = χ−1
i (g)yi,
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for all g ∈ Γ. The braidings cV = cV,V of V and cW of W are given by

cV (xi ⊗ xj) = Ki · xj ⊗ xi = χj(Ki)xj ⊗ xi = qijxj ⊗ xi, 1 ≤ i, j ≤ θ,
cW (yi ⊗ yj) = Li · yj ⊗ yi = χ−1

j (Li)yj ⊗ yi = q−1
ji yj ⊗ yi, 1 ≤ i, j ≤ θ;

in particular, they are of diagonal type, and the corresponding adjoint actions are
given by

adc(xi)(xj) = xixj − χj(Ki)xjxi = xixj − qijxjxi, 1 ≤ i, j ≤ θ,
adc(yi)(yj) = yiyj − χ−1

j (Li)yjyi = yiyj − q−1
ji yjyi, 1 ≤ i, j ≤ θ.

The pre-Nichols algebras R(D), R(D, V ) and R(D,W ) associated to the reduced
YD-datum described above are given by the quotient (braided) Hopf algebras

R(D) = T (V ⊕W )/(adc(xi)
1−aij (xj), adc(yi)

1−aij (yj), 1 ≤ i 6= j ≤ θ),
R(D, V ) = T (V )/(adc(xi)

1−aij (xj), 1 ≤ i 6= j ≤ θ),
R(D,W ) = T (W )/(adc(yi)

1−aij (yj), 1 ≤ i 6= j ≤ θ).

Since cW,V cV,W = id, we have that R(D) ' R(D, V ) ⊗ R(D,W ) (see [24]). By
abuse of notation, we denote the images of the elements xi, yj in R(D) again by
xi, yj . It is well-known that the elements adc(xi)

1−aij (xj), 1 ≤ i 6= j ≤ θ, are
primitive in the free algebra T (V ) (see, for example, [6, A.1]), hence they generate
a Hopf ideal.

It follows that Ũ(Dred, `) is the Hopf algebra given by the quotient of the
bosonization R(D)#CΓ modulo the ideal generated by the elements

xiyj − χ−1
j (Ki)yjxi − δij`i(KiLi − 1) for all 1 ≤ i, j ≤ θ,

where we identify xi = xi#1, yi = yi#1 and Ki = 1#Ki, Li = 1#Li for all
1 ≤ i ≤ θ.

Remark 3.4. In case the braiding is positive and generic, the pre-Nichols alge-
bras R(D, V ) and R(D,W ) coincide with the Nichols algebras B(V ) and B(W )
respectively, that is, the ideals I(V ) and I(W ) are generated by the quantum Serre
relations adc(xi)

1−aij (xj), adc(yi)
1−aij (yj) associated to the braided commutators

(see [8, Theorem 4.3] and references therein). These Serre relations are not enough
to define the ideal I(V ⊕W ); see Remark 3.5.

Remark 3.5. In case the braiding is positive and generic, the ideal I(V ⊕W ) ⊆
T (V ⊕W ) is generated by I(V ), I(W ) and xiyj −χ−1

j (Ki)yjxi for all 1 ≤ i, j ≤ θ;
see [5, Remark 1.10]. In particular, we have that Ũ(Dred, 0) ' B(V ⊕W )#Z2θ.

We present now a result that translates the notion of twist-equivalence of matri-
ces of diagonal braidings ([8, Prop. 2.2], [29, Theorem 2.1]) to cocycle deformations.
It states that, under some assumptions, these families of pointed Hopf algebras
depend only on one parameter for each connected component, up to cocycle defor-
mations.
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Theorem 3.6. Let Γ be a free abelian group of rank 2θ with generators (Li)1≤i≤θ,
(Ki)1≤i≤θ. Let Dred be a reduced YD-datum of Cartan type and ` = (`i) a linking

parameter. If 1 6= qii is a positive real number for all 1 ≤ i ≤ θ, then Ũ(Dred, `) is a

cocycle deformation of a Hopf algebra Ũ(Dq, `) associated with a reduced YD-datum
Dq of DJ-type.

Proof. By [29, Theorem 2.1] we have that the Cartan matrix (aij)1≤i,j≤θ is sym-
metrizable, with symmetrizing diagonal matrix (di)1≤i≤θ, and there is a collec-
tion of positive numbers (qI)I∈X such that (qij) is twist-equivalent to (q̂ij), where

q̂ij = q
diaij
I for all i, j ∈ I.

