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A UNIFIED POINT OF VIEW ON BOUNDEDNESS OF RIESZ
TYPE POTENTIALS

BIBIANA IAFFEI AND LILIANA NITTI

Abstract. We introduce a natural extension of the Riesz potentials to quasi-
metric measure spaces with an upper doubling measure. In particular, these
operators are defined when the underlying space has components of differing
dimensions. We study the behavior of the potential on classical and variable
exponent Lebesgue spaces, obtaining necessary and sufficient conditions for
its boundedness. The technique we use relies on a geometric property of
the measure of the balls which holds both in the doubling and non-doubling
situations, and allows us to present our results in a unified way.

1. Introduction

The basic potential operators defined on real valued functions on Rn are the
Riesz potentials or fractional integral operators Iα, 0 < α < n, defined by

Iαf(x) =
∫
Rn

f(y)
|x− y|n−α

dy, (1.1)

a definition which depends crucially on the dimension of the underlying Euclidean
space.

If the base space is a fractal subset of Rn, that is, a measurable set with non-
integer Hausdorff dimension, the Riesz potentials of order α on the so-called s-sets
are given by

Isαf(x) =
∫
Rn

f(y)
|x− y|s−α

dµ(y),

where the role of the dimension is played by s. These Riesz potentials are considered
in [43, 44, 39], where they are introduced as traces of the corresponding Euclidean
variants.

When the underlying space X has variable dimension n(x), x ∈ X, an appro-
priate Riesz type operator—reflecting the variability of the dimensions—may be
defined by

In(·)
α f(x) =

∫
X

f(y)
|x− y|n(x)−α dµ(y), (1.2)
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100 BIBIANA IAFFEI AND LILIANA NITTI

for a suitable measure µ. A natural setting where this operator may arise is when
the space X consists of two components of differing dimensions, for instance, a
plate joined to a block, or a rod joined to a plate. If the contact between the
components is of order zero, we can use the doubling measure µγ1,γ2 considered
in [3], which—as we will show in Section 5.1—satisfies

µγ1,γ2(B(x, r)) ≤ Crn(x), (1.3)

for some constant C. Thus, µγ1,γ2 is an example of an upper doubling measure
with dominating function Crn(x), which reflects the changing dimensions.

All this suggests that we study the following more general operator which ex-
tends that in (1.2):

Iλαf(x) =
∫
X

d(x, y)α

λ(x, d(x, y))f(y) dµ(y), (1.4)

where (X, d, µ) is a quasi-metric space with upper doubling measure associated with
the dominating function λ, i.e., µ(B(x, r)) ≤ λ(x, r). The so-called upper doubling
measures, introduced in [25], constitute a simultaneous generalization of doubling,
upper Ahlfors n-regular and variable upper Ahlfors n(·)-regular measures.

The classical case of Iα is recovered from (1.4) when X = Rn, d is the usual
Euclidean metric on Rn, µ is the Lebesgue measure on Rn, and λ(x, r) = Crn. The
boundedness of these operators was studied by Hardy and Littlewood [18, 19] and
Sobolev [36]. They proved that Iα maps a function in Lp boundedly to a function
in Lq, provided that 1

q = 1
p −

α
n . This result was proved also using interpolation

in [37], and employing a pointwise estimation involving maximal functions in [22].
Norm estimates for Iαf in Lebesgue spaces, as well as for operators with more

general kernels than |x − y|α−n and defined on more general quasi-metric spaces,
have been extensively studied in the doubling and non-doubling contexts. For
instance, in [13] and [29] we find:

Theorem 1.1. Let (X, d, µ) be a quasi-metric measure space and let 0 < α < n,
1 < p < n

α and 1
q = 1

p −
α
n . Then

Iα : Lp(X, d, µ)→ Lq(X, d, µ)

boundedly if and only if
µ(B(x, r)) ≤ c1rn,

where the constant c1 is independent of x and r.

Let us state now the main result of this paper, which allows us to derive the above
statement as an immediate consequence. The precise definitions and properties
stated below will be given in Section 2.

Theorem 1.2. Let us assume that (X, d) is a bounded geometrically doubling quasi-
metric space and µ is a Borel measure on X defined on d-balls, which is finite on
bounded sets and positive on d-balls. Let λ : X × R+ → R+ be a function, which
as a function of the variable r and uniformly on x is non-decreasing, doubling, of
lower type greater than α with α > 0. Let q be a measurable function defined on X,
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BOUNDEDNESS OF RIESZ TYPE POTENTIALS 101

such that 1 < p < q− ≤ q(x) ≤ q+ < ∞ and q(x) satisfies rα = λ(x, r)
1
p−

1
q(x) for

all x ∈ X and r > 0. Then,

Iλα : Lp(X, d, µ)→ Lq(·)(X, d, µ)

boundedly if and only if
µ(B(x, r)) ≤ λ(x, r)

for all x ∈ X and 0 < r ≤ diam(X).

We observe that this theorem solves the boundedness problem for the operator
defined by (1.2) in Lebesgue spaces on (X, |·|, µ) where µ satisfies µ(B(x, |x−y|)) ≤
|x− y|n(x) for every x ∈ X. Our proof of the sufficient condition for boundedness
follows an idea from [29], and allows us to unify the proofs for the homogeneous and
non-homogeneous cases. The basic strategy is to consider an adequate maximal
function involving the measure of the balls and the dominating function λ.

Our work also extends the Riesz potential to the more general situation where
there may be many (non-overlapping) fractals embedded in Rn, eventually with
different Hausdorff dimensions and which may or may not touch each other. In
this variable dimension context, we must mention the work by Hambly and Kuma-
gai [17], who studied diffusion processes on fractal components embedded in R2.
Physical examples related to this subject may be found in [5, 10, 38].

The variable dimension case was considered in [20], where it was proved the
boundedness in variable Lebesgue spaces of the operator

Iαf(x) =
∫
X

d(x, y)α

µ(B(x, d(x, y))) f(y) dµ(y), (1.5)

by assuming that the measure is lower Ahlfors n(·)-regular in a bounded subset X
of Rn.

We note that our definition in (1.2) is different from that in (1.5), as it carries
information on the behavior of the dimension. In this paper, unlike the result
in [20], we obtain the boundedness on Lebesgue spaces of In(·)

α by requiring (X, d)
to be a bounded geometrically doubling quasi-metric space and µ to be upper
Ahlfors n(·)-regular. More precisely, if 1

q(x) = 1
p −

α
n(x) then the operator In(·)

α is
a bounded operator from Lp(X, d, µ) into Lq(·)(X, d, µ) with µ(B(x, r)) ≤ Crn(x).
The boundedness of In(·)

α remains valid for variable exponent Lebesgue spaces Lp(·)
if the exponent p is log-Hölder continuous and 1

q(x) = 1
p(x) −

α
n(x) .

Sufficient conditions for the boundedness in Lebesgue spaces of the operator
defined by

Iαf(x) =
∫
X

1
(λ(y, d(x, y)))1−α f(y) dµ(y),

when µ is an upper doubling measure with dominating function λ, are studied
in [11] as a particular case of the operators Tαf(x) =

∫
X
Kα(x, y) f(y) dµ(y), where

the kernel Kα satisfies Kα(x, y) ≤ CKα
1

(λ(y,d(x,y)))1−α . In our case, Kα(x, y) =
d(x,y)α
d(x,y)n(x) and λ(x, d(x, y)) = d(x, y)n(x), so the condition on Kα required in [11]
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is only satisfied if n(x) < 1. Therefore, this result cannot be applied to study the
boundedness in Lebesgue spaces of the operator in (1.2).

