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A NOTION OF COMPATIBILITY FOR ARMENDARIZ AND
BAER PROPERTIES OVER SKEW PBW EXTENSIONS

ARMANDO REYES AND HÉCTOR SUÁREZ

Abstract. In this paper we are interested in studying the properties of Ar-
mendariz, Baer, quasi-Baer, p.p. and p.q.-Baer over skew PBW extensions.
Using a notion of compatibility, we generalize several propositions established
for Ore extensions and present new results for several noncommutative rings
which can not be expressed as Ore extensions (universal enveloping algebras,
diffusion algebras, and others).

1. Introduction

In [22], Kaplansky defined a ring B as a Baer (resp. quasi-Baer, which was
defined by Clark [10]) ring, if the right annihilator of every nonempty subset (resp.
ideal) of B is generated by an idempotent (the objective of these rings is to abstract
various properties of von Neumann algebras and complete ∗-regular rings; Clark
used the quasi-Baer concept to characterize when a finite-dimensional algebra with
unity over an algebraically closed field is isomorphic to a twisted matrix units
semigroup algebra). Another generalization of Baer rings are the p.p.-rings. A
ring B is called right (resp. left) p.p., if the right (resp. left) annihilator of each
element of B is generated by an idempotent (or equivalently, rings in which each
principal right (resp. left) ideal is projective). Birkenmeier et al. [8] defined a ring
to be called a right (resp. left) principally quasi-Baer (or simply right (resp. left)
p.q.-Baer) ring, if the right annihilator of each principal right (resp. left) ideal of
B is generated by an idempotent. Note that in a reduced ring B, B is Baer (resp.
p.p.) if and only if B is quasi-Baer (resp. p.q.-Baer); see [5] for more details.

Commutative and noncommutative Baer, quasi-Baer, p.p. and p.q.-Baer rings
have been investigated in the literature. For instance, in [3], Armendariz established
the following proposition: if B is a reduced ring, then B[x] is a Baer ring if and only
ifB is a Baer ring ([3, Theorem B]; Armendariz showed an example to illustrate that
the condition to be reduced is not superfluous). Birkenmeier et al. in [8] showed
that the quasi-Baer condition is preserved by many polynomial extensions, and
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in [6], they proved that a ring B is right p.q.-Baer if and only if B[x] is right p.q.-
Baer. In the context of noncommutative rings, more exactly polynomial extensions
known as Ore extensions B[x;σ, δ] of injective type, i.e., when σ is injective, we
found several works (cf. [10, 5, 6, 7, 13, 19, 8, 9, 17, 18, 15, 16]). Some of these
works consider the case δ = 0 and σ an automorphism, or the case where σ is
the identity. It is important to say that the Baerness and quasi-Baerness of a
ring B and an Ore extension B[x;σ, δ] of B do not depend on each other. More
exactly, there are examples which show that there exists a Baer ring B but the
Ore extension B[x;σ, δ] is not right p.q.-Baer; similarly, there exist Ore extensions
B[x;σ, δ] which are quasi-Baer, but B is not quasi-Baer (see [19] for more details).

One of the most important kinds of rings for which all the above properties
have been studied are the σ-rigid rings (cf. [24, 19, 18]). Following Krempa [24],
an endomorphism σ of a ring B is called rigid if aσ(a) = 0 implies a = 0, for
a ∈ B, and a ring B is said to be σ-rigid, if there exists a rigid endomorphism
σ of B. One can see that any rigid endomorphism of a ring is a monomorphism,
and σ-rigid rings are reduced rings ([19, p. 218]). With the aim of generalizing the
σ-rigid rings in the context of Ore extensions, in [2] Annin introduced the notion of
compatibility: a ring B is called σ-compatible if for every a, b ∈ B, we have ab = 0
if and only if aσ(b) = 0 (necessarily, the endomorphism σ is injective); B is called
δ-compatible if for each a, b ∈ B, ab = 0 ⇒ aδ(b) = 0. If B is both σ-compatible
and δ-compatible, B is called (σ, δ)-compatible. Note that σ-rigid rings are (σ, δ)-
compatible rings ([15, Lemma 3.3]), but the converse is false ([15, Examples 2.1,
2.2 and 2.3]). Nevertheless, Hashemi et al., in [16, Lemma 2.2], showed that a ring
B is (σ, δ)-compatible and reduced if and only if B is σ-rigid. Hence σ-compatible
rings generalize σ-rigid rings for the case where B is not assumed to be reduced.
All the above properties have been also studied for (σ, δ)-compatible rings: in [16]
it was imposed the (σ, δ)-compatibility on the ring B and it was proved that (i)
the ring B is quasi-Baer if and only if B[x;σ, δ] is quasi-Baer; (ii) the ring B is left
p.q.-Baer if and only if B[x;σ, δ] is left p.q.-Baer. In this way, the treatment in [16]
is a generalization of [6, Theorem 1.8] and [9, Theorem 3.1].

With all the above facts in mind, a natural question for a given class of Baer,
quasi-Baer, p.p. and p.q.-Baer rings is their behavior with respect to skew Poincaré–
Birkhoff–Witt (PBW for short) extensions introduced by Gallego and Lezama
in [12], which are more general than Ore extensions of injective type. More ex-
actly, it has been shown that skew PBW extensions contain various well-known
groups of algebras such as some types of Auslander–Gorenstein rings, some skew
Calabi–Yau algebras, some Artin–Schelter regular algebras, some Koszul algebras,
quantum polynomials, some quantum universal enveloping algebras, etc. (see [27]
and [34] for a detailed list of examples). In fact, these extensions include several
algebras which cannot be expressed as Ore extensions: universal enveloping al-
gebras of finite Lie algebras, diffusion algebras, and others; see Section 5. This
fact shows the necessity to have more general results in a theory of Baerness and
quasi-Baerness for several noncommutative rings. As a matter of fact, several ring
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and module theoretical properties have been studied for skew PBW extensions (cf.
[29]–[45]).

Precisely, a first treatment about these topics was established by the first author
in [35]. There, a notion of rigidness (Σ-rigid rings) was the key concept to establish
necessary and sufficient conditions to guarantee that all these properties are stable
over skew PBW extensions. In this way, the results presented in [35] generalize the
treatment presented in [19] about σ-rigid rings. A second treatment is developed
by the authors in [38] with the aim of generalizing Σ-rigid rings (compare also
with [29]). There, the important notions are skew Armendariz rings and a more
general class of rings, the weak skew Armendariz rings ([38], Definitions 3.1 and 3.2,
respectively). Using these two notions, the authors studied the properties of being
Baer, quasi-Baer, p.p. and p.q.-Baer over skew PBW extensions and over their
classical ring of quotients.

Now, as we saw above, (σ, δ)-compatible rings generalize σ-rigid rings for the
case of Ore extensions, and since we are interested in a more general family of
noncommutative rings, the skew PBW extensions, a natural problem is to estab-
lish a notion of compatibility for these extensions. With this aim, we introduce
the (Σ,∆)-compatible rings which are a natural generalization of (σ, δ)-compatible
rings, since skew PBW extensions generalize Ore extensions of injective type. Of
course, (Σ,∆)-compatible rings generalize Σ-rigid rings (Proposition 3.4). It is
important to say that the treatment developed in [38] is not a particular case of
the treatment developed in this paper, and vice versa, the results obtained in this
paper cannot be obtained from the treatment in [38]. In other words, there are ex-
amples of skew Armendariz rings which are not (Σ,∆)-compatible rings, and there
are examples of (Σ,∆)-compatible rings which are not skew Armendariz rings (see
Remark 3.7 for more details). Therefore, this paper can be considered as a second
approach to Armendariz skew PBW extensions.