If we order the group generators by L1, . . . , Lθ,K1, . . . ,Kθ and take the corre-
sponding characters χ−1

1 , . . . , χ−1
θ , χ1, . . . , χθ, the matrix of the braiding in V ⊕W

is given by

pij =


q−1
ji if 1 ≤ i, j ≤ θ,
q−1
ij if 1 ≤ i ≤ θ, θ + 1 ≤ j ≤ 2θ,

qji if θ + 1 ≤ i ≤ 2θ, 1 ≤ j ≤ θ,
qij if θ + 1 ≤ i, j ≤ 2θ.

Let Dq = D(Γ, (Li)1≤i≤θ, (Ki)1≤i≤θ, (qI)I∈X , (aij)1≤i,j≤θ) be the reduced YD-

datum of DJ-type associated with (q̂ij). Denote by V̂ , Ŵ the braided vector spaces

associated with this datum and by (p̂ij)i,j the matrix of the braiding in V̂ ⊕ Ŵ .

Let Ũ(Dq, `) be the corresponding pointed Hopf algebra.
If we set gi = Li and gi+θ = Ki for all 1 ≤ i ≤ θ, then by [8, Prop. 2.2] the map

σ : Γ× Γ→ C× given by

σ(gi, gj) =

{
p̂ijp

−1
ij if i ≤ j,

1 otherwise,

is a group 2-cocycle. Denote by σ̃ ∈ Z2(T (V ⊕W )#CΓ,C) the Hopf 2-cocycle

induced by σ. Then σ̃ induces a Hopf 2-cocycle on Ũ(Dred, `) and we have that

Ũ(Dred, `)σ̃ ' Ũ(Dq, `). Indeed, by Proposition 2.3 and the proof of [7, Prop. 3.9]

we have that (T (V ⊕W )#CΓ)σ̃ = T (V ⊕W )σ#CΓ = T (V̂ ⊕Ŵ )#CΓ. For example,
for i ≤ j ∈ I

Ki ·σ xj = σ(Ki,Kj)σ
−1(Kj ,Ki)Ki · xj = q̂ijq

−1
ij qijxj = q̂ijxj = q

diaij
I xj .

Let J be the ideal of T (V ⊕ W ) generated by the elements xiyj − q−1
ij yjxi −

δij`i(KiLi − 1) for all 1 ≤ i, j ≤ θ. To prove the claim it suffices to show that

the corresponding ideal in T (V ⊕W )σ coincides with the ideal Ĵ generated by the
elements xiyj− q̂−1

ij yjxi−δij`i(KiLi−1). But by Proposition 2.3 and the definition
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of σ we have for all 1 ≤ i, j ≤ θ that

xi ·σ yj − q−1
ij yj ·σ xi − δij`i(Ki ·σ Li − 1)

= σ(Ki, Lj)xiyj − q−1
ij σ(Lj ,Ki)yjxi − δij`i(KiLi − 1)

= xiyj − q−1
ij (q̂ijq

−1
ij )−1yjxi − δij`i(KiLi − 1)

= xiyj − q̂−1
ij yjxi − δij`i(KiLi − 1). �

3.2. Multiparameter quantum groups as quotients of bosonizations of
pre-Nichols algebras. In this subsection we show how the multiparameter quan-
tum groups Uq(gA), associated with a symmetrizable generalized Cartan matrix,
introduced by Pei, Hu and Rosso [27], can be described using reduced data. These
multiparameter quantum groups contain in a unified way families of quantum
groups introduced by other authors (see [27] and references therein). Note that
in [8] Andruskiewitsch and Schneider characterized all pointed Hopf algebras that
can be constructed using a generic datum of finite Cartan type for a free group of
finite rank.