In Section 2 we describe our setting in more detail, state the definitions of the
basic concepts, and present a condition under which the upper doubling measure
cannot have atoms, obtaining as a consequence that the underlying space has no
isolated points if the balls have positive measure.

Section 3 is devoted to introducing the appropriate Riesz potential operator Iλα
in an upper doubling environment, and to showing that the latter encompasses
the doubling and non-doubling cases. In Section 4 we give necessary and sufficient
conditions on the measure for which the boundedness for Iλα on Lebesgue spaces
holds. In Subsection 5.1 we study regularity properties of a measure defined in [3],
and show that this measure is another non-trivial example of an upper doubling
measure. In Subsection 5.2 we state the sufficient condition for the boundedness
of In(·)

α on Lebesgue spaces.

2. The general setting and basic facts

2.1. Quasi-metric measure spaces. Let (X, d) a quasi-metric space. By a quasi-
metric on a set X we mean a nonnegative function d defined on X ×X such that

• d(x, y) ≥ 0 for every x and y in X and d(x, y) = 0 if and only if x = y;
• d(x, y) = d(y, x) for every x and y in X;
• d(x, y) ≤ K1(d(x, z) + d(z, y)) for every x and y in X and for some finite

constant K1 > 0.
A quasi-metric space (X, d) is geometrically doubling or has the weak homogene-

ity property if there exists a natural number N such that every d-ball B(x, r) =
{y ∈ X : d(y, x) < r} can be covered by at most N d-balls of radius r/2. A basic
observation is that in a geometrically doubling quasi-metric space, a d-ball B(x, r)
can contain the centers xi of at most Nα−n disjoint d-balls B(xi, αr) for α ∈ (0, 1].
This weak homogeneity was first observed by Coifman and Weiss in [7]. Hytönen
in [25] gives other equivalent conditions of that definition. As it was shown by
Maćıas and Segovia in [32], every quasi-metric space is metrizable in the sense that
there exist a distance ρ and a positive number α such that ρα is equivalent to d.
The geometrically doubling quasi-metric spaces also satisfy the following topologi-
cal properties: they are separable and have the Heine–Borel property (see [1]).

A Borel measure µ defined on the d-balls is said to be non-trivial if µ(B(x, r))
is positive and finite for every x ∈ X and every r > 0. A non-trivial measure µ is
said to be doubling if there exists a positive constant K2 such that the inequality

µ(B(x, 2r)) ≤ K2µ(B(x, r)) (2.1)

holds for every x ∈ X and every r > 0. We say that (X, d, µ) is a space of
homogeneous type if µ is doubling on (X, d). There is an extensive literature on
analysis on these structures, in particular several examples and applications are
given in [7].

It is well known that if (X, d) supports a doubling measure then (X, d) is geo-
metrically doubling. Indeed, it was one of the first things pointed out by Coifman
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and Weiss in [7, p. 67]. Luukkainen and Saksman [31] proved that if (X, d) is a
complete, geometrically doubling metric space, then there exists a Borel measure
µ on X such that (X, d, µ) is a space of homogeneous type. Also, a compact met-
ric space carries a non-trivial doubling measure if and only if it is a geometrically
doubling metric space [40, 42].

We say that a point x in a space of homogeneous type (X, d, µ) is an atom if
µ({x}) > 0. When µ({x}) = 0 for every x ∈ X we say that (X, d, µ) is a non-atomic
space. In [32], Maćıas and Segovia proved in the context of spaces of homogeneous
type, that a point is an atom if and only if it is topologically isolated, and that the
set of such points is at most countable.

In this article we assume that diam(X) < ∞. Then there exists a positive
constant R0 = diam(X) such that

X = B(x,R0) (2.2)

for all x ∈ X.
As it is known, from (2.1) the following property holds

µ(B(x, ρ))
µ(B(y, r)) ≥ Cµ

(
ρ

r

)N
, N = log2K2, (2.3)

for all the balls B(x, ρ) and B(y, r) with 0 < r ≤ ρ < ∞ and y ∈ B(x, ρ), where
Cµ > 0 does not depend on r, ρ and x. From (2.3) we have

µ(B(x, r)) ≥ c0rN , x ∈ X, 0 < r ≤ diam(X). (2.4)

Condition (2.4) is also known as the lower Ahlfors regularity condition. The upper
Ahlfors regularity condition (also called the non-doubling condition) holds on X if
there exists n > 0 such that

µ(B(x, r)) ≤ c1rn, (2.5)

where c1 > 0 does not depend on x ∈ X and 0 < r ≤ diam(X), and n need not be
an integer. It is noteworthy that power bounded measures are just different, not
more general, than the doubling measures.

Given a Borel measure µ on X, we say that (X, d, µ) is an Ahlfors Q-regular
quasi-metric measure space or a Q-normal space, for Q > 0, if there exists a
constant A1 ≥ 1, such that

A−1
1 rQ ≤ µ(B(x, r)) ≤ A1r

Q,

for 0 < r ≤ diam(X) and x ∈ X. It is easy to show that if (X, d, µ) is an Ahlfors
Q-regular quasi-metric measure space, then the Hausdorff dimension, with respect
to d, is exactly Q. Moreover for Q > 0 no upper Ahlfors Q-regular quasi-metric
measure space has atoms, in the sense that no single point has positive µ measure.
In particular, if µ is positive on all d-balls and it satisfies the upper Ahlfors Q-
regular condition, the space has not isolated points. Likewise, no lower Ahlfors
Q-regular quasi-metric measure space has isolated points.

If in the above definition the variation of r is modified as µ({x})
A1

< r ≤ diam(X),
the case of bounded spaces with atoms is also taken into account. When Q = 1
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the space (X, d, µ) is called normal space (see [32]), while when Q 6= 1 it is usually
called Q-normal.

It is also of interest to study Ahlfors Q(·)-regular spaces with a variable dimen-
sion. Along this line, if Q : X → (0,∞) is a bounded function, we say that µ is
Ahlfors Q(·)-regular when µ(B(x, r)) ≈ rQ(x), for all x ∈ X and 0 < r ≤ diamX.
Ahlfors Q(·)-regularity is possible only for sufficiently regular functions Q (see [20]).
Similarly, a measure µ is lower Ahlfors N(·)-regular if µ(B(x; r)) ≥ c′0rN(x) or upper
Ahlfors n(·)-regular if µ(B(x; r)) ≤ c′1rn(x) for all x ∈ X and 0 < r ≤ diam(X).

