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THE INITIAL VALUE PROBLEM FOR THE SCHRÖDINGER
EQUATION INVOLVING THE HENSTOCK–KURZWEIL

INTEGRAL

SALVADOR SÁNCHEZ-PERALES

Abstract. Let L be the one-dimensional Schrödinger operator defined by
Ly = −y′′ + qy. We investigate the existence of a solution to the initial value
problem for the differential equation (L−λ)y = g, when q and g are Henstock–
Kurzweil integrable functions on [a, b]. Results presented in this article are
generalizations of classical results for the Lebesgue integral.

1. Introduction

Let q be a real valued function defined on [a, b] and let L be the one-dimensional
Schrödinger operator defined by Ly = −y′′ + qy. It is well known that if q, g are
Lebesgue integrable functions on [a, b], then there exists a unique solution f, f ′ ∈
AC([a, b]) of the differential equation (L− λ)y = g satisfying the initial condition
f(c) = α and f ′(c) = β, where c ∈ [a, b], λ, α, β ∈ C and AC([a, b]) denotes the
space of all absolutely continuous functions on [a, b]. See, for example, [5]. In
this paper, we generalize this result when q, g are Henstock–Kurzweil integrable
functions on [a, b].

2. Preliminaries

In this section, the definition of the Henstock–Kurzweil integral and their main
properties needed in this paper are presented.

Definition 2.1. Let f : [a, b] → C be a function. We say that f is Henstock–
Kurzweil (shortly, HK-) integrable on [a, b], if there is an A ∈ C such that, for each
ε > 0, there exists a function γε : [a, b]→ (0,∞) (named a gauge) for which∣∣∣∣∣

n∑
i=1

f(ti)(xi − xi−1)−A

∣∣∣∣∣ < ε,

2010 Mathematics Subject Classification. 26A39, 34B24, 26A45.
Key words and phrases. Henstock–Kurzweil integral, Schrödinger operator, ACG∗-functions,

bounded variation functions.

297



298 SALVADOR SÁNCHEZ-PERALES

for any partition P = {([xi−1, xi], ti)}ni=1 such that ti ∈ [xi−1, xi] and [xi−1, xi] ⊆
[ti− γε(ti), ti + γε(ti)] for all i = 1, 2, . . . , n. The number A is called the integral of
f over [a, b] and it is denoted by

∫ b
a
f .

The set of all Henstock–Kurzweil integrable functions on [a, b] is denoted by
HK ([a, b]). This set is a vector space and contains the union of L([a, b]), the
space of Lebesgue integrable functions on [a, b], and the Cauchy-Lebesgue integrable
functions (i.e., improper Lebesgue integrals). It is well known that if f ∈ HK ([a, b])
then not necessarily |f | ∈ HK ([a, b]). If both f and |f | are HK-integrable on [a, b],
we say that f is Henstock–Kurzweil absolutely integrable on [a, b]. The space of
Henstock–Kurzweil absolutely integrable functions on [a, b] coincides with the space
L([a, b]).

For each f ∈ HK ([a, b]) and I ⊆ [a, b] the Alexiewicz seminorm of f on I is
defined as

‖f‖I = sup
J⊆I

∣∣∣∣∫
J

f

∣∣∣∣ ,
where the supremum is taken over all intervals J contained in I.

Definition 2.2. Let ϕ : [c, d]→ C be a function. The variation of ϕ on the interval
[c, d] is defined as

V[c,d]ϕ = sup
{

n∑
i=1
|ϕ(xi)− ϕ(xi−1)|

∣∣∣ {xi}ni=0 is a partition of [c, d]
}
.

We say that the function ϕ is of bounded variation on [c, d] if V[c,d]ϕ <∞. The
space of all bounded variation functions on [c, d] is denoted by BV ([c, d]).

The next theorem shows that absolutely integrable functions are precisely those
integrable functions whose indefinite integrals have bounded variation.

Theorem 2.3 ([1, Theorem 7.5]). Let f ∈ HK ([a, b]). Then |f | is HK-integrable
if and only if the indefinite integral F (x) =

∫ x
a
f has bounded variation on [a, b].

In this case

V[a,b]F =
∫ b

a

|f |.

The space of Henstock–Kurzweil integrable functions is not multiplicative in
general. However, the multipliers for HK-integrable functions are the functions of
bounded variation.