Let gA be a symmetrizable Kac–Moody algebra with A = (aij)i,j∈I the asso-
ciated generalized Cartan matrix, with I a finite set. Let di be relatively prime
positive integers such that diaij = djaji for all i, j ∈ I. Let Φ be a finite root
system with Π = {αi : i ∈ I} a set of simple roots, Q =

⊕
i∈I Zαi the root lattice,

Φ+ the set of positive roots with respect to Π, and Q+ =
⊕

i∈I Z+αi the positive
root lattice. Let q = (qij)i,j∈I with qij ∈ C× and qii 6= 1 for all i, j ∈ I satisfying

qijqji = q
aij
ii for all i, j ∈ I. (7)

Definition 3.7. [27, Def. 7] Let Uq(gA) be the unital associative algebra over C
generated by elements ei, fi, ω

±1
i and ω′

±1
i with i ∈ I satisfying the following

relations:

(R1) ω±1
i ω′

±1
j = ω′

±1
j ω±1

i , ω±1
i ω∓1

i = ω′
±1
i ω′

∓1
i = 1,

(R2) ω±1
i ω±1

j = ω±1
j ω±1

i , ω′
±1
i ω′

±1
j = ω′

±1
j ω′

±1
i ,

(R3) ωiejω
−1
i = qijej , ω′iejω

′−1
i = q−1

ji ej ,

(R4) ωifjω
−1
i = q−1

ij fj , ω′ifjω
′−1
i = qjifj ,

(R5) [ei, fj ] = δi,j
qii

qii − 1
(ωi − ω′i),

(R6)

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkije

1−aij−k
i eje

k
i = 0 (i 6= j),

(R7)

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkijf

k
i fjf

1−aij−k
i = 0 (i 6= j).
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Uq(gA) is a Hopf algebra with its coproduct, counit and antipode determined
for all i, j ∈ I by:

∆(ei) = ei ⊗ 1 + ωi ⊗ ei, ε(ei) = 0, S(ei) = −ω−1
i ei,

∆(fi) = fi ⊗ ω′i + 1⊗ fi, ε(fi) = 0, S(fi) = −fiω′i
−1
,

∆(ω±1
i ) = ω±1

i ⊗ ω
±1
i , ε(ω±1

i ) = 1, S(ω±1
i ) = ω∓1

i ,

∆(ω′
±1
i ) = ω′

±1
i ⊗ ω′

±1
i , ε(ω′

±1
i ) = 1, S(ω′

±1
i ) = ω′

∓1
i .

Next we prove that this quantum group can be described using reduced data.

Definition of Ũ(Dred, `). Let

• θ = |I|,
• Γ = Z2|I| and denote Ki, Li with i ∈ I two (commuting) generators,

• χi ∈ Γ̂ given by χi(Kj) = qji and χi(Lj) = qij for all i, j ∈ I.

In particular, we have that χi(Lj) = χj(Ki) for all i, j ∈ I. Since by assump-
tion KiLi 6= 1 and by (7), qijqji = q

aij
ii with qii 6= 1, we have that Dred =

D(Γ, (Ki), (Li), (χi), (aij)) is a reduced YD-datum of Cartan type.
Let V , W be the vector spaces linearly generated by the elements xi and yi for

all 1 ≤ i ≤ θ. Following the definition of reduced data, both have a Yetter–Drinfeld
module structure. In this case, it is given for all i, j ∈ I by

δ(xj) = Kj ⊗ xj , Ki · xj = χj(Ki)xj = qijxj , Li · xj = qjixj ,

δ(yj) = Lj ⊗ yj , Ki · yj = χ−1
j (Ki)yj = q−1

ij yj , Li · yj = q−1
ji yj .

Recall that for ` = (`i)1≤i≤θ with `i ∈ C×, the pointed Hopf algebra Ũ(Dred, `)
associated with these data is given by the quotient Hopf algebra of the bosonization
R(D)#CZ2θ modulo the ideal generated by

xiyj − q−1
ij yjxi − δij`i(KiLi − 1) for all i, j ∈ I.

In particular, in Ũ(Dred, `), xi is a (1,Ki)-primitive and yi is a (1, Li)-primitive.

Indeed, for xi ∈ R(D)#CZ2θ we have ∆R(xi) = x
(1)
i ⊗ x

(2)
i = xi ⊗ 1 + 1⊗ xi and

∆(xi) = x
(1)
i #(x

(2)
i )(−1) ⊗ (x

(2)
i )(0)#1 = (xi#1)⊗ (1#1) + (1#Ki)⊗ (xi#1)

= xi ⊗ 1 +Ki ⊗ xi.