In [25], Hytönen defines a class of measures which are controlled from above
by appropriate doubling functions, including in this way both, doubling measures
as well as those satisfying µ(B(x; r)) ≤ c1r

n or even more generally, µ(B(x; r)) ≤
c′1r

n(x). More precisely, a Borel measure µ on some quasi-metric space (X, d)
defined on d-balls is called upper doubling if there exists a dominating function
λ : X × R+ → R+ so that r → λ(x, r) is non-decreasing, doubling (there exists a
constant Cλ such that λ(x, 2r) ≤ Cλλ(x, r) for every x ∈ X and r > 0) and

µ(B(x, r)) ≤ λ(x, r) for all x ∈ X and r > 0. (2.6)

A quasi-metric measure space (X, d, µ) is said to be upper doubling if µ is an upper
doubling measure. The number dim := log2 Cλ can be thought of as (an upper
bound for) a dimension of the measure µ, and it plays a similar role to the quantity
denoted by N in (2.3). It was proved in [27] that there always exists another
dominating function λ̃ such that λ̃ ≤ λ, Cλ̃ ≤ Cλ and, for all x, y ∈ X with
d(x, y) < r,

λ̃(x, r) ≤ Cλ̃λ̃(y, r). (2.7)
Thus in what follows, we assume that λ satisfies (2.7).

It is immediate that a doubling measure is a special case of upper doubling,
where one can take the dominating function to be λ(x, r) = µ(B(x, r)). On the
other hand, a non-doubling measure is upper doubling with λ(x, r) = Crn. In [26],
Hytönen and Martikainen note that the measures obtained by Volberg and Wick
in [41] are actually upper doubling. In Section 5.1 we show that the measure defined
by H. Aimar and one the authors in [3] is another non-trivial example of upper
doubling measure and moreover is an upper Ahlfors n(·)-regular measure.

In the following lemma we state a relation between upper doubling measures
and atoms.

Lemma 2.1. If µ is an upper doubling measure on X with a dominating function
λ satisfying for each x ∈ X that λ(x, rj) → 0 when rj → 0 as j → ∞, then µ has
no atoms. If, additionally, the measure is positive on the balls, the space has no
isolated points.

Proof. Suppose on the contrary that there exists x ∈ X such that µ({x}) = α > 0,
with µ({x}) ≤ µ(B(x, rj)) ≤ λ(x, rj). Then, using the hypotheses, we obtain
α ≤ 0, contradicting the assumption about α. The proof of the second part is
immediate since if x is an isolated point then there is a positive number R such
that {x} = B(x,R). �
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Remark 2.2. Note that the above property on λ is satisfied in the case λ(x, r) = Crn

and when λ(x, r) = µ(B(x, r)) it is translated as µ(B(x, rj))→ 0 for each x when
rj → 0 for j →∞.

Remark 2.3. On the other hand, if λ as function of the variable r and uniformly
on x is of lower type a (see Subsection 2.4 below), then λ satisfies the inequality
λ(x, r) ≤ c1r

aλ(x, 1) for some constant c1, a > 0 and for 0 < r < 1, and thus λ is
in the conditions of Lemma 2.1.

We refer the reader to [1, 9, 14, 16, 23] for general properties of quasi-metric
measure spaces.

2.2. The modified maximal operator. Let (X, d) be a geometrically doubling
quasi-metric space and µ be a Borel measure on X which is finite on bounded sets.
Recall that the Hardy–Littlewood maximal function Mf(x) is defined (for Borel
measurable functions f) by

Mf(x) := sup
r>0

1
µ(B(x, r))

∫
B(x,r)

|f |dµ.

The definition makes sense µ-almost everywhere since if x belongs to the support of
µ, then µ(B(x, r)) is positive for every r > 0 (otherwise a small open ball centered
at x could be removed from the support of µ). If the measure µ satisfies the
doubling property, it is well known that the Hardy–Littlewood maximal operator
is bounded on all Lp(µ) with 1 < p ≤ +∞ and from L1(µ) into L1,∞(µ). However
if we omit the doubling requirement of the measure, for an arbitrary geometrically
doubling quasi-metric space X and measure µ, we can only say that M is bounded
on L∞(µ). One way to avoid this problem is to replace the measure of the d-ball
B(x, r) by the measure of an appropriate dilation of the ball. More precisely, we
define

M̃f(x) := sup
r>0

1
µ(B(x, 3K1r))

∫
B(x,r)

|f |dµ, (2.8)

where K1 is the constant in the definition of a quasi-metric. Note that always
M̃f(x) ≤ Mf(x) and, if the measure µ satisfies the doubling condition, M̃f(x) ≤
CMf(x) for some constant C > 0.

Lemma 2.4. If (X, d) is geometrically doubling, and µ is a Borel measure on X
which is finite on bounded sets, the modified maximal operator M̃ is bounded on
Lp(µ) for each p ∈ (1;∞] and acts from L1(µ) into L1,∞(µ).

The weak type 1-1 estimate has been proved by Nazarov, Treil and Volverg
in [34]. For a different approach see [9], p. 368, and the references therein.

2.3. Variable exponent Lebesgue spaces. In this subsection we recall some
basic definitions and properties of variable exponent Lebesgue spaces, that we will
need in Sections 4 and 5.2.

Let p : X → [1;∞) be a µ-measurable function. We define
p− = ess inf

x∈X
p(x) and p+ = ess sup

x∈X
p(x).
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Everywhere below we assume that

1 < p− ≤ p(x) ≤ p+ <∞, x ∈ X.

By Lp(·)(X) we denote the space of all µ measurable functions f on X such that
the modular

Ip(·)(f) = Ip(·);X(f) :=
∫
X

|f(x)|p(x) dµ(x)

is finite. This turns out to be a Banach space with respect to the norm

‖f‖p(·) = ‖f‖p(·);X := inf{λ > 0 : Ip(·)
(
f

λ

)
≤ 1}. (2.9)

It can be seen in [30] that Ip(·) has the following properties:
(i) Ip(·)(f) ≥ 0 for every function f .

(ii) Ip(·)(f) = 0 if and only if f = 0.
(iii) Ip(·)(−f) = Ip(·)(f) for every f .
(iv) Ip(·) is convex.
(v) If |f(x)| ≥ |g(x)| for a.e. x ∈ X and if Ip(·)(f) < ∞, then Ip(·)(f) ≥ Ip(·)(g);

the last inequality is strict if |f | 6= |g|.
(vi)

If ‖f‖p(·) ≤ 1, then Ip(·)(f) ≤ ‖f‖p(·). (2.10)

The properties (i)–(iv) characterize Ip(·) as the convex modular in the sense of [33].
In the setting of quasi-metric measure spaces (X, d, µ), a version of Theorem 2.8

in [30] can be proved, namely that Lq(x) is continuously embedded in Lp(x) if and
only if p(x) ≤ q(x) for a.e. x ∈ X, when 0 < µ(X) < ∞ and p, q are measurable
functions such that p, q : X → [1,∞). This result will be used in Theorem 4.6.

Variable exponent Lebesgue spaces on general quasi-metric measure spaces have
been considered in [21, 20, 12, 4, 15].

2.4. Functions of lower and upper type. Let us recall some definitions con-
cerning increasing functions which appear in the literature when generalizing power
functions.

We say that an increasing function λ : (0,∞)→ (0,∞) is of lower type a ≥ 0 if

λ(st) ≤ c1saλ(t)

for some constant c1, every 0 < s ≤ 1, and every t > 0. Similarly λ is of upper type
b ≥ 0 if

λ(st) ≤ c2sbλ(t)

for some constant c2, every s ≥ 1, and every t > 0. It is immediate that if λ is of
lower type a1 and a2 < a1 then λ is also of lower type a2. We say that a function
is of lower type greater than α if it is of lower type α0, for some α0 > α. Similarly
for upper type less than α.