Let us briefly explain the content of this second approach to a notion of Ar-
mendariz ring for skew PBW extensions. Let us start with the commutative def-
inition. In commutative algebra, a ring B is called Armendariz (the term was
introduced by Rege and Chhawchharia in [30]) if whenever polynomials f(x) =
a0 + a1x+ · · ·+ anx

n, g(x) = b0 + b1x+ · · ·+ bmx
m ∈ B[x] satisfy f(x)g(x) = 0,

then aibj = 0, for every i, j. The interest of this notion lies in its natural and
useful role in understanding the relation between the annihilators of the ring B
and the annihilators of the polynomial ring B[x]. In [3, Lemma 1], Armendariz
showed that a reduced ring (i.e., a ring without nonzero nilpotent elements) al-
ways satisfies this condition (reduced rings are Abelian, that is, every idempotent
is central, and also semiprime, that is, its prime radical is trivial). Now, in the
context of noncommutative algebra, more exactly the Ore extensions, the relations
between Armendariz rings and Baer (quasi-Baer) rings have been also investigated
in different papers, see for example [3, 4, 30, 1, 6, 13, 19, 23, 8, 18, 17, 20, 28]. For
instance, Hirano in [18] defined a ring B to be quasi-Armendariz if whenever two
polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑t
j=0 bjx

j ∈ B[x] satisfy f(x)B[x]g(x) = 0,
then aiRbj , for every i, j.
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Motivated by all these results, Hashemi et al. investigated in [15] a notion of
Armendariz ring as a generalization of the σ-rigid rings. There, it was introduced
the condition (SA1) which is a skew polynomial version of Armendariz rings. More
exactly: if σ is a monomorphism of a ring B and δ is a σ-derivation of B, then it
is said that B satisfies the (SA1) condition if whenever f(x)g(x) = 0 for f(x) =∑m
i=0 aix

i and g(x) =
∑n
j=0 bjx

j ∈ B[x;σ, δ], then aibj = 0, for all i, j. Since
σ-rigid rings satisfy (SA1) ([19, Proposition 6]), in [15] it was imposed the (σ, δ)-
compatibility on the ring B, and it was shown the following facts: (i) if B satisfies
(SA1), then B is a Baer (resp. right p.p.) ring if and only if B[x;σ, δ] is a Baer (resp.
right p.p.) ring ([15, Theorem 3.14]). In this way, this result is a generalization
of [19, Theorems 11, 14, and Corollaries 12, 16]; (ii) if (SA1) holds in B, the
ring B satisfies the ascending chain condition on right annihilators if and only
if so does B[x;σ, δ] ([15, Theorem 2.5]). Hashemi et al. in [16] investigated also
a generalization of σ-rigid rings by introducing the condition (SQA1) which is
a skew polynomial version of the quasi-Armendariz rings. More exactly, for a
monomorphism σ and a σ-derivation δ of a ring B, it is said that B satisfies the
(SQA1) condition if whenever f(x)B[x;σ, δ]g(x) = 0 for f(x) =

∑m
i=0 aix

i and
g(x) =

∑t
j=0 bjx

j ∈ B[x;σ, δ], then aiBbj = 0, for all i, j. Note that if B is σ-rigid,
then B satisfies also (SQA1). With all these works in mind, our second approach
to a notion of Armendariz ring of skew PBW extensions consists in establishing
the conditions (SA1) and (SQA1) for the case of skew PBW extensions with the
aim of generalizing the results presented in [35] about Σ-rigid rings, and of course,
the results presented in [15] and [16] for Ore extensions of injective type.

Next, we describe the structure of the article. In Section 2 we establish some
useful results about skew PBW extensions for the rest of the paper. In Section 3,
we introduce the notion of Σ-compatible, ∆-compatible, and (Σ,∆)-compatible
ring (Definition 3.2), and we show that Σ-rigid rings defined in [35] are strictly
contained in (Σ,∆)-compatible rings (Proposition 3.4 and Example 3.6). However,
in Theorem 3.9 we prove the following equivalences: for a skew PBW extension A
of a ring R, R is (Σ,∆)-compatible and reduced⇔ R is Σ-rigid⇔ A is reduced. In
Section 4, we introduce the notions (SA1) and (SQA1) for skew PBW extensions
(Definitions 4.1 and 4.11, respectively) with the aim of generalizing the results
presented in [35] about Baer, quasi-Baer, p.p. and p.q.-Baer rings for Σ-rigid rings,
to the more general setting of (Σ,∆)-compatible rings, see Theorems 4.2, 4.4, 4.7,
and 4.15. In Example 4.10 we show an example of a σ-compatible left p.q.-Baer
ring which is not σ-rigid. We also study some relations between the condition
(SQA1) and annihilators and ideals in a ring R and a skew PBW extension A
over R (Theorems 4.12 and 4.14). Finally, in Section 5 we present some examples
of noncommutative rings which cannot be expressed as Ore extensions but are
skew PBW extensions. As a matter of fact, the results presented in this paper
are new for skew PBW extensions and all of them are similar to others existing
in the literature for the case of Ore extensions. In this way, we continue the
task of studying homological and ring properties of skew PBW extensions (cf.
[12, 32, 27, 33, 34, 26, 35, 36, 38]).
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2. Skew PBW extensions

Definition 2.1 ([12, Definition 1]). Let R and A be rings. We say that A is a
skew PBW extension of R (also called a σ-PBW extension of R), which is denoted
by A := σ(R)〈x1, . . . , xn〉, if the following conditions hold:

(i) R ⊆ A;
(ii) there exist elements x1, . . . , xn ∈ A such that A is a left free R-module,

with basis Mon(A) := {xα = xα1
1 · · ·xαnn | α = (α1, . . . , αn) ∈ Nn}, and

x0
1 · · ·x0

n := 1 ∈ Mon(A).
(iii) For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exists an element ci,r ∈

R \ {0} such that xir − ci,rxi ∈ R.
(iv) For any positive integers 1 ≤ i, j ≤ n, there exists ci,j ∈ R \ {0} such that

xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn.

Proposition 2.2 ([12, Proposition 3]). Let A be a skew PBW extension of R.
For each 1 ≤ i ≤ n, there exist an injective endomorphism σi : R → R and a
σi-derivation δi : R→ R such that xir = σi(r)xi + δi(r), for each r ∈ R. We write
Σ := {σ1, . . . , σn} and ∆ := {δ1, . . . , δn}.

Definition 2.3 ([12, Definition 4]). Let A be a skew PBW extension of R.
(a) A is called quasi-commutative if the conditions (iii) and (iv) in Definition 2.1

are replaced by the following conditions: (iii’) for each 1 ≤ i ≤ n and all
r ∈ R \ {0}, there exists ci,r ∈ R \ {0} such that xir = ci,rxi; (iv’) for any
1 ≤ i, j ≤ n, there exists ci,j ∈ R \ {0} such that xjxi = ci,jxixj .

