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THE INITIAL VALUE PROBLEM FOR THE SCHRODINGER
EQUATION INVOLVING THE HENSTOCK-KURZWEIL
INTEGRAL

SALVADOR SANCHEZ-PERALES

ABSTRACT. Let L be the one-dimensional Schrédinger operator defined by
Ly = —y"” + qy. We investigate the existence of a solution to the initial value
problem for the differential equation (L—M\)y = g, when ¢ and g are Henstock—
Kurzweil integrable functions on [a,b]. Results presented in this article are
generalizations of classical results for the Lebesgue integral.

1. INTRODUCTION

Let ¢ be a real valued function defined on [a, b] and let L be the one-dimensional
Schrodinger operator defined by Ly = —y” + qy. It is well known that if ¢, g are
Lebesgue integrable functions on [a, b], then there exists a unique solution f, f €
AC([a,b]) of the differential equation (L — \)y = g satisfying the initial condition
f(e) = a and f'(c) = B, where ¢ € [a,b], \,,8 € C and AC([a,b]) denotes the
space of all absolutely continuous functions on [a,b]. See, for example, [5]. In
this paper, we generalize this result when ¢, g are Henstock—Kurzweil integrable
functions on [a, b].

2. PRELIMINARIES

In this section, the definition of the Henstock—Kurzweil integral and their main
properties needed in this paper are presented.

Definition 2.1. Let f : [a,b] — C be a function. We say that f is Henstock—
Kurzweil (shortly, HK-) integrable on [a, b], if there is an A € C such that, for each
€ > 0, there exists a function . : [a,b] — (0,00) (named a gauge) for which

n

> ft) (@i —wio) — A <e,

=1
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for any partition P = {([z;_1, z;], )}, such that ¢; € [z;-1,2;] and [x;_1,2;] C
[ti —ve(ti), ti +ve(t;)] for all i = 1,2,...,n. The number A is called the integral of
f over [a,b] and it is denoted by f: f.

The set of all Henstock—Kurzweil integrable functions on [a,b] is denoted by
HK ([a,b]). This set is a vector space and contains the union of L([a,b]), the
space of Lebesgue integrable functions on [a, b], and the Cauchy-Lebesgue integrable
functions (i.e., improper Lebesgue integrals). It is well known that if f € HK ([a, b])
then not necessarily |f| € HK([a,b]). If both f and |f| are HK-integrable on [a, ],
we say that f is Henstock—Kurzweil absolutely integrable on [a,b]. The space of
Henstock—Kurzweil absolutely integrable functions on [a, b] coincides with the space
L([a,b]).

For each f € HK([a,b]) and I C [a,b] the Alexiewicz seminorm of f on I is

defined as
Il = [ 1
Jgcr|Jg

where the supremum is taken over all intervals J contained in 1.

)

Definition 2.2. Let ¢ : [¢,d] — C be a function. The variation of ¢ on the interval
[c,d] is defined as

Vie,d) = sup {Z lo(x;) — @(ziz1)| | {zi}, is a partition of [c, d]} .
i=1

We say that the function ¢ is of bounded variation on [c, d] if V] 4¢ < co. The
space of all bounded variation functions on [, d] is denoted by BV ([c, d]).

The next theorem shows that absolutely integrable functions are precisely those
integrable functions whose indefinite integrals have bounded variation.

Theorem 2.3 ([I, Theorem 7.5]). Let f € HK([a,b]). Then |f| is HK-integrable
if and only if the indefinite integral F(z) = f; I has bounded variation on [a,b].

In this case
b
Vot = [ 111

The space of Henstock—Kurzweil integrable functions is not multiplicative in
general. However, the multipliers for HK-integrable functions are the functions of
bounded variation.

Theorem 2.4 (Multiplier Theorem, [I, Theorem 10.12]). If g is a real valued
function such that g € HK([a,b]) and f € BV ([a,b]) then the product gf belongs
to HK ([a,b]).