Theorem 2.4 (Multiplier Theorem, [1, Theorem 10.12]). If g is a real valued
function such that g ∈ HK ([a, b]) and f ∈ BV ([a, b]) then the product gf belongs
to HK ([a, b]).

The following theorem gives an estimate of the integral of a product. This
theorem will be useful to prove the existence and uniqueness theorem.
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Theorem 2.5 ([4, Lemma 24]). If g is a real valued function such that g ∈
HK ([a, b]) and f ∈ BV ([a, b]), then∣∣∣∣∣

∫ b

a

fg

∣∣∣∣∣ ≤ inf
t∈[a,b]

|f(t)|

∣∣∣∣∣
∫ b

a

g(t) dt

∣∣∣∣∣+ ‖g‖[a,b]V[a,b]f.

Theorem 2.6 ([3, Corollary 3.2]). If g is a real valued function such that g ∈
HK ([a, b]) and (fn) is a sequence in BV ([a, b]) such that V[a,b]fn ≤ M for all
n ∈ N, and gn → g pointwise on [a, b], then

lim
n→∞

∫ b

a

fgn =
∫ b

a

fg.

It is well known that the Lebesgue integral may be characterized by the fact
that the indefinite integral is absolutely continuous. A similar characterization is
possible with the Henstock–Kurzweil integral.

Definition 2.7. Let F : [a, b] → C. We say that F is absolutely continuous in
the restricted sense on a set E ⊆ [a, b] (F ∈ AC∗(E)), if for every ε > 0 there
exists ηε > 0 such that if {[ui, vi]}si=1 is a collection of nonoverlapping intervals
with endpoints in E and such that

∑s
i=1(vi − ui) < ηε, then

s∑
i=1

sup {|F (x)− F (y)| : x, y ∈ [ui, vi]} < ε.

Moreover, F is said to be generalized absolutely continuous in the restricted sense
on [a, b] (F ∈ ACG∗([a, b])), if F is continuous on [a, b] and there is a countable
collection (En)∞n=1 of sets in [a, b] with [a, b] = ∪∞i=1En and F ∈ AC∗(En) for all
n ∈ N.

Theorem 2.8 (Fundamental Theorem of Calculus, [2]). Let f, F : [a, b] → C be
functions and c ∈ [a, b].

(1) f ∈ HK ([a, b]) and F (x) =
∫ x
c
f for all x ∈ [a, b] if and only if F ∈

ACG∗([a, b]), F (c) = 0, and F ′ = f almost everywhere on [a, b].
If f ∈ HK ([a, b]) and f is continuous at x ∈ [a, b] then d

dx

∫ x
c
f = f(x).

(2) F ∈ ACG∗([a, b]) if and only if F ′ exists almost everywhere on [a, b], and∫ x
c
F ′ = F (x)− F (c) for all x ∈ [a, b].

3. The existence and uniqueness theorem

In this section q is a real valued function such that q ∈ HK ([a, b]) and L is the
Schrödinger operator defined as

Ly = −y′′ + qy.
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Lemma 3.1. Let c ∈ [a, b], λ, α, β ∈ C and let A =
(

0 1
q − λ 0

)
. If g ∈ HK ([a, b]),

then there exists a unique solution f , f ′ ∈ ACG∗([a, b]) of the initial value problem

(L− λ)y = g a.e.
y(c) = α (3.1)
y′(c) = β

if and only if there exists a unique solution u ∈ C([a, b],C2) of the equation

u =
∫ (·)

c

A(s)u(s) ds+ w, (3.2)

where w : [a, b]→ C2 is defined as w(x) =
(
α
β

)
−
∫ x

c

(
0
g(s)

)
ds.

Proof. Let f , with f, f ′ ∈ ACG∗([a, b]), be a solution of the initial value problem
(3.1). Since f ′ ∈ C([a, b]), it follows that f(x) =

∫ x
a
f ′(s) ds+ f(a) and hence from

Theorem 2.3 f is of bounded variation on [a, b]. This implies, by Theorem 2.4, that

qf ∈ HK ([a, b]). We set u =
(
f
f ′

)
, then u ∈ C([a, b],C2) and Au =

(
f ′

qf − λf

)
∈

HK ([a, b]). Therefore for all x ∈ [a, b],∫ x

c

A(s)u(s) ds+ w(x) =

 ∫ x
c
f ′(s) ds+ α∫ x

c
[q(s)f(s)− λf(s)] ds+ β −

∫ x
c
g(s) ds


=

 ∫ x
c
f ′(s) ds+ f(c)∫ x

c
[f ′′(s) + g(s)] ds+ f ′(c)−

∫ x
c
g(s) ds


=

 f(c) +
∫ x
c
f ′(s) ds∫ x

c
f ′′(s) ds+ f ′(c)


=

f(x)

f ′(x)

 ,

where the last equality is due to Theorem 2.8 (2) because f, f ′ ∈ ACG∗([a, b]).
Therefore u satisfies the equation (3.2).