(b) A is called bijective, if σi is bijective for each 1 ≤ i ≤ n and ci,j is invertible,
for any 1 ≤ i < j ≤ n.

Example 2.4. The class of skew PBW extensions contains various well-known
groups of algebras such as some types of Auslander–Gorenstein rings, some skew
Calabi–Yau algebras, Koszul algebras, quantum polynomials, some quantum uni-
versal enveloping algebras, etc. A detailed list of examples of skew PBW extensions
is presented in [27] and in [34].

Definition 2.5 ([12, Definition 6]). Let A be a skew PBW extension of R with
endomorphisms σi, 1 ≤ i ≤ n, as in Proposition 2.2.

(i) For α = (α1, . . . , αn) ∈ Nn, σα := σα1
1 · · ·σαnn , |α| := α1 + · · · + αn. If

β = (β1, . . . , βn) ∈ Nn, then α+ β := (α1 + β1, . . . , αn + βn).
(ii) For X = xα ∈ Mon(A), exp(X) := α, deg(X) := |α|, and X0 := 1. The

symbol � will denote a total order defined on Mon(A) (a total order on
Nn). For an element xα ∈ Mon(A), exp(xα) := α ∈ Nn. If xα � xβ

but xα 6= xβ , we write xα � xβ . Every element f ∈ A can be expressed
uniquely as f = a0 +a1X1 + · · ·+amXm, with ai ∈ R, and Xm � · · · � X1.
With this notation, we define lm(f) := Xm, the leading monomial of f ;
lc(f) := am, the leading coefficient of f ; lt(f) := amXm, the leading term of
f ; exp(f) := exp(Xm), the order of f ; and E(f) := {exp(Xi) | 1 ≤ i ≤ t}.
Note that deg(f) := max{deg(Xi)}ti=1. Finally, if f = 0, then lm(0) := 0,
lc(0) := 0, lt(0) := 0. We also consider X � 0 for any X ∈ Mon(A). For a

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



162 ARMANDO REYES AND HÉCTOR SUÁREZ

detailed description of monomial orders in skew PBW extensions, see [12,
Section 3].

Proposition 2.6 ([12, Theorem 7]). If A is a polynomial ring with coefficients in
R and the set of indeterminates {x1, . . . , xn}, then A is a skew PBW extension of
R if and only if the following conditions hold:

(i) for each xα ∈ Mon(A) and every 0 6= r ∈ R, there exist unique elements
rα := σα(r) ∈ R \ {0}, pα,r ∈ A, such that xαr = rαx

α + pα,r, where
pα,r = 0, or deg(pα,r) < |α| if pα,r 6= 0. If r is left invertible, so is rα.

(ii) For each xα, xβ ∈ Mon(A), there exist unique elements cα,β ∈ R and
pα,β ∈ A such that xαxβ = cα,βx

α+β + pα,β, where cα,β is left invertible,
pα,β = 0, or deg(pα,β) < |α+ β| if pα,β 6= 0.

Remark 2.7. With respect to Proposition 2.6, we have two observations:
(i) ([35, Proposition 2.9]) If α := (α1, . . . , αn) ∈ Nn and r ∈ R, then

xαr = xα1
1 xα2

2 · · ·x
αn−1
n−1 xαnn r = xα1

1 · · ·x
αn−1
n−1

( αn∑
j=1

xαn−j
n δn(σj−1

n (r))xj−1
n

)

+ xα1
1 · · ·x

αn−2
n−2

(αn−1∑
j=1

x
αn−1−j
n−1 δn−1(σj−1

n−1(σαnn (r)))xj−1
n−1

)
xαnn

+ xα1
1 · · ·x

αn−3
n−3

(αn−2∑
j=1

x
αn−2−j
n−2 δn−2(σj−1

n−2(σαn−1
n−1 (σαnn (r))))xj−1

n−2

)
x
αn−1
n−1 xαnn

+ · · ·+ xα1
1

( α2∑
j=1

xα2−j
2 δ2(σj−1

2 (σα3
3 (σα4

4 (· · · (σαnn (r))))))xj−1
2

)
xα3

3 xα4
4 · · ·x

αn−1
n−1 xαnn

+ σα1
1 (σα2

2 (· · · (σαnn (r))))xα1
1 · · ·x

αn
n , σ0

j := idR for 1 ≤ j ≤ n.

(ii) ([35, Remark 2.10]) Using (i), it follows that for the product aiXibjYj , if
Xi := xαi11 · · ·xαinn and Yj := x

βj1
1 · · ·xβjnn , then

aiXibjYj = aiσ
αi(bj)xαixβj + aipαi1,σ

αi2
i2 (···(σαin

in
(b)))x

αi2
2 · · ·xαinn xβj

+ aix
αi1
1 pαi2,σ

αi3
3 (···(σαin

in
(b)))x

αi3
3 · · ·xαinn xβj

+ aix
αi1
1 xαi22 pαi3,σ

αi4
i4 (···(σαin

in
(b)))x

αi4
4 · · ·xαinn xβj

+ · · ·+ aix
αi1
1 xαi22 · · ·xαi(n−2)

i(n−2) pαi(n−1),σ
αin
in

(b)x
αin
n xβj

+ aix
αi1
1 · · ·xαi(n−1)

i(n−1) pαin,bx
βj .

In this way, when we compute every summand of aiXibjYj we obtain prod-
ucts of the coefficient ai with several evaluations of bj in σ’s and δ’s de-
pending on the coordinates of αi.

3. (Σ,∆)-compatible rings

Following Krempa [24], an endomorphism σ of a ringB is called rigid if aσ(a) = 0
implies a = 0, for a ∈ B. A ring B is said to be σ-rigid if there exists a rigid
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endomorphism σ of B. It is clear that any rigid endomorphism of a ring is a
monomorphism, and σ-rigid rings are reduced ([19, p. 218]). Properties of σ-rigid
rings have been studied by several authors (cf. [24, 19, 18]). With this in mind, in [2]
it is said that B is σ-compatible if for every a, b ∈ B, we have ab = 0 if and only if
aσ(b) = 0; B is said to be δ-compatible if for each a, b ∈ B, ab = 0⇒ aδ(b) = 0. If
B is both σ-compatible and δ-compatible, B is called (σ, δ)-compatible. In this case,
the endomorphism σ is injective. Since one can appreciate the relation between
these notions and σ-rigid rings ([15, Lemma 3.3]), in [16, Lemma 2.2] it was shown
that a ring B is (σ, δ)-compatible and reduced if and only if B is σ-rigid. Hence
σ-compatible rings generalize σ-rigid rings for the case where B is not assumed to
be reduced. The natural task for us is to extend this notion of compatibility to a
more general context of Ore extensions of injective type, that is, the family of skew
PBW extensions. This is precisely the content of Definition 3.2. Before, we recall
the notion of Σ-rigid ring.

Definition 3.1 ([35, Definition 3.2]). Let B be a ring and Σ a family of endo-
morphisms of B. Σ is called a rigid endomorphisms family if rσα(r) = 0 implies
r = 0, for every r ∈ B and α ∈ Nn. A ring B is called Σ-rigid if there exists a rigid
endomorphisms family Σ of B.