The following theorem gives an estimate of the integral of a product. This
theorem will be useful to prove the existence and uniqueness theorem.
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Theorem 2.5 ([4, Lemma 24]). If g is a real valued function such that g €
HK([a,b]) and f € BV ([a,b]), then
b
/ g(t) dt

/fg

Theorem 2.6 ([3, Corollary 3.2]). If g is a real valued function such that g €
HK([a,b]) and (fn.) is a sequence in BV ([a,b]) such that Vi fn < M for all
n €N, and g, — g pointwise on [a,b], then

lﬂf |f( )l + 119l 0,6 Via,5) -

lim fgn /fg

n—oo

It is well known that the Lebesgue integral may be characterized by the fact
that the indefinite integral is absolutely continuous. A similar characterization is
possible with the Henstock-Kurzweil integral.

Definition 2.7. Let F : [a,b] — C. We say that F is absolutely continuous in
the restricted sense on a set E C [a,b] (F € AC.(E)), if for every € > 0 there
exists n. > 0 such that if {[u;,v;]}{_; is a collection of nonoverlapping intervals
with endpoints in £ and such that Y7, (v; — u;) < 7, then

S sup {|F(@) ~ Fly)| 2.y € fus o]} < e

Moreover, F' is said to be generalized absolutely continuous in the restricted sense
on [a,b] (F € ACG,.(la,b])), if F is continuous on [a,b] and there is a countable
collection (F,,)22 ; of sets in [a,b] with [a,b] = U2, E, and F € AC.(E,) for all
n € N.

Theorem 2.8 (Fundamental Theorem of Calculus, [2]). Let f, F : [a,b] — C be
functions and ¢ € [a,b].

(1) f € HK([a,b)) and F(z) = [’ f for all x € [a,b] if and only if F €
ACG,([a,b]), F(c) =0, and F' = f almost everywhere on [a, b].
If f e HK([a,b]) and f is continuous at x € [a,b] then I f f=f(z

(2) F € ACG ([ ,b}) if and only if F' exists almost everywhere on [a b], and
[FF = F(c) for all x € [a,b].

3. THE EXISTENCE AND UNIQUENESS THEOREM

In this section ¢ is a real valued function such that ¢ € HK([a,b]) and L is the
Schrodinger operator defined as

Ly = —y" + qy.
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0 1
-2 0
then there exists a unique solution f, f' € ACG.(|a,b]) of the initial value problem
(L=XNy=g a.e.
yle) =« (3.1)
y'(c)=5

if and only if there exists a unique solution u € C([a,b],C?) of the equation

Lemma 3.1. Letc € [a,b], A\, o, € C and let A = ) If g € HK([a, b)),

¢
u:/ A(s)u(s)ds + w, (3.2)

ot ] = 2 i vt vt = (5) = () a0

Proof. Let f, with f, f' € ACG.([a,b]), be a solution of the initial value problem

. Since ' € C([a,b]), it follows that f(z) = [ f'(s) ds+ f(a) and hence from

Theorem- f is of bounded variation on [a, b] This 1mphes by Theorem. that
/

qf € HK([a,b]). We set u = (]{,), then u € C([a,b],C?) and Au = ( Fo / Af)

HK ([a,b]). Therefore for all x € [a, b],

S la(9)f(s) = Af(s)] ds+B— [*g(s)ds

f f(s)ds+ f(c) )
JI17(s) + g(s)lds + f'(c) = [ g(s)ds

_ fle)+ [F f/(s)ds
L1 (s)ds + f'(c)
(1@
F@)

where the last equality is due to Theorem (2) because f, f' € ACG.([a,b]).
Therefore u satisfies the equation ((3.2)).

Conversely, let u = (Zl> € C([a,b],C?) be a solution of equation (3.2)); then
2

for every z € [a, 1],

w@) = [ usls)ds+a,
w() = [ “[(a(s) = Aua(s) — g(s)] ds + 5.
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Therefore v} = uy on [a,b] and, from Theorem (1), ug is ACG, on [a,b]
and uy = (¢ — A)us — g almost everywhere on [a,b]. This implies that uy,u) €
ACG,(la,b]) and (L — N)u; = g almost everywhere on [a, b].

The uniqueness in any of the situations follows from the above. O

Theorem 3.2. Let ¢ € [a,b], \,a,8 € C. If g € HK([a,b]), then there exists a
unique solution f, f' € ACG.([a,b]) of the initial-value problem

(L=Ny=g ae
y(c) = o
y'(c)=p.

Proof. Let (yn), (2r) be two sequences of functions defined on [a,b] as yo(z) = a,
zo(xz) = B, and for all n € N,

yn(z)—oz—k/jzn_l(s)ds and 2 (z) = f— / ds+/ (4(5) = Nym_1(s) ds.