Now we state a property that will be useful in the following sections.
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Proposition 2.5. Let λ be an increasing function and let α be a positive real
number. Then λ is of lower type α if and only if the inequality

rα2
λ(r2) ≤ c1

rα1
λ(r1) (2.11)

holds for all 0 < r1 ≤ r2 and some positive constant c1.

Proof. Suppose first that (2.11) holds and 0 < s ≤ 1, so that st ≤ t for all t > 0.
Then (2.11) takes the following form:

tα

λ(t) ≤ c1
(st)α

λ(st) .

From this we obtain that λ is of lower type α. Conversely, if λ is of lower type α
and 0 < r1 ≤ r2 then

λ(r1) = λ
(r1

r2
r2

)
≤ c1

(r1

r2

)α
λ(r2),

and (2.11) is satisfied. �

3. The Riesz operator in an upper doubling environment

As we mentioned, the fractional integral operator or the Riesz potential Iα,
0 < α < n, is defined by

Iαf(x) =
∫
Rn

f(y)
|x− y|n−α

dy, (3.1)

x ∈ Rn, whenever this integral is finite. Clearly, if f is a bounded function with
compact support, then the integral in (3.1) is finite for every x. This operator
was first studied by Hardy and Littlewood in the 1920’s [18, 19] and extended by
Sobolev [36] in the 1930’s. A well known result for Iα is the Hardy–Littlewood–
Sobolev inequality: ‖Iαf‖Lq ≤ Cp,q‖f‖Lp , that is, it is bounded from Lp(Rn) into
Lq(Rn) if and only if 1

q = 1
p −

α
n , with 1 < p < n

α (see, e.g., [37]).
These statements were generalized in many directions; see the book [35] for

historical notes and review of results.
As we pointed out in the introduction, also fractional integrals over quasi-metric

measure spaces have been defined in different ways. There are natural extensions
to contexts of quasi-metric measure spaces that arise from considering |x − y|n =
µ(B(x, |x−y|)), with µ the n-dimensional Lebesgue measure, or simply by thinking
of |x− y|n as the n-dimensional power of the Euclidean distance between x and y,
or even regarding |x− y|n as a quasi-distance between x and y.

In what follows, we shall assume that (X, d) is a geometrically doubling quasi-
metric space, the d-balls are open sets, and that we have a Borel measure µ on
X which is finite on bounded sets, positive on the d-balls, and µ({x}) = 0 for all
x ∈ X.
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Let us consider the following operators of potential type:

IQα f(x) =
∫
X

f(y) 1
d(x, y)Q−α dµ(y), 0 < α < Q.

Iγf(x) =
∫
X

f(y) 1
d(x, y)1−γ dµ(y), 0 < γ < 1.

Kγf(x) =
∫
X

f(y) 1
µ(B(x, d(x, y)))1−γ dµ(y), 0 < γ < 1.

Jαf(x) =
∫
X

f(y) d(x, y)α

µ(B(x, d(x, y))) dµ(y), α > 0.

We observe that from the results obtained in [32], it turns out that, given an
arbitrary space of homogeneous type (X, d, µ), there exists a normal space (X, δ, µ)
of order θ, θ > 0, such that the Lp(X, d, µ) coincides with Lp(X, δ, µ). Therefore,
in the case of µ doubling, the study of the boundedness of Iγ or Kγ is indistinct,
because both operators are equivalent.

Obviously, if µ is Ahlfors Q-regular, then IQα and Jα are equivalent. This is what
happens for example when we consider the case of s-sets and µ is the restriction of
the Hausdorff s-measure Hs to those sets.

If µ is doubling, using (2.4) we have Jαf(x) ≤ 1
c0
INα f(x), f ≥ 0. Similarly,

Inαf(x) ≤ Jαf(x), f ≥ 0, when µ is “non-doubling”, i.e., (2.5) holds. Moreover it
can be seen ([29, 13]) that for a measure µ, finite over balls and not having any
atoms, condition (2.5) is necessary for the inequality ‖Inα‖q ≤ C‖f‖p, 1

q = 1
p −

α
n

to hold.
In the general case, c0rN ≤ µ(B(x, r)) ≤ c1r

n, where n ≤ N and r ∈ (0, 1),
the operator Jα is better suited for lower Ahlfors N -regular quasi-metric measure
spaces, while Inα adjusts better for upper Ahlfors n-regular quasi-metric measure
spaces.

The four potential type integral operators defined above can be viewed as special
cases of the operator

Iλαf(x) =
∫
X

d(x, y)α

λ(x, d(x, y)) f(y) dµ(y), (3.2)

where λ is a dominating function for the upper doubling measure µ and as function
of the variable r and uniformly on x is of lower type greater than α. Clearly, if f is
a bounded function supported on a set of finite measure, then the integral in (3.2)
is finite for almost every x ∈ X, but according to (2.2) we have X = B(x,R0), so
it will be enough to require f bounded.

4. Boundedness of Iλα in Lebesgue spaces

Now we state the first half of our main result, which gives a version of the
Hardy–Littlewood–Sobolev inequality in the context of upper doubling spaces. We
describe those quasi-metric measure spaces on which the potential type operator
maps Iλα : Lp(X, d, µ)→ Lq(·)(X, d, µ) boundedly.
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Theorem 4.1 (Sufficient Condition). Let us assume that (X, d) is a bounded geo-
metrically doubling quasi-metric space and µ is a Borel measure on X defined on
d-balls which is finite on bounded sets and positive on d-balls. Let λ : X×R+ → R+

be a function, which as a function of the variable r and uniformly on x is non-
decreasing, doubling, of lower type greater than α with α > 0. Let q be a measurable
function defined on X, such that 1 < p < q− ≤ q(x) ≤ q+ < ∞ and q(x) satisfies
rα ≤ λ(x, r)

1
p−

1
q(x) for all x ∈ X and r > 0. Then,

Iλα : Lp(X, d, µ)→ Lq(·)(X, d, µ)

boundedly if

µ(B(x, r)) ≤ λ(x, r)

for all x ∈ X and 0 < r ≤ diam(X).

Proof. We are going to adapt to our context the proof given by Hedberg in [22].
Let B = B(x, r), x ∈ X and r > 0. For f ∈ Lp we write f as f = fχB +

fχBc , where χB is the characteristic function of the ball and χBc the characteristic
function of the complement of the d-ball. Then we have,

Iλαf(x) =
∫
X

d(x, y)α

λ(x, d(x, y)) f(y) dµ(y)

=
∫
B

d(x, y)α

λ(x, d(x, y)) f(y) dµ(y) +
∫
Bc

d(x, y)α

λ(x, d(x, y)) f(y) dµ(y)

= I1 + I2.

We estimate the first integral by splitting the ball B in the concentric annuli Cj =
B(x, 2−j+1r)−B(x, 2−jr), j = 1, 2, . . .. We obtain

|I1| ≤
∞∑
j=1

∫
Cj

|f(y)| d(x, y)α

λ(x, d(x, y)) dµ(y).