Note that if Σ is a rigid endomorphisms family, then every element σi ∈ Σ is
a monomorphism. In fact, Σ-rigid rings are reduced rings: if B is a Σ-rigid ring
and r2 = 0 for r ∈ B, then 0 = rσα(r2)σα(σα(r)) = rσα(r)σα(r)σα(σα(r)) =
rσα(r)σα(rσα(r)), i.e., rσα(r) = 0 and so r = 0, that is, B is reduced (note that
there exists an endomorphism of a reduced ring which is not a rigid endomor-
phism, see [19, Example 9]). We consider the family of injective endomorphisms
Σ and the family ∆ of Σ-derivations in a skew PBW extension A of a ring R (see
Proposition 2.2).

Definition 3.2. Consider a ring R with a family of endomorphisms Σ and a family
of Σ-derivations ∆. Then,

(1) R is said to be Σ-compatible, if for each a, b ∈ R, aσα(b) = 0 if and only if
ab = 0, for every α ∈ Nn;

(2) R is said to be ∆-compatible, if for each a, b ∈ R, ab = 0 implies aδβ(b) = 0,
for every β ∈ Nn.

If R is both Σ-compatible and ∆-compatible, R is called (Σ,∆)-compatible.

Examples 3.3. Next, we present remarkable examples of σ-PBW extensions over
(Σ,∆)-compatible rings (see [31] or [27] for a detailed definition and reference of
every example).

(a) If A is a skew PBW extension of a ring R where the coefficients com-
mute with the variables, that is, xir = rxi, for every r ∈ R and each
i = 1, . . . , n, or equivalently, σi = idR and δi = 0, for every i (these
extensions were called constant by the authors in [44]), then it is clear
that R is (Σ,∆)-compatible. Some examples of constant σ-PBW exten-
sions are the following: PBW extensions defined by Bell and Goodearl
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(which include the classical commutative polynomial rings, universal en-
veloping algebra of a Lie algebra, and others); some operator algebras (for
example, the algebra of linear partial differential operators, the algebra of
linear partial shift operators, the algebra of linear partial difference oper-
ators, the algebra of linear partial q-dilation operators, and the algebra
of linear partial q-differential operators); the class of diffusion algebras;
Weyl algebras; additive analogue of the Weyl algebra; multiplicative ana-
logue of the Weyl algebra; some quantum Weyl algebras as A2(Ja,b); the
quantum algebra U ′(so(3,k)); the family of 3-dimensional skew polynomial
algebras (there are exactly fifteen of these algebras, see [39]); Dispin alge-
bra U(osp(1, 2)); Woronowicz algebra Wv(sl(2,k)); the complex algebra
Vq(sl3(C)); q-Heisenberg algebra Hn(q); the Hayashi algebra Wq(J), and
more.

(b) We also encounter examples of σ-PBW extensions (which are not constant)
over (Σ,∆)-compatible rings. Let us see: (i) the quantum plane Oq(k2);
the algebra of q-differential operators Dq,h[x, y]; the mixed algebra Dh; the
operator differential rings; the algebra of differential operators Dq(Sq) on
a quantum space Sq, and more.

(c) It is important to say that several algebras of quantum physics can be
expressed as skew PBW extensions (for instance, Weyl algebras, additive
and multiplicative analogue of the Weyl algebra, quantum Weyl algebras,
q-Heisenberg algebra, and others), which allows us to characterize several
properties with physical meaning. As Curado et al. say in [11], “algebraic
methods have long been applied to the solution of a large number of quan-
tum physical systems. In the last decades, quantum algebras appeared
in the framework of quantum integrable one-dimensional models and have
ever since been applied to many physical phenomena [. . . ] It was found
that it could be generalized leading to the concept of deformed Heisenberg
algebras that have been used in many areas, as nuclear physics, condensed
matter, atomic physics, etc.” With these ideas in mind, next we present
some remarkable examples of these algebras which are (Σ,∆)-compatible
(the proof that these algebras are skew PBW extensions can be realized
using the theory developed in [40]).
(i) The Lie-deformed Heisenberg algebra introduced by Jannussis is de-

fined by the commutation relations
qj(1 + iλjk)pk − pk(1− iλjk)qj = i}δjk

[qj , qk] = [pj , pk] = 0, j, k = 1, 2, 3,
where qj , pj are the position and momentum operators, and λjk =
λkδjk, with λk real parameters. If λjk = 0 one recovers the usual
Heisenberg algebra.

(ii) The quantum Weyl algebra introduced by Giaquinto and Zhang with
the aim of studying the Jordan Hecke symmetry is a quantization of
the usual second Weyl algebra. By definition, A2(Ja,b) is the k-algebra
generated by the variables x1, x2, ∂1, ∂2, with relations (depending on
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parameters a, b ∈ k)
x1x2 = x2x1 + ax2

1, ∂2∂1 = ∂1∂2 + b∂2
2

∂1x1 = 1 + x1∂1 + ax1∂2, ∂1x2 = −ax1∂1 − abx1∂2 + x2∂1 + bx2∂2

∂2x1 = x1∂2, ∂2x2 = 1− bx1∂2 + x2∂2.

Over any field k, if a = b = 0, then A2(J0,0) ∼= A2, the usual second
Weyl algebra.

(iii) With the purpose of obtaining bosonic representations of the Drinfeld–
Jimbo quantum algebras, Hayashi considered the algebra U. Let us
see its construction. Let U be the algebra generated by the indeter-
minates ω1, . . . , ωn, ψ1, . . . , ψn, ψ

∗
1 , . . . , ψ

∗
n, with the relations

ψjψi − ψiψj = ψ∗
jψ

∗
i − ψ∗

i ψ
∗
j = ωjωi − ωiωj = ψ∗

jψi − ψiψ∗
j = 0, 1 ≤ i < j ≤ n,

ωjψi − q−δijψiωj = ψ∗
jωi − q−δijωiψ

∗
j = 0, 1 ≤ i, j ≤ n,

ψ∗
i ψi − q2ψiψ

∗
i = −q2ω2

i , q ∈ C 1 ≤ i ≤ n.

(iv) Jannussis et al. studied the non-Hermitian realization of a Lie de-
formed, non-canonical Heisenberg algebra, considering the case of op-
erators Aj , Bk which are non-Hermitian (i.e., } = 1)

Aj(1 + iλjk)Bk −Bk(1− iλjk)Aj = iδjk

[Aj , Bk] = 0 (j 6= k)
[Aj , Ak] = [Bj , Bk] = 0,

and
A+
j (1 + iλjk)B+

k −B
+
k (1− iλjk)A+

j = iδjk

[A+
j , B

+
k ] = 0 (j 6= k),

[A+
j , A

+
k ] = [B+

j , B
+
k ] = 0,

where Aj 6= A+
j , Bk 6= B+

k (j, k = 1, 2, 3). If the operators Aj , Bk are
in the form Aj = fj(Nj + 1)aj , Bk = a+

k fk(Nk + 1), where aj , a+
j are

leader operators of the usual Heisenberg–Weyl algebra, with Nj the
corresponding number operator (Nj = a+

j aj , Nj | nj〉 = nj |nj〉), and
the structure functions fj(Nj + 1) complex, then it is showed that Aj
and Bk are given by

Aj =

√
i

1 + iλj

(
[(1− iλj)/(1 + iλj)]Nj+1 − 1

(1− iλj)/(1 + iλj)− 1
1

Nj + 1

) 1
2

aj

Bk =
√

i

1 + iλk
a+
k

(
[(1− iλk)/(1 + iλk)]Nk+1 − 1

(1− iλk)/(1 + iλk)− 1
1

Nk + 1

) 1
2

.