Clearly yo, zo, y1 and z; are well defined. Suppose that ys, 29, ..., Yn, 2, exist.
Since z,—1 € L([a,b]), from Theorem Yn is of bounded variation on [a,b] and
hence, by Theorem (¢ — Nyn € HK([a,b]). Then z,.; exists. Also observe
that clearly y,,41 exists. Therefore (y,) and (z,) are well defined.

We claim that for every x € [a, b] with z > ¢,

/ﬂE |2n(8) — 2n—1(s)| ds
c — )kt!

(z .
(g —ANa— 9||[a,b]m||q - /\||f€a,b], if n =2k + 1;

(x —c)F+!
SR

We prove this only for n odd, by induction on k. For k = 0 we have that
[(Q(t) Aa —g(t)] dt| ds

/ |21(s) — 2z0(s)| ds =
/ g - N — glluy d

= [l(¢ = N — gllja,5(x —¢)

< (3.3)

g — )‘Hﬁl,b]v if n = 2k.

for all x > ¢. Now, suppose that for every = > ¢,

¢ (z —c)**! .
j |22k4+1(8) — 22k (s)| ds < [|(¢ — Ao — 9||[a,b]m||q = M-

Let = > ¢, observe that

/ |z00k41)+1(5) — 220641y (8)| ds —/

lfmwfmmwﬂ@fmﬂwmﬁ@
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Now, since ya(x+1) — Y2r+1 is of bounded variation on [, s] and

Vie,s) (Ya(k+1) — Y2rt1) < / |zok41(t) — 2ok (t)] dt,
it follows by Theorem that

/ ’ / (1) = Mg (0) — yausn (0] de| ds

< / Leiﬁfsﬂy%ﬂ)(t) = y2r+1(B)] + Vie,s) (Vak1) — Y2k+1) | 1 — Allja,p) ds
x
< / Y2011y (€) = Yar11 ()] + Vies) Wae+1) — Yart1)] 1g — Mlja,p) ds
C
= / Vie,s](W2(k41) — Y2k+1) ds || = Ml[a,5]

< / [/ |Z2k+1<t>—Z2k<t>|dt} ds llg = M

(=™
< (g —A)e — 9||[a,b]W||q - )‘”[a,b] ds||g = Mlja,b)
(x — c)k+?
<l(g—Na— 9||[a7b]w||q - )\”f:,rbly

Thus (3.3) follows by induction. Similarly we can prove that for every x € [a, ]
with x < ¢,

[ Jenls) = a0l ds

Nkt

C Z .
||(q—>\)a—g||[a,b]7( lla = Al ifn=2k+1;
(k+ 1)
< (3.4)
(c —x)** k :
I ifn = 2k.

For each k € N define I, = yor+1 — yor. Take k € N and x € [a,b]. If z < ¢, then
e (2)] = |y2r41(x) — yar (2]

/m [22k(8) — z2k—1(8)] ds

< /C |22k (5) — zor—1(s)| ds

(c — x)k+1

< |ﬂ|W||q - )\Hfa,b]-

Therefore .
ey < 18 B a = My
k <
llg = Mlfa,p) (k+1)!
This inequality also holds when x > c.
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Now, since

o) k+1 k+1
Z |B| (b_a) + ||q_)\||[a’b] < |5‘
= |lg — Mlja.p) (k+1)! g = Mlay

e(b=a)a=Allfa.p) < oo,

o0
it follows that Z l, converges uniformly on [a,b]. Again using the equations 1)
k=1

oo
and l) we obtain that if hx = yor — yor_1 then Z hy converges uniformly on
k=1

oo o0 oo
[a,b]. Therefore yo + Z[yn — Yn—1] = Yo + [y1 — yo] + Z Iy, + Z hy, converges
n=1 k=1 k=1
uniformly on [a, b]. Thus its sequences of partial sums s,, converges uniformly to a
limit function y on [a, b]. But

sn(®) = yo+ D _[yr(@) — yr-1(2)] = ya(2).
k=1

In other words, the sequence (y,) converges uniformly to y on [a, b].
On the other hand, from the inequalities

(b—a)*llg — Allf, 4
k!