Theorem 3.8. Uq(gA) ' Ũ(Dred, `) with `i = qii
qii−1 for all 1 ≤ i ≤ θ.

Proof. Let ϕ : Uq(gA)→ Ũ(Dred, `) be the algebra map defined by

ϕ(ωi) = Ki, ϕ(ω′i) = L−1
i , ϕ(ei) = xi, ϕ(fi) = yiL

−1
i for all 1 ≤ i ≤ θ.

The map ϕ is an epimorphism, if it is well-defined. To prove that it is well-defined,
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we show that the relations in Uq(gA) are mapped to 0 by ϕ. First, notice that
the action of Ki and Li on xj and yj yields a commutation relation in T (V ⊕
W )#CZ2θ; for example, (1#Ki)(xj#1)(1#K−1

i ) = [(Ki ·xj#Ki)(1#K−1
i )] = Ki ·

xj#1. Clearly, we need to verify only relations (R3)–(R7). For (R3) we have

ϕ(ωiejω
−1
i − qijej) = KixjK

−1
i − qijxj = Ki · xj − qijxj = 0,

ϕ(ω′iejω
′−1
i − q−1

ji ej) = L−1
i xjLi − q−1

ji xj = L−1
i · xj − q

−1
ji xj = 0.

The proof for (R4) follows the same lines. Since D is a reduced datum, for (R5)
we have

ϕ([ei, fj ]) = xiyjL
−1
j − yjL

−1
j xi = xiyjL

−1
j − χi(L

−1
j )yjxiL

−1
j

= xiyjL
−1
j − q

−1
ij yjxiL

−1
j = (xiyj − q−1

ij yjxi)L
−1
j = δij`i(KiLi − 1)L−1

j

= δij
qii

qii − 1
(Ki − L−1

i ) = ϕ

(
δij

qii
qii − 1

(ωi − ω′i)
)
.

To verify (R6) and (R7) one notes that their images under ϕ are the quantum
Serre relations in T (V ⊕W ), e.g. adc(xi)

1−aij (xj) is the image of the left hand side
of (R6). Indeed, since

adc(xi)(xj) = xixj − [(xi)−1 · xj ](xi)0 = xixj − (Ki · xj)xi = xixj − qijxjxi,

one proves by induction that

adc(xi)
n(xj) =

n∑
k=0

(−1)k
(
n

k

)
qii

q
k(k−1)

2
ii qkijx

n−k
i xjx

k
i for all n ∈ N. (8)
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Assuming that the equality holds for n ∈ N and using (1) we have

adc(xi)
n+1(xj) = adc(xi)(adc(xi)

n(xj))

= adc(xi)

(
n∑
k=0

(−1)k
(
n

k

)
qii

q
k(k−1)

2
ii qkijx

n−k
i xjx

k
i

)

=

n∑
k=0

(−1)k
(
n

k

)
qii

q
k(k−1)

2
ii qkij [x

n+1−k
i xjx

k
i −Ki · (xn−ki xjx

k
i )xi]

=

n∑
k=0

(−1)k
(
n

k

)
qii

q
k(k−1)

2
ii qkij [x

n+1−k
i xjx

k
i − qniiqijxn−ki xjx

k+1
i ]

=

n∑
k=0

(−1)k
(
n

k

)
qii

q
k(k−1)

2
ii qkijx

n+1−k
i xjx

k
i

+

n∑
k=0

(−1)k+1

(
n

k

)
qii

q
k(k−1)

2
ii qk+1

ij qniix
n−k
i xjx

k+1
i

= xn+1
i xj + (−1)n+1q

n(n+1)
2

ii qn+1
ij xjx

n+1
i +

+

n∑
k=1

(−1)kqkij

[(
n

k

)
qii

q
k(k−1)

2
ii +

(
n

k − 1

)
qii

q
(k−1)(k−2)

2
ii qnii

]
xn+1−k
i xjx

k
i

= xn+1
i xj + (−1)n+1q

n(n+1)
2

ii qn+1
ij xjx

n+1
i +

+

n∑
k=1

(−1)kqkijq
k(k−1)

2
ii

[(
n

k

)
qii

+

(
n

k − 1

)
qii

qn+1−k
ii

]
xn+1−k
i xjx

k
i

= xn+1
i xj + (−1)n+1q

n(n+1)
2

ii qn+1
ij xjx

n+1
i

+

n∑
k=1

(−1)kqkijq
k(k−1)

2
ii

(
n+ 1

k

)
qii

xn+1−k
i xjx

k
i

=

n+1∑
k=0

(−1)kqkijq
k(k−1)

2
ii

(
n+ 1

k

)
qii

xn+1−k
i xjx

k
i .