Proposition 3.4 shows that (Σ,∆)-compatible rings are a generalization of Σ-
rigid rings introduced in [35, Definition 3.2].

Proposition 3.4. Let Σ be a family of endomorphisms of a ring R, and let ∆ be
a family of Σ-derivations of R. If R is Σ-rigid, then R is (Σ,∆)-compatible.
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Proof. If R is a Σ-rigid ring, then R is reduced, and ab = 0 if and only if ba = 0. In
this way, aσα(b)σα(aσα(b)) = aσα(ba)σα(σα(b)) = 0, whence aσα(b) = 0. Using
a similar reasoning, we can see that the equality ba = 0 implies σα(a)b = 0:
0 = σα(σα(a))σα(ba)b = σα(σα(a))σα(b)σα(a)b = σα(σα(a)b)σα(a)b ⇒ σα(a)b =
0. Now, if aσα(b) = 0, then baσα(b)σα(a) = baσα(ba) = 0, whence ba = 0,
and then ab = 0. Finally, for every i, 0 = δi(ba) = δi(b)a + σi(b)δi(a), that is,
(σi(b)δi(a))2 = −δi(b)aσi(b)δi(a) = 0, and since R is reduced, σi(b)δi(a) = 0, i.e.,
δi(b)a = 0, which shows that aδi(b) = 0. �

Corollary 3.5 ([15, Lemma 3.3]). Let σ be an endomorphism of a ring B and let
δ be a σ-derivation of B. If B is σ-rigid, then B is (σ, δ)-compatible.

The following example illustrates that the converse of Proposition 3.4 is false.
See also Examples 4.17 (iii).
Example 3.6 ([15, Example 2.2]). Let δ be a σ-derivation of B, where B is a
σ-rigid ring. Consider

B3 =
{a b c

0 a d
0 0 a

 | a, b, c, d ∈ B},
the subring of the upper triangular matrix T3(B). The endomorphism σ of B is
extended to the endomorphism σ : B3 → B3 defined by σ((aij)) = (σ(aij)) and the
σ-derivation δ of B is also extended to δ : B3 → B3 defined by δ((aij)) = (δ(aij)).
Then δ is a σ-derivation of B3, and we have the following facts: (i) B3 is a (σ, δ)-
compatible ring; (ii) B3 is not σ-rigid (in fact, B3 satisfies (SA1), see Definition 4.1).
Remark 3.7. As we said in the Introduction, the treatment developed in [38] is
not a particular case of the treatment developed in this paper, and vice versa, the
results obtained in this paper cannot be obtained from the treatment in [38]. In
other words, there are examples of skew Armendariz rings which are not (Σ,∆)-
compatible rings, and there are examples of (Σ,∆)-compatible rings which are not
skew Armendariz rings. For example:

(a) [46, Example 2.8] If Z2[x] is the polynomial ring with coefficients in Z2, and
σ is the endomorphism of Z2[x] given by σ(p(x)) = p(0), then Z2[x] is skew
Armendariz [38, Definition 3.1] but Z2[x] is not Σ = {σ}-compatible (so
not Σ-rigid): if we take f = 1 + x, g = x ∈ Z2[x], then fg = (1 + x)x 6= 0,
but fσ(g) = (1 + x)σ(x) = 0.

(b) [46, Example 2.9] Let Z4 be the ring of integers modulo 4. Consider the
ring

R =
{(

a b
0 a

)
| a ∈ Z, b ∈ Z4

}
.

If we consider the endomorphism σ ofR given by σ
((

a b
0 a

))
=
(
a −b
0 a

)
,

and the ideal I =
{(

a 0
0 a

)
| a ∈ 4Z

}
of R, then R/I is not skew Armen-

dariz, and R/I is Σ = {σ}-compatible.
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Returning to the relation between Σ-rigid and (Σ,∆)-compatible rings, from
Proposition 3.4 and Example 3.6, note that

Σ-rigid rings $ (Σ,∆)-compatible rings.
Next, we investigate some key properties of (Σ,∆)-compatible rings.

Proposition 3.8. Let R be a (Σ,∆)-compatible ring. For every a, b ∈ R, we have:
(i) if ab = 0, then aσθ(b) = σθ(a)b = 0, for each θ ∈ Nn.

(ii) If σβ(a)b = 0 for some β ∈ Nn, then ab = 0.
(iii) If ab = 0, then σθ(a)δβ(b) = δβ(a)σθ(b) = 0, for every θ, β ∈ Nn.

Proof. The proof uses a similar argument to the one established in [15, Lemma 2.4].
�

As we saw before, Σ-rigid rings are strictly contained in (Σ,∆)-compatible rings.
Nevertheless, Theorem 3.9 shows the importance of reduced rings in the equivalence
of both families of rings.

Theorem 3.9. If A is a skew PBW extension of a ring R, then the following
statements are equivalent:

(i) R is reduced and (Σ,∆)-compatible;
(ii) R is Σ-rigid;
(iii) A is reduced.

Proof. (i) ⇒ (ii) Suppose that R is reduced and (Σ,∆)-compatible. Consider an
element r ∈ R such that rσα(r) = 0. From Proposition 3.8 (i) we obtain σα(r)σα(r)
for every α ∈ N, and using the injectivity of σα and the assumption on R, we
have r = 0. (ii) ⇒ (i) It follows from Proposition 3.4. (ii) ⇒ (iii) Let R be Σ-
rigid and suppose that A is not reduced. Then there exists a non-zero element
f ∈ A such that f2 = 0. Since R is reduced, f /∈ R. Following Definition 2.5,
consider f = a0 + a1X1 + · · · + amXm, ai ∈ R, 0 ≤ i ≤ m, am 6= 0, with
Xi = xαi = xαi11 · · ·xαinn , and Xm � Xm−1 � · · · � X1. By Theorem 2.6 (ii) we
have

f2 = (amXm + · · ·+ a1X1 + a0)(amXm + · · ·+ a1X1 + a0)
= amXmamXm + other terms of order less than XmXm

= am[σαm(am)Xm + pαm,am ]Xm + · · ·
= amσ

αm(am)XmXm + ampαm,amXm + · · ·
= amσ

αm(am)[cαm,αmx2αm + pαm,αm ] + ampαm,amXm + · · · ,

where pαm,am = 0 or deg(pαm,am) < |αm| if pαm,am 6= 0, and pαm,αm = 0 or
deg(pαm,αm) < |αm + αm| if pαm,αm 6= 0. From the equality

lc(f2) = amσ
αm(am)cαm,αm = 0

we obtain amσ
αm(am) = 0 (A is bijective). From [35, Lemma 3.3 (iv)], we obtain

a2
m = 0, and so am = 0 (R is reduced), which is a contradiction. Hence, A is

reduced. (iii)⇒ (ii) If A is reduced, R is also reduced as a subring. Let us see that
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R is Σ-rigid. If a ∈ R and aσα(a) = 0, then 0 = σα(a)xαaσα(a)xαa = (σα(a)xαa)2,
and so σα(a)xαa = 0. Thus, 0 = σα(a)xαa = σα(a)[σα(a)xα+pα,a] = (σα(a))2xα+
σα(a)pα,a, with pα,a = 0, or deg(pα,a) < |α| if pα,a 6= 0 (Theorem 2.6). Hence
(σα(a))2 = 0, that is, σα(a) = 0. Now, since σα is injective, we obtain a = 0,
which shows that R is Σ-rigid. �

Corollary 3.10 ([16, Lemma 2.2]). If σ is an endomorphism and δ is a σ-
derivation of a ring B, then B is (σ, δ)-compatible and reduced if and only if B
is σ-rigid.