|22k41(2) — 228 (2)] < [[(g = M) = gllfapy

and

(b—a)*llg = Allf, ,
|22k () — 22x-1()] < |5] x et
it follows that zo + Z[zn — zp—1) converges uniformly on [a,b]. If z denotes its
k=0
sum then z, converges uniformly to z on [a, b].
Consequently, for each z € [a, b],

y(z) = lim yo(z) = lim [a+ / " () ds]

n—oo n—oo
x

=a+ lim Zn—1(8)ds
n—oo c

x
=a+ / lim z,_1(s)ds
c n—oo
x
=a+ / z(s)ds.
(&
It is not possible to apply the above idea to the sequence (y,,) because (q—\)yn—1
might not converge uniformly to (¢ — \)y. However, we can use Theorem [2.6] in

order to have a similar result to the above. Let « € [a,b] with > ¢. We first show
that (y,,) is of uniformly bounded variation on [c, z].
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For every n € N,

Vv[c,ﬁ] Yn = ‘/[c,z]

n—1
v+ Y [yes1 — yk}]
k=1
n—1
< ‘/[c,w]yl + Z ‘/[c,w} [yk+1 - yk]
k=1
n—1
< Vv[c:v]yl +Z ‘zk ) _Zk*1(8)|d8
k=1¢
x
< ‘/[cat]yl"_z |Zk )_Zk*1(8)|ds
k=1v¢

Vi + / 21(s) — 20(s)| ds

+ Z/ ‘Z2k+1(5) — ng | dS + Z |22k — ng_l(s)\ ds
k=1"¢

k=1v¢

< {(q — Mo —dllwy 1A ] i (b—a)** g = AlIgh
llg = Alla.0) 19 = Allfa.p (k+1)!
_ H(q - )\)0‘ - qll[a b T Iﬁ\ (b—a)llg—All
llg - /\ll[a b]
Therefore, by Theorem [2.6] it follows that

x

i [ (als) — Ns(s) = [ (g(s) — Ay(s) ds.

k=0

Thus
(o) = tim ) =t [ [ o ds [ (als) = Va1
=5 - / (s)ds + nl;ngo I(q(s) — N)Yn—1(8) ds (3.5)

—5- / 5)ds + / (a(s) — A)y(s) ds.

A similar reasoning shows that the equality (3.5) holds when z < c.
Consequently, u = (Z) is a solution of equation (3.2)). We shall now prove that

this solution is unique. Assume that (Z) is another solution of equation 1)

Therefore

y(r) =a+ /sz(s) ds
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" o / 5)ds + / la(s) — NJg(s) ds

for all « € [a,b]. Observe that for every k € N,

’ = — (m_c)k-H k.
2e() = Z(s)lds < g = M7= gllon gy la = M e <
c .
¢ _ B c— )kt )
/ |22k (s) —Z(s)|ds < (¢ — )\)y—g||[a,b]((k+)1)!||q— MNIF, if z < e

From this it follows that

- a, k+1
”( )y g”[ b] ( ) ” 7)\||k+1

ly2r+1(z) = Y(z)| < =Y (k+1)!

and
(g = N7 — gllap (b—a)*+?

= ERNILE!

for all € [a,b]. Thus yory1(x) = Y(z) and 2911y (z) — Z(x), but yori1(z) —
y(x) and 25(x11)(z) — z(w). Therefore 7(z) = y(x) and Z(x) = z(z). O

4. EXAMPLE

In this section, we give an example for the application of Theorem

Example 4.1. Let ¢ be a function defined on [0, 1] as

2 . T .
oz) = —sin (ﬁ) , ifxz e (0,1];
0, ifx =0,
and let g : [0,1] — R be defined by
_1)k+1gk
(@) = %, for x € [ck—1,ck), k €N;
0, for x =1,

where ¢, = 1 — i,c k =0,1,2,... Then ¢ and g are unbounded HK-integrable
functions on [0, } Therefore, by Theorem the initial value problem

~y" +q(@)y -2y =g(z) ae.
LA 0
W(3) =
1
v(3)=1
has a solution.
The functions ¢ and g are not Lebesgue integrable on [0, 1]. Hence, this example
is not covered by any result using the Lebesgue integral. Thus, Theorem [3.2] is

more general than the classical result of existence and uniqueness given at the
introduction.
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