Conversely, let u =
(
u1
u2

)
∈ C([a, b],C2) be a solution of equation (3.2); then

for every x ∈ [a, b],

u1(x) =
∫ x

c

u2(s) ds+ α,

u2(x) =
∫ x

c

[(q(s)− λ)u1(s)− g(s)] ds+ β.
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Therefore u′1 = u2 on [a, b] and, from Theorem 2.8 (1), u2 is ACG∗ on [a, b]
and u′2 = (q − λ)u1 − g almost everywhere on [a, b]. This implies that u1, u

′
1 ∈

ACG∗([a, b]) and (L− λ)u1 = g almost everywhere on [a, b].
The uniqueness in any of the situations follows from the above. �

Theorem 3.2. Let c ∈ [a, b], λ, α, β ∈ C. If g ∈ HK ([a, b]), then there exists a
unique solution f , f ′ ∈ ACG∗([a, b]) of the initial-value problem

(L− λ)y = g a.e.
y(c) = α

y′(c) = β.

Proof. Let (yn), (zn) be two sequences of functions defined on [a, b] as y0(x) = α,
z0(x) = β, and for all n ∈ N,

yn(x) = α+
∫ x

c

zn−1(s) ds and zn(x) = β−
∫ x

c

g(s) ds+
∫ x

c

(q(s)−λ)yn−1(s) ds.

Clearly y0, z0, y1 and z1 are well defined. Suppose that y2, z2, . . . , yn, zn exist.
Since zn−1 ∈ L([a, b]), from Theorem 2.3, yn is of bounded variation on [a, b] and
hence, by Theorem 2.4, (q − λ)yn ∈ HK ([a, b]). Then zn+1 exists. Also observe
that clearly yn+1 exists. Therefore (yn) and (zn) are well defined.

We claim that for every x ∈ [a, b] with x > c,∫ x

c

|zn(s)− zn−1(s)| ds

≤


‖(q − λ)α− g‖[a,b]

(x− c)k+1

(k + 1)! ‖q − λ‖
k
[a,b], if n = 2k + 1;

|β| (x− c)
k+1

(k + 1)! ‖q − λ‖
k
[a,b], if n = 2k.

(3.3)

We prove this only for n odd, by induction on k. For k = 0 we have that∫ x

c

|z1(s)− z0(s)| ds =
∫ x

c

∣∣∣∣∫ s

c

[(q(t)− λ)α− g(t)] dt
∣∣∣∣ ds

≤
∫ x

c

‖(q − λ)α− g‖[a,b] ds

= ‖(q − λ)α− g‖[a,b](x− c)

for all x > c. Now, suppose that for every x > c,∫ x

c

|z2k+1(s)− z2k(s)| ds ≤ ‖(q − λ)α− g‖[a,b]
(x− c)k+1

(k + 1)! ‖q − λ‖
k
[a,b].

Let x > c, observe that∫ x

c

∣∣z2(k+1)+1(s)− z2(k+1)(s)
∣∣ ds =

∫ x

c

∣∣∣∣∫ s

c

(q(t)− λ)[y2(k+1)(t)− y2k+1(t)] dt
∣∣∣∣ ds.
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Now, since y2(k+1) − y2k+1 is of bounded variation on [c, s] and

V[c,s](y2(k+1) − y2k+1) ≤
∫ s

c

|z2k+1(t)− z2k(t)| dt,

it follows by Theorem 2.5 that∫ x

c

∣∣∣∣∫ s

c

(q(t)− λ)[y2(k+1)(t)− y2k+1(t)] dt
∣∣∣∣ ds

≤
∫ x

c

[
inf
t∈[c,s]

|y2(k+1)(t)− y2k+1(t)|+ V[c,s](y2(k+1) − y2k+1)
]
‖q − λ‖[a,b] ds

≤
∫ x

c

[
|y2(k+1)(c)− y2k+1(c)|+ V[c,s](y2(k+1) − y2k+1)

]
‖q − λ‖[a,b] ds

=
∫ x

c

V[c,s](y2(k+1) − y2k+1) ds ‖q − λ‖[a,b]

≤
∫ x

c

[∫ s

c

|z2k+1(t)− z2k(t)| dt
]
ds ‖q − λ‖[a,b]

≤
∫ x

c

[
‖(q − λ)α− g‖[a,b]

(s− c)k+1

(k + 1)! ‖q − λ‖
k
[a,b]

]
ds ‖q − λ‖[a,b]

≤ ‖(q − λ)α− g‖[a,b]
(x− c)k+2

(k + 2)! ‖q − λ‖
k+1
[a,b].