By our assumption on λ we can assure that λ is of lower type α, and hence by
Proposition 2.5, we have

rα

λ(x, r) ≤ c1
sα

λ(x, s) , s ≤ r and ∀x ∈ X.
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From this we obtain

|I1| ≤
∞∑
j=1

∫
B(x,2−j+1r)

|f(y)|c1
(2−jr)α

λ(x, 2−jr) dµ(y)

= c1r
α
∞∑
j=1

(2−j)α 1
λ(x, 2−jr)

∫
B(x,2−j+1r)

|f(y)|dµ(y)

≤ c1rα
∞∑
j=1

(2−j)α λ(x, 3K1(2−j+1r))
λ(x, 2−jr) Ω(x) M̃f(x)

≤ c1rα
∞∑
j=1

(2−j)α (Cλ)` Ω(x) M̃f(x)

≤ C1r
αΩ(x)M̃f(x),

where Cλ denotes the constant in (2.6), ` is a natural number such that 2`−1 <

6K1 ≤ 2` and Ω is the maximal function defined by Ω(x) = supR>0
µ(B(x,R))
λ(x,R) . The

constant C1 depends only on K1, Cλ, c1 and α. Furthermore, as we assumed that
the underlying metric space X is bounded, there exists a constant R0 > 0 such
that R0 = diam X. For this R0 there exists m ∈ N0 such that 2mr < R0 ≤
2m+1r. Now, setting Dk = B(x, 2k+1r) − B(x, 2kr), we decompose Bc(x, r) =⋃m−1
k=0 Dk

⋃
(B(x,R0) \ B(x, 2mr)). We estimate the second integral in a similar

way, by considering this decomposition of Bc.

|I2| ≤
m−1∑
k=1

∫
Dk

|f(y)| d(x, y)α

λ(x, d(x, y)) dµ(y) +
∫
B(x,R0)\B(x,2mr)

|f(y)| d(x, y)α

λ(x, d(x, y)) dµ(y)

≤
m−1∑
k=1

∫
B(x,2k+1r)

|f(y)|c1
(2kr)α

λ(x, 2kr) dµ(y) +
∫
B(x,R0)

|f(y)|c1
(2mr)α

λ(x, 2mr) dµ(y).

Then, we apply Hölder’s inequality in each term of the sum to obtain

|I2| ≤ c1rα
[
m−1∑
k=1

(∫
B(x,2k+1r)

|f(y)|p dµ(y)
)1/p(∫

B(x,2k+1r)

(2kr)αp′

(λ(x, 2kr))p′ dµ(y)
)1/p′

+
(∫

B(x,R0)
|f(y)|p dµ(y)

)1/p(∫
B(x,R0)

(2mr)αp′

λ(x, 2mr)p′ dµ(y)
)1/p′]

.
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Now, from the hypothesis on the of lower type of λ(x, r), the doubling property of
λ and the definition of the maximal function Ω, we have

|I2| ≤ c1rα‖f‖p

[
m−1∑
k=1

2kα

λ(x, 2kr)
(
µ(B(x, 2k+1r))

)1/p′ + (2m)α

λ(x, 2mr)
(
µ(B(x,R0))

)1/p′]

≤ c1rα‖f‖p

[
m−1∑
k=1

Cλ
2kα

λ(x, 2k+1r)
(
λ(x, 2k+1r)

)1/p′ + Cλ
2mα

λ(x,R0)
(
λ(x,R0)

)1/p′]

≤ c1Cλrα‖f‖p

[
m−1∑
k=1

2kα
(
λ(x, 2k+1r)

)−1/p + 2mα
(
λ(x,R0)

)−1/p
]
.

Since the application r → λ(x, r) is non-decreasing, we observe that λ(x, r) ≤
λ(x, 2k+1r) ≤ λ(x,R0), k = 0, 1, . . . ,m− 1, and we may conclude that

|I2| ≤ c1Cλrα‖f‖p
(
λ(x, r)

)−1/p
[
m−1∑
j=1

2kα + 2mα
]

≤ C2r
α‖f‖p

(
λ(x, r)

)−1/p
,

where C2 is a constant that depends only on c1, Cλ and α.
The above estimates for I1 and I2 imply the following pointwise inequality:

|Iλαf(x)| ≤ C3(rαΩ(x)M̃f(x) + rα‖f‖p
(
λ(x, r)

)−1/p
,

for arbitrary x ∈ X and r > 0. Taking into account condition (2.6) we deduce that
Ω(x) ≤ 1 for all x ∈ X. Hence

|Iλαf(x)| ≤ C3(rαM̃f(x) + rα‖f‖p
(
λ(x, r)

)−1/p), (4.1)

for arbitrary x ∈ X and r > 0. Suppose we can choose r > 0 such that λ(x, r) =
‖f‖pp

M̃f(x)p
. Then, in that case from the assumption rα ≤ λ(x, r)

1
p−

1
q(x) we get

rα ≤
(
M̃f(x)
‖f‖p

) p
q(x)−1

.

Consequently,

|Iλαf(x)| ≤ C4

(
M̃f(x)

) p
q(x) ‖f‖

1− p
q(x)

p

)
. (4.2)

Such choice of r is possible as long as λ(x, r) does not exceed λ(x,R0). However,
if it does, it is because M̃f(x)p ≤ ‖f‖pp λ(x,R0)−1 for these x’s and by setting
r = R0 = diam(X) in (4.1), we have

|Iλαf(x)| ≤ C5‖f‖p. (4.3)

Adding (4.2) and (4.3) we obtain that for all x in X,

|Iλαf(x)| ≤ C6‖f‖p
(
M̃f(x)

p
q(x) ‖f‖

− p
q(x)

p + 1
)
. (4.4)
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By (4.4) and Lemma 2.4, it readily follows that

‖Iλαf‖q(·) ≤ c‖f‖p.

Indeed, since Ip(·) is order preserving and a convex modular (see Section 2) we get∫
X

(
|Iλαf(x)|

C62(Cp0 + µ(X))
1

q(x) ‖f‖p

)q(x)
dµ(x)

≤
∫
X

(
M̃f(x)

p
q(x) ‖f‖

− p
q(x)

p + 1
2(Cp0 + µ(X))

1
q(x)

)q(x)
dµ(x)

≤
∫
X

(
1
2
M̃f(x)

p
q(x) ‖f‖

− p
q(x)

p

(Cp0 + µ(X))
1

q(x)
+ 1

2
1

(Cp0 + µ(X))
1

q(x)

)q(x)
dµ(x)

≤ 1
2

1
Cp0 + µ(X)

(∫
X

|M̃f(x)|p

‖f‖pp
dµ(x) +

∫
X

1 dµ(x)
)

= 1
Cp0 + µ(X)

(
‖M̃f‖pp
‖f‖pp

+ µ(X)
)

≤ 1
Cp0 + µ(X)

(
Cp0
‖f‖pp
‖f‖pp

+ µ(X)
)

= 1,

where C0 is the constant in the inequality ‖M̃f‖p ≤ C0‖f‖p from Lemma 2.4.
Now

‖Iλαf‖q(·) ≤ C62(Cp0 + µ(X))
1

q(x) ‖f‖p

≤ C62 max
{

(Cp0 + µ(X))
1
q+ , (Cp0 + µ(X))

1
q−

}
‖f‖p

= c ‖f‖p,

where we used that if (Cp0 + µ(X)) ≥ 1 then (Cp0 + µ(X))
1

q(x) ≤ (Cp0 + µ(X))
1
q−

since 1
q(x) ≤

1
q−

, and if (Cp0 + µ(X)) < 1 then (Cp0 + µ(X))
1

q(x) ≤ (Cp0 + µ(X))
1
q+

since 1
q(x) ≥

1
q+

. �

Remark 4.2. In the proof above we have used the maximal function

Ω(x) = sup
R>0

µ(B(x,R))
λ(x,R)

which describes a geometric property of the measure of the d-balls. This idea was
taken from [9], where it was used for the case λ(x, r) = Crn.