Since adc(xi)
1−aij (xj) = 0 in R(D), and

ϕ

(
1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkije

1−aij−k
i eje

k
i

)
= adc(xi)

1−aij (xj),

the assertion about (R6) follows. Analogously,

adc(yi)(yj) = yiyj − (Li · yj)yi = yiyj − q−1
ji yjyi = −q−1

ji (yjyi − qjiyiyj),
and one may prove by induction that

adc(yi)
n(yj) = (−1)nq−nji q

−n(n−1)
2

ii

(
n∑
k=0

(−1)k
(
n

k

)
qii

q
k(k−1)

2
ii qkjiy

k
i yjy

n−k
i

)
. (9)
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Hence,

ϕ

(
1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkijf

k
i fjf

1−aij−k
i

)

=

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkij(yiL

−1
i )k(yjL

−1
j )(yiL

−1
i )1−aij−k

=

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkijq

k(k−1)
2

ii q
(1−aij−k)(−aij−k)

2
ii

· yki L−ki yjL
−1
j y

1−aij−k
i L

−1+aij+k
i

=

(
1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)
ii q

(1−aij−k)(−aij−k)
2

ii qkjiq
k(1−aij−k)
ii q

1−aij
ij

· yki yjy
1−aij−k
i

)
L−1
j L

−1+aij
i

But

k(k − 1)

2
+

(1− aij − k)(−aij − k)

2
+ k(1− aij − k)

=
k(k − 1)

2
+
−aij(1− aij − k)− k(1− aij − k))

2
+ k(1− aij − k)

=
k(k − 1)

2
+
−aij(1− aij − k) + k(1− aij − k)

2

=
1

2
[k2 − k − aij + a2

ij + aijk + k − kaij − k2] =
1

2
aij(aij − 1).

Thus, ϕ of (R7) equals(
1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkjiq

aij(aij−1)

2
ii q

1−aij
ij yki yjy

1−aij−k
i

)
L−1
j L

−1+aij
i

= q
1−aij
ij (−1)1−aijq

1−aij
ji adc(yi)

1−aij (yj)L
−1
j L

−1+aij
i .

Since adc(yi)
1−aij (yj) = 0 in R(D), the claim about (R7) follows.

Hence, ϕ is a well-defined algebra map. Moreover, it is a Hopf algebra map, since
ωi, ω

′
i and Ki, Li are grouplike elements, ei is (1, ωi)-primitive and fi is (ω′i, 1)-

primitive, and the elements xi and yi are (1,Ki)-primitive and (1, Li)-primitive,
respectively, for all i ∈ I.

Now we show ϕ is an isomorphism. Let ψ̃ : R(D)#CZ2θ → Uq(gA) be the
algebra map given by

ψ̃(1#Ki) = ωi, ψ̃(1#Li) = ω′
−1
i , ψ̃(xi#1) = ei, ψ̃(yi#1) = fiω

′−1
i ,
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for all i ∈ I. Again, ψ̃ is clearly a Hopf algebra epimorphism, if it is well-defined.
For example, it preserves the algebra structure, if i ∈ I we have

ψ̃((1#Ki)(xj#1)(1#K−1
i )) = ωiejω

−1
i = qijej = χj(Ki)ej = ψ̃(Ki · xj#1),

and the coalgebra structure with ε(ωi) = 1 = ε(1#Ki), ε(ω
′
i) = 1 = ε(1#Li),

ε(ei) = 0 = ε(xi#1), ε(fiω
′−1
i ) = 1 = ε(yj#1) and

∆(ψ̃(yi#1)) = ∆(fiω
′−1
i ) = fiω

′−1
i ⊗ 1 + ω′

−1
i ⊗ fiω′

−1
i

= ψ̃(yi#1)⊗ 1 + ψ̃(1#Li)⊗ ψ̃(yi#1) = (ψ̃ ⊗ ψ̃)∆(yi#1).