Thus (3.3) follows by induction. Similarly we can prove that for every x ∈ [a, b]
with x < c,∫ c

x

|zn(s)− zn−1(s)| ds

≤


‖(q − λ)α− g‖[a,b]

(c− x)k+1

(k + 1)! ‖q − λ‖
k
[a,b], if n = 2k + 1;

|β| (c− x)k+1

(k + 1)! ‖q − λ‖
k
[a,b], if n = 2k.

(3.4)

For each k ∈ N define lk = y2k+1 − y2k. Take k ∈ N and x ∈ [a, b]. If x < c, then
|lk(x)| = |y2k+1(x)− y2k(x)|

=
∣∣∣∣∫ x

c

[z2k(s)− z2k−1(s)] ds
∣∣∣∣

≤
∫ c

x

|z2k(s)− z2k−1(s)| ds

≤ |β| (c− x)k+1

(k + 1)! ‖q − λ‖
k
[a,b].

Therefore

|lk(x)| ≤ |β|
‖q − λ‖[a,b]

(b− a)k+1‖q − λ‖k+1
[a,b]

(k + 1)! .

This inequality also holds when x ≥ c.
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Now, since
∞∑
k=1

|β|
‖q − λ‖[a,b]

(b− a)k+1‖q − λ‖k+1
[a,b]

(k + 1)! ≤ |β|
‖q − λ‖[a,b]

e(b−a)|q−λ‖[a,b] <∞,

it follows that
∞∑
k=1

lk converges uniformly on [a, b]. Again using the equations (3.3)

and (3.4), we obtain that if hk = y2k − y2k−1 then
∞∑
k=1

hk converges uniformly on

[a, b]. Therefore y0 +
∞∑
n=1

[yn − yn−1] = y0 + [y1 − y0] +
∞∑
k=1

lk +
∞∑
k=1

hk converges

uniformly on [a, b]. Thus its sequences of partial sums sn converges uniformly to a
limit function y on [a, b]. But

sn(x) = y0 +
n∑
k=1

[yk(x)− yk−1(x)] = yn(x).

In other words, the sequence (yn) converges uniformly to y on [a, b].
On the other hand, from the inequalities

|z2k+1(x)− z2k(x)| ≤ ‖(q − λ)α− g‖[a,b]
(b− a)k‖q − λ‖k[a,b]

k!
and

|z2k(x)− z2k−1(x)| ≤ |β|
(b− a)k‖q − λ‖k[a,b]

k! ,

it follows that z0 +
∞∑
k=0

[zn − zn−1] converges uniformly on [a, b]. If z denotes its

sum then zn converges uniformly to z on [a, b].
Consequently, for each x ∈ [a, b],

y(x) = lim
n→∞

yn(x) = lim
n→∞

[
α+

∫ x

c

zn−1(s) ds
]

= α+ lim
n→∞

∫ x

c

zn−1(s) ds

= α+
∫ x

c

lim
n→∞

zn−1(s) ds

= α+
∫ x

c

z(s) ds.

It is not possible to apply the above idea to the sequence (yn) because (q−λ)yn−1
might not converge uniformly to (q − λ)y. However, we can use Theorem 2.6 in
order to have a similar result to the above. Let x ∈ [a, b] with x > c. We first show
that (yn) is of uniformly bounded variation on [c, x].
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For every n ∈ N,

V[c,x]yn = V[c,x]

[
y1 +

n−1∑
k=1

[yk+1 − yk]
]

≤ V[c,x]y1 +
n−1∑
k=1

V[c,x][yk+1 − yk]

≤ V[c,x]y1 +
n−1∑
k=1

∫ x

c

|zk(s)− zk−1(s)| ds

≤ V[c,x]y1 +
∞∑
k=1

∫ x

c

|zk(s)− zk−1(s)| ds

= V[c,x]y1 +
∫ x

c

|z1(s)− z0(s)| ds

+
∞∑
k=1

∫ x

c

|z2k+1(s)− z2k(s)| ds+
∞∑
k=1

∫ x

c

|z2k(s)− z2k−1(s)| ds

≤
[‖(q − λ)α− q‖[a,b]

‖q − λ‖[a,b]
+ |β|
‖q − λ‖[a,b]

] ∞∑
k=0

(b− a)k+1‖q − λ‖k+1
[a,b]

(k + 1)!