If µ is assumed upper Ahlfors n(·)-regular, we obtain as a corollary boundedness
properties for In(·)

α , since λ(x, r) = rn(x) for all x ∈ X and r > 0 and provided that
0 < α < infX n(x).
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Corollary 4.3. Let us assume that (X, d) is a bounded geometrically doubling
quasi-metric space and µ is a Borel measure on X defined on d-balls, which is
finite on bounded sets and positive on d-balls such that µ(B(x, r)) ≤ rn(x) for all
x ∈ X, 0 < r ≤ diam(X) and infX n(x) > 0. Let 0 < α < infX n(x). Let q be a
measurable function defined on X, such that 1 < p < q− ≤ q(x) ≤ q+ < ∞ and
q(x) satisfies 1

q(x) = 1
p −

α
n(x) for all x ∈ X. Then

In(·)
α : Lp(X, d, µ)→ Lq(·)(X, d, µ)

boundedly.

If f ∈ Lp(·) and p is a log-Hölder continuous exponent, i.e.,

|p(x)− p(y)| ≤ C

− log |x− y| , x, y ∈ X, |x− y| < 1
2 , (4.5)

Diening [8] has shown that this condition is sufficient on bounded domains for the
boundedness on Lp(·) of the non-centered maximal operator defined by

Mf(x) := sup
B3x

1
µ(B)

∫
B

|f |dµ.

Since M̃f defined in (2.8) is less than or equal to Mf , the proof of the above
theorem can be slightly modified to obtain the boundedness of Iλα in the setting of
variable exponent Lebesgue spaces. More precisely,

Theorem 4.4. Let us assume that (X, d) is a bounded geometrically doubling quasi-
metric space and µ is a Borel measure on X defined on d-balls which is finite on
bounded sets and positive on d-balls. Let λ : X × R+ → R+ be a function, which
as a function of the variable r and uniformly on x is non-decreasing, doubling, of
lower type greater than α with α > 0. Let p and q be measurable functions defined
on X, such that 1 < p− ≤ p(x) < q(x) ≤ q+ < ∞, p(x) satisfies (4.5) and q(x)
satisfies rα ≤ λ(x, r)

1
p(x)−

1
q(x) for all x ∈ X and r > 0. Then

Iλαf : Lp(·)(X, d, µ)→ Lq(·)(X, d, µ)
boundedly if

µ(B(x, r)) ≤ λ(x, r)
for all x ∈ X and 0 < r ≤ diam(X).

In the next lemma we prove an estimate from below for the norm of the charac-
teristic function of a d-ball with measure less than or equal to one. In [6], Capone,
Cruz Uribe and Fiorenza give an estimate from above for the norm of the charac-
teristic function of a d-ball with measure less than or equal to one.

Lemma 4.5. Let (X, d, µ) be a quasi-metric measure space, µ a finite measure
over d-balls. Let q be a measurable function defined on X such that 1 < q− ≤
q(x) ≤ q+ <∞ for every x ∈ X. Then for any d-ball B such that µ(B) ≤ 1,

‖χB‖p(·) ≥ Cµ(B)1/p(x), (4.6)
for every x ∈ B.
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Proof. Since µ(B) ≤ 1, it is always true for λ ≥ 1 that
∫
B
λ−p(x) dµ(x) ≤ µ(B) ≤ 1,

and since p+ <∞, by the definition of the norm on Lp(·)(X) we get

‖χB‖p(·) = inf{λ > 0 :
∫
B

λ−p(x) dµ(x) ≤ 1}

= inf{0 < λ < 1 :
∫
B

λ−p(x) dµ(x) ≤ 1}

≥ inf{0 < λ < 1 :
∫
B

λ−p+(B) dµ(x) ≤ 1}

= µ(B)1/p+(B),

with p+(B) = ess supx∈B p(x). Moreover, if x ∈ B we obtain

µ(B)1/p+(B) = µ(B)1/p(x)µ(B)1/p+(B)−1/p(x)

≥ µ(B)1/p(x)µ(B)
p(x)−p+(B)
p+(B)p−(B)

≥ µ(B)1/p(x)µ(B)
p+(B)−p+(B)
p+(B)p−(B)

= µ(B)1/p(x). �

Now we state the second half of our main result.

Theorem 4.6 (Necessary Condition). Let us assume that (X, d) is a bounded
geometrically doubling quasi-metric space and µ is a Borel measure on X defined on
d-balls which is finite on bounded sets and positive on d-balls. Let λ : X×R+ → R+

be a function, which as a function of the variable r and uniformly on x is non-
decreasing, doubling, of lower type greater than α with α > 0. Let q be a measurable
function defined on X, such that 1 < p < q− ≤ q(x) ≤ q+ < ∞ and q(x) satisfies
rα = λ(x, r)

1
p−

1
q(x) for all x ∈ X and r > 0. If

Iλα : Lp(X, d, µ)→ Lq(·)(X, d, µ)

boundedly then
µ(B(x, r)) ≤ λ(x, r)

for all x ∈ X and 0 < r ≤ diam(X).

Proof. Let Iλα be bounded from Lp into Lq(·) and set f = χB(a,r)
λ(·,r)
λ(a,r) , with a ∈ X

and r > 0. First we estimate∫
X

(
χB(a,r)(x) λ(x, r)

λ(a, r)

)p
dµ(x) =

∫
B(a,r)

(
λ(x, r)
λ(a, r)

)p
dµ(x) ≤ µ(B(a, r)),

since d(x, a) < r implies λ(x, r) ≤ λ(a, r) according to (2.7). Then ‖Iλαf‖q(·) ≤
Cµ(B(a, r))

1
p . It readily follows from (2.10) that∫

X

∣∣∣∣∣I
λ
α

(
χB(a,r)(x) λ(x,r)

λ(a,r)
)

Cµ(B(a, r))
1
p

∣∣∣∣∣
q(x)

dµ(x) ≤ 1.
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For each x ∈ B(a, r), recalling (2.11), we have

Iλα
(
χB(a,r)(x) λ(x,r)

λ(a,r)
)

Cµ(B(a, r))
1
p

= 1
Cµ(B(a, r))

1
p

∫
X

χB(a,r)(x) λ(x, r)
λ(a, r)

d(x, y)α

λ(x, d(x, y)) dµ(y)

≥ 1
Cc1µ(B(a, r))

1
p

∫
B(a,r)

λ(x, r)
λ(a, r)

(2K1r)α

λ(x, 2K1r)
dµ(y)

= (2K1)α

Cc1(Cλ)`
rα

λ(a, r)µ(B(a, r))1− 1
p .

Therefore∫
B(a,r)

∣∣∣∣∣ (2K1)α

Cc1 (Cλ)`
rα

λ(a, r)µ(B(a, r))1− 1
p

∣∣∣∣∣
q(x)

dµ(x)

≤
∫
X

∣∣∣∣∣I
µλ
α

(
χB(a,r)(x) λ(x,r)

λ(a,r)
)

Cµ(B(a, r))
1
p

∣∣∣∣∣
q(x)

dµ(x) ≤ 1.