To see that ψ̃ is indeed well-defined, we have to check that the quantum Serre
relations are mapped to 0. For i 6= j ∈ I we have by (8) and (R6) that

ψ̃(adc(xi)
1−aij (xj)) =

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkije

1−aij−k
i eje

k
i = 0.

Analogously, by (9), (R7) and the same calculation with the exponents as above
we have

ψ̃(adc(yi)
1−aij (yj))

= (−1)1−aijq
−1+aij
ji q

aij(1−aij)
2

ii

·

(
1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkji(fiω

′−1
i )k(fjω

′−1
j )(fiω

′−1
i )1−aij−k

)

= (−1)1−aijq
−1+aij
ji q

aij(1−aij)
2

ii

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkji

· q
k(k−1)

2 +
(1−aij−k)(1−aij)

2
ii fki ω

′−k
i fjω

′−1
j f

1−aij−k
i ω′

−1+aij+k
i )

= (−1)1−aijq
−1+aij
ji q

aij(1−aij)
2

ii

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkji

· q−
k(k−1)

2 −
(1−aij−k)(−aij−k)

2
ii q−kji q

−1+aij+k
ij q

−k(1−aij−k)
ii fki fjf

1−aij−k
i ω′jω

′−1+aij
i

= (−1)1−aijq
−1+aij
ji q

aij(1−aij)
2

ii

1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkij

· q−
k(k−1)

2 −
(1−aij−k)(−aij−k)

2 −k(1−aij−k)
ii q

−1+aij
ij fki fjf

1−aij−k
i ω′jω

′−1+aij
i

= (−1)1−aijq
−1+aij
ji q

−1+aij
ij

(
1−aij∑
k=0

(−1)k
(

1− aij
k

)
qii

q
k(k−1)

2
ii qkijf

k
i fjf

1−aij−k
i

)
· ω′jω′

−1+aij
i = 0.
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Moreover, identifying xi = xi#1, yi = yi#1 and Ki = 1#Ki, Li = 1#Li, by
(R5) we have that

ψ̃(xiyj − q−1
ij yjxi) = eifjω

′−1
j − q−1

ij fjω
′−1
j ei = (eifj − q−1

ij qijfjei)ω
′−1
j

= [ei, fj ]ω
′−1
j = δi,j

qii
qii − 1

(ωi − ω′i)ω′
−1
j

= δi,j
qii

qii − 1
(ωiω

′−1
i − 1) = ψ̃(δi,j`i(KiLi − 1)),

for all i, j ∈ I. Thus ψ̃ induces a Hopf algebra epimorphism ψ : Ũ(Dred, `)→ Uq(gA)
such that ϕ ◦ ψ = id = ψ ◦ ϕ, implying that ϕ is an isomorphism. �

Corollary 3.9. Assume gA is simple and let Uq(gA) be the one-parameter quantum

group of Drinfeld–Jimbo type. Let Ũ(Dq, `) be the pointed Hopf algebra associated
with the reduced YD-datum of DJ-type Dq = (Γ, (Li)1≤i≤θ, (Ki)1≤i≤θ, q, (aij)1≤i,j≤θ)

and ` with `i = q
q−1 for all i ∈ I, and denote Û(Dq, `) = Ũ(Dq, `)/(Ki−L−1

i ). Then

Uq(gA) ' Û(Dq, `).

Proof. By [27, Remark 9] we know that Uq(gA) ' Uq(gA)/(ω′i−ω
−1
i ) for qij = qdiaij

for all i, j ∈ I. Moreover, by Theorem 3.8 we know that Uq(gA) ' Ũ(Dq, `) for Dq
the reduced YD-datum of DJ-type described above, since gA is connected and the
assumption on the qij ’s. The result follows since the isomorphism factors through
the quotients. �

Remark 3.10. With the assumptions above, we have that Uq(gA) = Uq,q−1(gA),
the special case of the two-parameter quantum group; see [27, Remark 9]. Then

Uq,q−1(gA) ' Ũ(Dq, `).

3.3. Multiparameter quantum groups as cocycle deformations. In this
subsection we apply Theorems 3.6 and 3.8 to multiparameter quantum groups.
In particular, we obtain another description of [27, Theorem 28]. From now on we
assume that 1 6= qii is a positive real number for all i ∈ I and all I ∈ X .