=
‖(q − λ)α− q‖[a,b] + |β|

‖q − λ‖[a,b]
e(b−a)‖q−λ‖.

Therefore, by Theorem 2.6, it follows that

lim
n→∞

∫ x

c

(q(s)− λ)yn−1(s) =
∫ x

c

(q(s)− λ)y(s) ds.

Thus

z(x) = lim
n→∞

zn(x) = lim
n→∞

[
β −

∫ x

c

g(s) ds+
∫ x

c

(q(s)− λ)yn−1(s) ds
]

= β −
∫ x

c

g(s) ds+ lim
n→∞

∫ x

c

(q(s)− λ)yn−1(s) ds

= β −
∫ x

c

g(s) ds+
∫ x

c

(q(s)− λ)y(s) ds.

(3.5)

A similar reasoning shows that the equality (3.5) holds when x < c.

Consequently, u =
(
y
z

)
is a solution of equation (3.2). We shall now prove that

this solution is unique. Assume that
(
y
z

)
is another solution of equation (3.2).

Therefore

y(x) = α+
∫ x

c

z(s) ds
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and
z(x) = β −

∫ x

c

g(s) ds+
∫ x

c

[q(s)− λ]y(s) ds

for all x ∈ [a, b]. Observe that for every k ∈ N,∫ x

c

|z2k(s)− z(s)| ds ≤ ‖(q − λ)y − g‖[a,b]
(x− c)k+1

(k + 1)! ‖q − λ‖
k, if c < x,

and ∫ c

x

|z2k(s)− z(s)| ds ≤ ‖(q − λ)y − g‖[a,b]
(c− x)k+1

(k + 1)! ‖q − λ‖
k, if x < c.

From this it follows that

|y2k+1(x)− y(x)| ≤
‖(q − λ)y − g‖[a,b]

‖q − λ‖
(b− a)k+1

(k + 1)! ‖q − λ‖
k+1

and
|z2(k+1)(x)− z(x)| ≤

‖(q − λ)y − g‖[a,b]
‖q − λ‖

(b− a)k+1

(k + 1)! ‖q − λ‖
k+1

for all x ∈ [a, b]. Thus y2k+1(x) → y(x) and z2(k+1)(x) → z(x), but y2k+1(x) →
y(x) and z2(k+1)(x)→ z(x). Therefore y(x) = y(x) and z(x) = z(x). �

4. Example

In this section, we give an example for the application of Theorem 3.2.

Example 4.1. Let q be a function defined on [0, 1] as

q(x) =


2π
x

sin
( π
x2

)
, if x ∈ (0, 1];

0, if x = 0,

and let g : [0, 1]→ R be defined by

g(x) =


(−1)k+12k

k
, for x ∈ [ck−1, ck), k ∈ N;

0, for x = 1,

where ck = 1 − 1
2k , k = 0, 1, 2, . . . Then q and g are unbounded HK-integrable

functions on [0, 1]. Therefore, by Theorem 3.2, the initial value problem
−y′′ + q(x)y − 2y = g(x) a.e.

y
(1

2

)
= 0

y′
(1

2

)
= 1

has a solution.
The functions q and g are not Lebesgue integrable on [0, 1]. Hence, this example

is not covered by any result using the Lebesgue integral. Thus, Theorem 3.2 is
more general than the classical result of existence and uniqueness given at the
introduction.
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Acatlima, 69000 Oaxaca, Mexico.
es21254@yahoo.com.mx

Received: October 18, 2016
Accepted: January 10, 2017

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)

http://www.ams.org/mathscinet-getitem?mr=1817647
http://www.ams.org/mathscinet-getitem?mr=1288751
http://www.ams.org/mathscinet-getitem?mr=1778542
http://www.ams.org/mathscinet-getitem?mr=1988259
http://www.ams.org/mathscinet-getitem?mr=2499016

	1. Introduction
	2. Preliminaries
	3. The existence and uniqueness theorem
	4. Example
	References