Consequently, by the definition of the norm given in (2.9) we get
(2K1)α

Cc1(Cλ)`
rα

λ(a, r)µ(B(a, r))1− 1
p ‖χB(a,r)‖q(·) ≤ 1. (4.7)

As noted in Subsection 2.3 we have Lq(·) ⊆ Lq− since q− ≤ q(x) for all x ∈ X, then

(2K1)α

Cc1(Cλ)`
rα

λ(a, r)µ(B(a, r))1− 1
p ‖χB(a,r)‖q−

≤ (2K1)α

Cc1(Cλ)`
rα

λ(a, r)µ(B(a, r))1− 1
p ‖χB(a,r)‖q(·).

Now, if µ(B(a, r)) ≥ 1 we have
(2K1)α

Cc1 (Cλ)`
rα

λ(a, r)µ(B(a, r))1− 1
p+ 1

q(a) ≤ 1
C̃

rα

λ(a, r)µ(B(a, r))1− 1
p+ 1

q− ≤ 1.

If instead µ(B(a, r)) ≤ 1, we use in (4.7) the estimate of ‖χB(a,r)‖q(·) given in
Lemma 4.5 and then we also obtain

(2K1)α

C(Cλ)`
rα

λ(a, r)µ(B(a, r))1− 1
p+ 1

q(a) ≤ 1.

Using that rα = λ(x, r)
1
p−

1
q(x) for all x ∈ X we get

µ(B(a, r))1− 1
p+ 1

q(a) ≤ C̃ λ(a, r)
rα

= C̃λ(a, r)1− 1
p+ 1

q(a) .

From the last inequality we conclude that µ(B(x, r)) ≤ C ′λ(x, r) holds and thus
the proof is complete. �

Remark 4.7. Notice that the proof of Theorem 1.2 follows immediately from The-
orem 4.1 and Theorem 4.6. It is worth mentioning that in proving the sufficient
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condition we only used there the inequality rα ≤ λ(x, r)
1
p−

1
q(x) for all x ∈ X and

r > 0.

Remark 4.8. When λ(x, r) = rn the condition about the upper type of λ implies
that 0 < α < n and the assumption rα = λ(x, r)

1
p−

1
q(x) takes the form 1

q = 1
p −

α
n ,

because from rα = (rn)
1
p−

1
q(x) we get that q is constant and satisfies the equality

mentioned above.

Corollary 4.9. Let us assume that (X, d) is a bounded geometrically doubling
quasi-metric space and µ is a Borel measure on X defined on d-balls which is finite
on bounded sets and positive on d-balls. Let q be a measurable function defined
on X. If 1 < p < q− ≤ q(x) ≤ q+ < ∞ and q(x) satisfies 1

q(x) = 1
p −

α
n(x) with

0 < α < infX n(x), then the condition µ(B(x, r)) ≤ C̃rn(x) for some constant C̃ is
necessary for ‖In(·)

α f‖q(·) ≤ C‖f‖p to hold.

5. Riesz type potential in an environment doubling with two
components of different dimensions

5.1. More examples of upper doubling measure. One of the authors and
Aimar considered in [3] the problem of defining a measure when the metric measure
space X is formed by two sets X1 and X2 of different dimensions under certain
conditions on contact. It is easy to obtain the same result considering quasi-metric
spaces instead of metric spaces. If each component Xi supports a measure µi,
i = 1, 2, we can add these measures and obtain a measure supported on the whole
space. However µ1 + µ2 is not necessarily doubling on X. In [3] these natural
measures µi, i = 1, 2, are modified by introducing some weights depending on the
distance to the contact point. This is done in order to get a doubling measure for
the whole space. In this section we will show that the measure defined in [3] gives
a non-trivial example of upper doubling measure, since it is not only doubling but
also variable upper Ahlfors regular. Our setting is characterized by defining the
following three elements:
[a] The pieces of X.

X = X1 ∪X2 ∪ {x0} and (X, d) is a bounded metric space.
[b] Contact of order zero.

The components ofX have contact of order zero in x0 orX satisfies the property
Co if and only if {x0} = X1∩X2 and d(x, x0) ≤ c[d(x,X1) +d(x,X2)] for some
constant c and every x ∈ X.

[c] Dimensions.
(Xi, d, µi) is an Ahlfors ni-regular metric measure space with 0 < n1 ≤ n2 <∞.

Let us observe that since x0 ∈ X1∩X2 we have the inequality d(x, x0) ≥ d(x,X1)+
d(x,X2), for every x ∈ X. Hence if X satisfies Co the constant c is at least one.
On the other hand, property Co provides a pointwise equivalence of the functions
d(x, x0) and d(x,X1) + d(x,X2).

It is easy to see that property C0 is equivalent to the existence of a constant
c > 0 such that for every x ∈ Xi it is true that B(x, c d(x, x0)) ∩Xj = ∅, i 6= j.
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As it is known, fractal sets produced by the Hutchinson iteration scheme ([24]),
under the open set condition, are in fact spaces of homogeneous type with the right
Hausdorff measure, which are Ahlfors Q-regular for some positive real number Q.
That is the case, for example, of the middle thirds Cantor sets and Sierpinski
gaskets.

The context described is a natural abstraction of many situations of fractal fields
(see for example [17]) with a special order of contact. For instance, we could take
a plate joined to a block, or a rod joined to a plate, or a Cantor set joined to a
plate, or a Cantor set joined to a Sierpinski gasket, etc.

In this environment, in [3] some “weights” are introduced to the Ahlfors ni-
regular measures, i = 1, 2, in order to get a doubling measure for the whole space
X =

⋃2
i=1Xi ∪ {x0}. More precisely, they prove the following theorem.

Theorem 5.1 ([3, Theorem 1.2]). Assume that X = X1 ∪X2 ∪ {x0} satisfies C0.
For i = 1, 2 let (Xi, d, µi) be a ni-normal space with 0 < n1 ≤ n2 < ∞. For
γ1 > −n1 and γ2 > −n2, let µγ1,γ2 be the measure defined by

µγ1,γ2(E) =
∫
E∩X1

d(x, x0)γ1 dµ1(x) +
∫
E∩X2

d(x, x0)γ2 dµ2(x). (5.1)

Then (X, d, µγ1,γ2) is a space of homogenous type if and only if γ1 + n1 = γ2 + n2.

Let us denote by ξ the number γi + ni, i = 1, 2. So, by the above result, it
is enough to require ξ > 0 to ensure that the pair (γ1, γ2) is admissible for the
definition of a doubling measure. For our purposes, let γ(x) denote the function
defined in X by

γ(x) =
{
γi, if x ∈ Xi, i = 1, 2;
γ1, if x = x0.

(5.2)

Also we could have chosen γ2 as image of x0. Let n(x) denote the function defined
in X by

n(x) =
{
ni, if x ∈ Xi, i = 1, 2;
n1, if x = x0,

(5.3)

or n2 as image of x0.
Although the measure µγ1,γ2 is not an AhlforsQ-regular measure for someQ > 0,

the following theorem gives us estimates of µγ1,γ2 on balls of (X, d) similar to those
of the inequalities of Ahlfors Q-regular measures.