Lemma 3.11. Let A be a skew PBW extension of a (Σ,∆)-compatible ring R. If
f = a0 + a1X1 + · · ·+ amXm ∈ A, r ∈ R, and fr = 0, then air = 0, for every i.

Proof. Consider the expression fr with Xm � · · · � X1. Then
fr = (a0 + a1X1 + · · ·+ amXm)r = a0r + a1X1r + · · ·+ amXmr

= a0r + a1(σα1(r)X1 + pα1,r) + · · ·+ am(σαm(r)Xm + pαm,r)
= a0r + a1σ

α1(r)X1 + a1pα1,r + · · ·+ amσ
αm(r)Xm + ampαm,r,

where pαj ,r = 0, or deg(pαj ,r) < |α| if pαj ,r 6= 0, for j = 1, . . . ,m (Proposition 2.6).
Note that lc(fr) = amσ

αm(r) = 0, and by the Σ-compatibility of R, amr = 0,
that is, r is an element of the right annihilator of am. From Remark 2.7, the
polynomial pαm,r involves elements obtained evaluating σ’s and δ’s (depending on
the coordinates of αm) in the element r. Hence, by (Σ,∆)-compatibility of R and
Proposition 3.8, we obtain ampαm,r = 0, which means that the expression fr takes
the form fr = a0r + a1X1r + · · ·+ am−1Xm−1r. Using this argument repeatedly,
we can see that air = 0, for every i = 0, . . . ,m. �

Corollary 3.12 ([16, Lemma 2.3]). Let B be a (σ, δ)-compatible ring. If f(x) =
a0 + a1x+ · · ·+ amx

m ∈ B[x;σ, δ], r ∈ B and f(x)r = 0, then air = 0, for each i.

4. Baer, quasi-Baer, p.p. and p.q.-rings

In [35], the first author studied skew PBW extensions of Baer, quasi-Baer, p.p.
and p.q.-Baer rings over Σ-rigid rings. There, it was proved that these properties
are stable over this kind of extensions. Now, since we have showed that Σ-rigid
rings are strictly contained in (Σ,∆)-compatible rings, the purpose of this sec-
tion is to generalize the results presented in [35] to the more general setting of
(Σ,∆)-compatible rings. In this way, we obtain more general results for skew
PBW extensions and extend the results presented in [9] and [15] for Ore extensions
of injective type.

Definition 4.1. Let A be a skew PBW extension of R. We say that R satisfies
the condition (SA1) if whenever fg = 0 for f = a0 + a1X1 + · · · + amXm and
g = b0 + b1Y1 + · · ·+ btYt elements of A, then aibj = 0, for every i, j.

Note that every Σ-rigid ring satisfies the condition (SA1).

Theorem 4.2. If A is a skew PBW extension of a (Σ,∆)-compatible ring R which
satisfies (SA1), then R is a Baer ring if and only if A is a Baer ring.
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Proof. Suppose that R is a Baer ring. Consider a nonempty subset D of A, and
let C be the set of coefficients of elements of D. By assumption on R, there exists
an idempotent e ∈ R with right annihilator of C in R given by rR(C) = eR. Since
R is (Σ,∆)-compatible, from Remark 2.7 (ii) and Proposition 3.8, we can see that
De = 0, that is, eA ⊆ rA(D). Now, if f = a0 + a1X1 + · · · + amXm ∈ rA(D), by
condition (SA1) on R, Cai = 0 for 0 ≤ i ≤ m, i.e., ai ∈ eR, whence rA(D) ⊆ eA,
and then rA(D) = eA.

Suppose that A is a Baer ring and let C be a nonempty subset of R. There
exists an idempotent e ∈ A given by e = e0 + e1X1 + · · ·+ etXt with rA(C) = eA.
Hence Ce0 = 0, which implies that e0 = ee0, and by the condition (SA1) on R,
e2

0 = e0, i.e., e0R ⊆ rR(C). Now, if r′ ∈ rR(C), then r′ = er′, that is, e0r
′ = r′,

whence rR(C) = e0R. �

Corollary 4.3 ([15, Theorem 3.14]). If B is a (σ, δ)-compatible ring which satisfies
the condition (SA1), then B is a Baer ring if and only if B[x;σ, δ] is a Baer ring.

Theorem 4.4. If A is a skew PBW extension of a (Σ,∆)-compatible ring R which
satisfies the condition (SA1), then R satisfies the ascending chain condition on
right annihilators if and only if so does A.

Proof. Consider a chain of right annihilators of A given by I1 ⊆ I2 ⊆ · · · . There
exist non-empty subsets Di of A with rA(Di) = Ii, for i ≥ 1. Note that · · · ⊆ D2 ⊆
D1. Let Ci be the set of coefficients of elements of Di, for every i. By assumption
on R, there exists n ∈ N such that rR(Cn) = rR(Ci), for i ≥ n. The aim is to show
that rA(Dn) = rA(Di), for i ≥ n. With this in mind, let i ≥ n, and consider the
element g ∈ rA(Di) given by g = r0 + r1X1 + · · ·+ rmXm. Then hg = 0, for every
h ∈ Di. If h = b0 + b1Y1 + · · · + btYt, using the condition (SA1) on R, 0 = bkrj
(0 ≤ k ≤ t, 0 ≤ j ≤ m), that is, Cirj = 0, for 0 ≤ j ≤ m, which shows that
rj ∈ rR(Cn) = rR(Ci), for 0 ≤ j ≤ m. Therefore, by the (Σ,∆)-compatibility of R
and Proposition 3.8, we have g ∈ rA(Dn), i.e., rA(Dn) = rA(Di).

Now, if J1 ⊆ J2 ⊆ · · · is a chain of right annihilators of R, then there exist
nonempty subsets of R with rR(Bi) = Ji, for i ≥ 1, and · · · ⊆ B2 ⊆ B1. By
assumption on A, rA(Bi) = rA(Bn), for some n ∈ N, and every value i ≥ n. This
fact and the equalities rR(Bi) = R ∩ rR(Bi) = R ∩ rR(Bn) = rR(Bn), for i ≥ n,
allow us to guarantee that Ji = Jn, for i ≥ n. �

Corollary 4.5 ([15, Theorem 2.5]). If B is a (σ, δ)-compatible ring which satis-
fies the condition (SA1), then B satisfies the ascending chain condition on right
annihilators if and only if so does B[x;σ, δ].

Since a Σ-rigid ring is a (Σ,∆)-compatible ring and satisfies (SA1), we obtain
the following corollary.

Corollary 4.6 ([35, Theorem 2.9]). If A is a bijective skew PBW extension of a
Σ-rigid ring R, then R is a Baer ring if and only if A is a Baer ring.