The existence of all positive roots for every qii ensures that for each I ∈ X and
for each i ∈ I there exists qi ∈ C× such that qii = q 2 di

i . Moreover, we may choose
in each connected component J ∈ X a unique constant value qi =: qJ for all i ∈ J .

Let Ũ(Dq, `) be the pointed Hopf algebra associated to the reduced YD-datum
of DJ-type given by Dq = D(Γ, (Li)1≤i≤θ, (Ki)1≤i≤θ, (qJ)J∈X , (aij)1≤i,j≤θ).

Corollary 3.11. There exists a group 2-cocycle σ ∈ Z2(Γ,C) such that Ũ(Dq, `) '
Uq(gA)σ̃. In particular, if gA is simple and qii = q2di for all i, j ∈ I, we have that
Uq,q−1(gA) ' Uq(gA)σ̃.

Proof. By Theorem 3.8 we know that Uq(gA) ' Ũ(Dred, `) with `i = qii
qii−1 for all

i ∈ I. Since the braiding is positive and generic, Theorem 3.6 implies that Uq(gA)
is a cocycle deformation of a pointed Hopf algebra associated to a reduced YD-
datum of DJ-type. For, the proof of Theorem 3.6 gives a group 2-cocycle σ such
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that Ũ(Dq, `) ' Ũ(Dred, `)σ̃. Taking the corresponding 2-cocycle induced by the
isomorphism we have the assertion.

If gA is simple and qij = qdiaij for all i, j ∈ I, by Remark 3.10 we have that

Ũ(Dq, `) ' Uq,q−1(gA). �

Remark 3.12. Assume gA is simple. The result above was previously obtained in
[27], where a Hopf 2-cocycle σ is defined in Uq,q−1(gA). We show that this cocycle
comes from a group 2-cocycle on Γ.

First we fix the notation ωλ :=
∏
i∈I ω

λi
i and ω′λ :=

∏
i∈I ω

′
i
λi for every λ =∑

i∈I λiαi ∈ Q. Similarly, we shall also write

qµν :=
∏
i,j∈I

q
µiνj
ij ∀ µ =

∑
i∈I

µi αi, ν =
∑
j∈I

νj αj ∈ Q

Let σ : Uq,q−1(gA) ⊗ Uq,q−1(gA) → C be the unique C-linear form on Uq(gA)
such that

σ(x, y) :=

{
q

1
2
µν if x = ωµ or x = ω′µ, y = ων or y = ω′ν ,

0 otherwise.

Then by [27, Prop. 27 and Thm. 28], σ ∈ Z2(Uq,q−1(gA),C) and Uq(gA) '
Uq,q−1(gA)σ.

On the other hand, we know that Uq,q−1(gA) is a quotient of a bosonization

T (V ⊕ W )#CΓ with Γ = Z2θ. As in Remark 2.6, we have a Γ × Γ grading on
T (V ⊕W ) induced by the coaction on the Yetter–Drinfeld module; for example,
ωi has degree (ωi, ωi), ei has degree (ωi, 1) and fi has degree (1, ω′−1

i ) for all i ∈ I.
Consider now the group 2-cocycle ϕ ∈ Z2(Γ,C) given by ϕ = σ|Γ×Γ, that is,

ϕ(h, k) := q
1
2
µν if h = ωµ or h = ω′µ, k = ων or k = ω′ν ,

and let ϕ̃ be the 2-cocycle defined on T (V ⊕W )#CΓ. Since the group is abelian and
ei ·ϕ̃fj = eifj for all i, j ∈ I, we have that ei ·ϕ̃fj−fj ·ϕ̃ei = [ei, fj ] and consequently
ϕ̃ defines a Hopf 2-cocycle on Uq,q−1(gA). Since σ(x, y) = 0 = ε(x)ε(y) if x, y /∈ Γ,
it follows that σ = ϕ̃ and hence Uq(gA) = Uq,q−1(gA)σ.
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Roma Tor Vergata, under the support of the GNSAGA and CONICET. He thanks
F. Gavarini and the people of the Mathematics Department for the warm hospital-
ity. These notes are intended to contribute to a joint project with F. Gavarini on
multiparameter quantum groups. The author wishes to thank all conversations and
comments which helped to improve the paper. He also wishes to thank A. Garćıa
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