Theorem 5.2 ([3, Theorem 3.2]). Assume that (X1, X2, d) satisfies C0. For i = 1, 2
let µi be a Borel measure on (Xi, d) such that (Xi, d, µi) is a ni-normal space, with
0 < n1 ≤ n2 <∞. For γ1 > −n1 and γ2 > −n2, let µγ1,γ2 be the measure defined
by (5.1). Assume that γ1−γ2 = n2−n1 and set ξ = γ1+n1 = γ2+n2 = γ(x)+n(x).
Then, there exist purely geometric constants 1 ≤ K3 <∞ and 1 > c > 0, such that
given x ∈ X = X1 ∪X2 and r > 0 we have

(i) K−1
3 d(x, x0)γ(x)rn(x) ≤ µγ1,γ2(B(x, r)) ≤ K3d(x, x0)γ(x)rn(x), for x ∈ X and

r < c d(x, x0);
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(ii) K−1
3 rξ ≤ µγ1,γ2(B(x, r)) ≤ K3r

ξ, for c d(x, x0) ≤ r ≤ S := diam(X1) +
diam(X2);

(iii) µγ1,γ2(B(x, r)) = µγ,γ2(X1) + µγ1,γ2(X2), for r > S.

We note that in the statement of the above theorem it is possible to consider
the contact point x0 as an element of X. In such case it is easy to obtain, using a
density argument, that µγ1,γ2(B(x0, r)) ≈ rξ for all r > 0.

Therefore, the estimates in the above theorem can be summarized as follows:

K−1
3 rξ ≤ µγ1,γ2(B(x, r)) ≤

{
K3r

n(x)d(x, x0)γ(x) if r < c d(x, x0),
K3r

ξ if r ≥ c d(x, x0),
(5.4)

where γ(x) and n(x) denote the functions defined by (5.2) and (5.3) respectively.
Thus (5.4) provides a new example of an upper doubling measure, with dominating
function defined by

λ(x, r) =
{
K3r

n(x)d(x, x0)γ(x) if r < c d(x, x0),
K3r

ξ if r ≥ c d(x, x0)
(5.5)

It is easy to check that the function λ satisfies the required properties.
The inequalities (5.4) and (5.6) show that µγ1,γ2 is a lower Ahlfors ξ-regular

measure, which is also a variable upper Ahlfors regular measure, with ξ ≥ n(x) for
all x ∈ X. As this measure is lower Ahlfors regular, there are no isolated points;
and as it is doubling, it is not atomic (see [32]).

On the other hand, using the fact that (X, d) is bounded, we have that d(x, x0)
is less than or equal to R0 = diam X. With these observations we can obtain
another simpler expression for λ. In fact,

µγ1,γ2(B(x, r)) ≤ λ(x, r) = K4r
n(x), (5.6)

where K4 is a constant depending of K3, R0, γ1 and γ2. It is not difficult to prove
that λ(x, r) = K4r

n(x) as a function of the variable r and uniformly on x is of lower
type n1. So, by Remark 2.3 and Lemma 2.1, the measure µγ1,γ2 is not atomic.

In the setting described by [a], [b] and [c] above and for a function f defined
on X by f = f1χX1 + f2χX2 belonging to L1

loc(X, d, µγ1,γ2), the corresponding
Hardy–Littlewood maximal function is given by

Mf(x) = sup
x∈B

1
µγ1,γ2(B)

∫
B

|f(y)|dµγ1,γ2(y)

= sup
x∈B

∫
B∩X1

|f1(y)|d(y, x0)γ1 dµ1(y) +
∫
B∩X2

|f2(y)|d(y, x0)γ2 dµ2(y)∫
B∩X1

d(y, x0)γ1 dµ1(y) +
∫
B∩X2

d(y, x0)γ2 dµ2(y)
.

This maximal operatorM is bounded on Lp(X, d, µγ1,γ2) since µγ1,γ2 is doubling.
Moreover M is bounded on Lp(wdµ) if and only if w ∈ Ap(X, d, µγ1,γ2). In [2]
necessary and sufficient conditions on two Muckenhoupt Ap weights, defined on
each of the two components of a space of homogeneous type touching at a single
point, are given in order to obtain an Ap weight on the whole space.
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5.2. Boundedness of In(·)
α with measure µ = µγ1,γ2 . Since for the measure

µγ1,γ2 the upper dominating function is K4r
n(x), we can obtain from (3.2) that the

Riesz type potential operator associated with the measure µγ1,γ2 is given by

In(·)
α f(x) =

∫
X

d(x, y)α

d(x, y)n(x) f(y) dµγ1,γ2(y). (5.7)

The boundedness of this operator for functions in Lp(X, d, µγ1,γ2) follows as an
immediate consequence of Theorem 4.1. More precisely, we have the following
result.

Theorem 5.3. Let us assume that X = X1 ∪ X2 ∪ {x0} satisfies C0 and (X, d)
is a bounded quasi-metric space. Let µi, i = 1, 2, be a Borel measure defined on
(Xi, d) such that (Xi, d, µi) is an Ahlfors ni-regular space, with 0 < n1 ≤ n2 <∞.
For γ1 > −n1, and γ2 > −n2, let µγ1,γ2 be the measure that satisfies (5.6) with
γ1 − γ2 = n2 − n1 and γi > 0. Let q be a measurable function defined on X. If
1 < p < q− ≤ q(x) ≤ q+ < ∞ and q(x) satisfies 1

q(x) = 1
p −

α
n(x) , for all x ∈ X,

0 < α < n1 and where n(x) is given by (5.3), then the operator In(·)
α is a bounded

operator from Lp(X, d, µγ1,γ2) to Lq(·)(X, d, µγ1,γ2).

Remark 5.4. Note that in the hypotheses of Theorem 5.3 it is not assumed that
(X, d) is geometrically doubling as in Theorem 4.1 because, as it was as mentioned
in Section 2, if (X, d) supports a doubling measure then (X, d) is geometrically
doubling. On the other hand, the condition about lower type of λ when λ(x, r) =
K4r

n(x) leads to α < n1.

Remark 5.5. The case of the boundedness of In(·)
α for functions in Lp(X, d, µ)

under the same assumptions on (X, d) as in Theorem 5.3, except that the measure
is µ1 + µ2, is studied in [28].
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[21] Harjulehto, P., Hästö, P. and Pere, M. Variable exponent Lebesgue spaces on metric
spaces: the Hardy–Littlewood maximal operator. Real Anal. Exchange 30 (2004/05), 87–
103. MR 2126796.

[22] Hedberg, L. I. On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (1972), 505–
510. MR 0312232.

[23] Heinonen, J. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York,
2001. MR 1800917.

[24] Hutchinson, J. E. Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713–747.
MR 0625600.

[25] Hytönen, T. A framework for non-homogeneous analysis on metric spaces, and the RBMO
space of Tolsa. Publ. Mat. 54 (2010), 485–504. MR 2675934.

[26] Hytönen, T. and Martikainen, H. Non-homogeneous T b theorem and random dyadic cubes
on metric measure spaces. J. Geom. Anal. 22 (2012), 1071–1107. MR 2965363.

[27] Hytönen, T., Yang, D. and Yang, D. The Hardy space H1 on non-homogeneous metric spaces.
Math. Proc. Cambridge Philos. Soc. 153 (2012), 9–31. MR 2943664.

[28] Iaffei, B. and Nitti, L. Boundedness of generalized Riesz type potentials with variable dimen-
sion and doubling radial weights. Preprint.

[29] Kokilashvili, V. and Meskhi, A. Fractional integrals on measure spaces. Fract. Calc. Appl.
Anal. 4 (2001), 1–24. MR 1815331.
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