Theorem 4.7. If A is a skew PBW extension of a (Σ,∆)-compatible ring R which
satisfies (SA1), then R is a right p.p.-ring if and only if A is a right p.p.-ring.
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Proof. Suppose that A is a right p.p.-ring, and consider an element a of R. There
exists an idempotent e = e0 + e1X1 + · · · + emXm ∈ A such that rA({a}) = eA.
The idea is to show that rR({a}) = e0R. Since ae = 0, in particular, ae0 = 0,
which shows that e0R ⊆ rR({a}). Now, consider r′ ∈ rR({a}). Then r′ = er′, and
by the condition (SA1) on R, r′ = e0r

′. Hence rR({a}) = e0R, that is, R is Baer.
Suppose that R is a right p.p.-ring and consider an element f ∈ A given by

the expression f = a0 + a1X1 + · · · + atXt. Let us see that R is an Abelian
ring. Consider e2 = e, r ∈ R. Then (er(1 − e))2 = (er − ere)(er − ere) =
erer− erere− ereer+ ereere = erer− erere− erer+ erere = 0. Using the (Σ,∆)-
compatibility of R, the equality e(e − 1) = 0 implies eσi(e) = e, and eδi(e) = 0,
and from the equality (er(1 − e))2 = 0 we obtain er(1 − e)σi(er(1 − e)) = 0 and
(er(1 − e))δi(er(1 − e)) = 0 for every 1 ≤ i ≤ n. Let f = e(1 − er(1 − e)xi) and
g = (1 + er(1− e)xi)(1− e). Then

fg = e(1− er(1− e)xi)(1 + er(1− e)xi)(1− e)
= e(1 + er(1− e)xi − er(1− e)xi − er(1− e)xier(1− e)xi)(1− e)
= e(1− er(1− e)[σi(er(1− e))xi + δi(er(1− e))xi])(1− e)
= e(1− er(1− e)σi(er(1− e))x2

i − er(1− e)δi(er(1− e)))xi(1− e)
= e(1− e) = 0.

Note that
f = e(1− er(1− e)xi) = e− e2r(1− e)xi = e+ (ere− er)xi
g = (1 + er(1− e)xi)(1− e) = 1− e+ er(1− e)xi(1− e)

= 1− e+ er(1− e)[σi(1− e)xi + δi(1− e)]
= 1− e+ (er − ere)(1− σi(e))xi + (er − ere)(−δi(e))
= 1− e+ (ereδi(e)− erδi(e)) + (er − erσi(e)− ere+ ereσi(e))xi
= 1− e− erδi(e) + (er − erσi(e))xi.

By assumption, R satisfies the condition (SA1), so e(er − erσi(e)) = 0, that is,
er − erσi(e) = er(1 − σi(e)) = erσi(1 − e) = 0, and hence σi(er)σi(1 − e) = 0
(Proposition 3.8 (i)), which shows that er(1 − e) = 0 since σi is injective, so
er = ere. Using a similar reasoning we can show that re = ere, and so er = re.
Then, there exists e2 = e ∈ R such that rR({a0})∩ rR({a1})∩ · · · ∩ rR({at}) = eR.
The aim is to show that rA(f) = eA. Using the (Σ,∆)-compatibility of R, and
the equality aje = 0 for 0 ≤ j ≤ t, the expression fe = (a0 + a1X1 + · · · +
atXt)e = a0e+a1X1e+ · · ·+atXte is equal to zero by Remark 2.7, whence fe = 0.
Hence eA ⊆ rA(f). Now, consider an element g ∈ rA(f) given by the expression
g = b0 + b1Y1 + · · ·+ bsYs. Then fg = 0, and since R satisfies the condition (SA1),
we have ajbk = 0 for 0 ≤ j ≤ t and 0 ≤ k ≤ s, that is, bk ∈ rR({aj}), so bk ∈ eR for
every k, which shows that bk = erk, and hence g = er0 + er1Y1 + · · ·+ ersYs ∈ eA,
which proves that rA(f) ⊆ eA. Therefore, rA(f) = eA. �

Corollary 4.8 ([35, Theorem 3.12]). If A is a bijective skew PBW extension of a
Σ-rigid R, then R is a p.p.-ring if and only if A is a p.p.-ring.
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Example 4.9 ([15, Example 3.17]). Let B = Z2[y]/〈y2〉, where 〈y2〉 is a principal
ideal generated by y2. The only idempotents of B are 0 + y2 and 1 + y2. Since
rR({y+ 〈y2〉}) = 〈y+ 〈y2〉〉 cannot be generated by an idempotent, B is not quasi-
Baer and so it is not Baer. Now, let α be the identity map on B, and define
an α-derivation δ on B by δ(y + 〈y2〉) = 1 + 〈y2〉. Then B is not δ-compatible.
Nevertheless, B[x;α, δ] = B[x; δ] ∼= M2(Z2[y2]) ∼= M2(Z2[t]), where M2(Z2[t]) is a
Baer ring, and hence B[x; δ] is a Baer ring. This example shows that there exists
a non-δ-compatible ring B which is not Baer, but B[x; δ] is a Baer ring.

Next, we see one example of a σ-compatible left p.q.-Baer ring which is not
σ-rigid.

Example 4.10 ([16, Example 1.1]). Let B1 be a left p.q.-Baer ring, D a domain
and B = Tm(B1) ⊕ D[y], where Tm(B1) is the upper m × m triangular matrix
ring over B1. Let σ : D[y] → D[y] be a monomorphism which is not surjective.
Then B is left p.q.-Baer, and if σ is defined by σ(A⊕ f(y)) = A⊕ (f(y)) for each
A ∈ Tn(B1) and f(y) ∈ D[y], then σ is a non surjective monomorphism and B is
a σ-compatible ring which is not σ-rigid because B is not reduced.

Definition 4.11. Let A be a skew PBW extension of R. We say that R satisfies
the (SQA1) condition if whenever fAg = 0 for f = a0 + a1X1 + · · · + amXm and
g = b0 + b1Y1 + · · ·+ btYt elements of A, then aiRbj = 0, for every i, j.

Following [18], for a ring B, rAnnB(id(B)) = {rB(U) | U is an ideal of B}, and
similarly, lAnnB(id(B)) = {lB(U) | U is an ideal of B}. With this notation, we
have the following proposition about (Σ,∆)-compatible rings which satisfy (SQA1).
This proposition generalizes [18, Proposition 3.4] and [16, Proposition 2.5].

Theorem 4.12. If A is a skew PBW extension of a (Σ,∆)-compatible ring R,
then the following statements are equivalent:

(i) R satisfies condition (SQA1);
(ii) ψ : rAnnR(id(B))→ rAnnA(id(A)), given by C → CA, is bijective;
(iii) ϕ : lAnnR(id(B))→ lAnnA(id(A)), given by D → AD, is bijective.

Proof. (i)⇒ (ii) Consider an element C ∈ rAnnR(id(R)). There exists an ideal I of
R such that C = rR(I). By Proposition 3.8, we have the equality rA(AIA) = CA.
Hence, the application ψ is well defined. Now, if B ∈ rAnnA(id(A)), then there
exists an ideal J of A with B = rA(J). Consider B1 and J1 the set of coefficients
of elements of B and J , respectively. The aim is to prove that rR(J1R) = B1R.
Let f = a0 + a1X1 + · · · + amXm ∈ J and g = b0 + b1Y1 + · · · + btYt ∈ B. Then
fAg = 0. Using the condition (SQA1) on R, we have aiRbj = 0 for 0 ≤ i ≤ m
and 0 ≤ j ≤ t. Hence, (J1R)(B1R) = 0, so B1 ⊆ rR(J1R). By the (Σ,∆)-
compatibility of R, we obtain rR(J1R) ⊆ B1R, which shows that rR(J1R) = B1R.
Thus, rA(J) = (B1R)A.

(ii) ⇒ (i) Consider the elements f = a0 + a1X1 + · · ·+ amXm, g = b0 + b1Y1 +
· · ·+ btYt of A such that fAg = 0. Then g ∈ rA(AfA) = CA, where C is an ideal
of R. In this way, bj ∈ C for every j, that is, fRbj = 0. Lemma 3.11 guarantees
that aiRbj = 0, for 0 ≤ i ≤ m and 0 ≤ j ≤ t.
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The proof of the equivalence (i) ⇔ (iii) is similar. �

Definition 4.13 ([16, Definition 2.6]). A submodule N of a left B-module M is
called a pure submodule if L⊗B N → L⊗B M is a monomorphism for every right
B-module L. An ideal I of B is said to be right s-unital if, for each a ∈ I, there is
an x ∈ I such that ax = a. If an ideal I of B is right s-unital, then for any finite
subset F of I there exists an element e ∈ I such that xe = x for all x ∈ F . For an
ideal I, the following conditions are equivalent: (i) I is pure as a left ideal of B;
(ii) R/I is flat as a left B-module; (iii) I is right s-unital.

The next Theorem 4.14 extends [18, Theorem 3.9] and [16, Theorem 2.7].

Theorem 4.14. If A is a bijective skew PBW extension of a (Σ,∆)-compatible
ring R, then the following assertions are equivalent:

(i) l(Ra) is pure as a left ideal of B for any element a ∈ R;
(ii) l(Af) is pure as a left ideal of A for any element f ∈ A. In this case R

satisfies condition (SQA1).

Proof. Let us start proving that R satisfies (SQA1). Consider the expression (a0 +
a1X1 + · · ·+ amXm)A(b0 + b1Y1 + · · ·+ btYt) = 0 with ai, bj ∈ R. Then

(a0 + a1X1 + · · ·+ amXm)R(b0 + b1Y1 + · · ·+ btYt) = 0.
The leading coefficient of this expression is given by amσ

αm(Rbt)cαm,βt = 0.
Using the bijectivity of A, amσαm(Rbt) = 0, and by the Σ-compatibility of R, we
obtain amRbt = 0, that is, am ∈ lR(Rbt). From Remark 2.7 and Proposition 3.8
we have the equalities amXmRb0 = amXmRb1Y1 = · · · = amXmRbt−1Yt−1 = 0, so
we obtain the expression

(a0 + a1X1 + · · ·+ amXm)R(b0 + b1Y1 + · · ·+ bt−1Yt−1) = 0. (4.1)
Since lR(Rbt) is right s-unital, there exists et ∈ lR(Rbt) with amet = am.

Replacing R by etR in (4.1),
(a0 + a1X1 + · · ·+ amXm)etR(b0 + b1Y1 + · · ·+ bt−1Yt−1) = 0, (4.2)

we obtain its leading coefficient given by amσ
αm(etRbt−1)cαm,βt−1 = 0, and since

A is bijective, amσαm(etRbt−1) = 0. By the Σ-compatibility of R, we obtain
ametRbt−1 = 0, i.e., am ∈ lR(etRbt−1). Again, from Remark 2.7 (ii) and Proposi-
tion 3.8 we have the equalities amXmetRb0 = amXmb1 = · · · = amXmbt−1Yt−1 =
0, so (4.2) takes the form

(a0 + a1X1 + · · ·+ amXm)etR(b0 + b1Y1 + · · ·+ bt−2Yt−2) = 0.
In this way, am ∈ lR(Rbt) ∩ lR(etRbt−1), and since amet = am, it follows that
am ∈ lR(Rbt) ∩ lR(Rbt−1). Now, by assumption lR(Rbt) is right s-unital, so there
exists f ∈ lR(Rbt−1) such that amf = am. If et−1 := etf , then amet−1 = ametf =
amf = am, so et−1 ∈ lR(Rbt) ∩ lR(Rbt−1).

Now, replacing R by et−1R in (4.1), and using the reasoning above, we obtain
the expression

(a0 + a1X1 + · · ·+ amXm)etR(b0 + b1Y1 + · · ·+ bt−2Yt−2) = 0,
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with its leading coefficient amσαm(etRbt−2)cαm,βt−2 = 0, and since A is bijec-
tive, we obtain amσ

αm(etRbt−2) = 0. By the Σ-compatibility of R, we have
ametRbt−2 = 0, that is, am ∈ lR(etRbt−2), whence am ∈ lR(Rbt) ∩ lR(Rbt−1) ∩
lR(Rbt−2). Continuing in this way, we obtain amRj for j = 0, . . . , t. Using the
(Σ,∆)-compatibility of R, the original expression takes the form

(a0 + a1X1 + · · ·+ amXm)A(b0 + b1Y1 + · · ·+ bt−1Yt−1) = 0.

Using induction on m+ t, we conclude that aiRbj for every i, j, that is, R satisfies
(SQA1). Let us prove the equivalence of assertions (i) and (ii).

(i)⇒ (ii) Consider the elements f, g ∈ l(Af) given by f = a0+a1X1+· · ·+amXm

and g = b0 + b1Y1 + · · · + btYt. Then bjRai = 0 for every i, j. By assumption,
l(Rai) is right s-unital, so there exists ei ∈ l(Rai) with bj = bjei for i = 0, . . . ,m.
Let e := e0e1 · · · em. Then bj = bje for every j. By Proposition 3.8, we obtain
e ∈ Af and ge = g, that is, l(Af) is right s-unital.

(ii) ⇒ (i) Let a ∈ R. Since R is (Σ,∆)-compatible, we have lR(Ra) ⊆ lA(Aa).
In this way, for any b ∈ lR(Ra) there exists an element f ∈ A with bf = b. If a0
is the constant term of f , then ba0 = b and using the (Σ,∆)-compatibility of R,
a0 ∈ lR(Ra). Therefore lR(Ra) is right s-unital. �

Since quasi-Baer (left p.q.-Baer) rings satisfy the hypothesis of Theorem 4.14,
we have the following result.

Theorem 4.15. If A is a bijective skew PBW extension of a (Σ,∆)-compatible
ring R, then R is quasi-Baer (left p.q.-Baer) if and only if A is quasi-Baer (left
p.q.-Baer). In this case, R satisfies condition (SQA1).

Corollary 4.16 ([16, Corollary 2.8]). If B is a (σ, δ)-compatible ring, then B is
quasi-Baer (left p.q.-Baer) if and only if B[x;σ, δ] is quasi-Baer (left p.q.-Baer).

Examples 4.17. The following examples show the importance of the (Σ,∆)-
compatibility condition on R in Theorem 4.15:

(i) ([13, Example 2.8]). If B = F[t] is the polynomial ring over a field F and σ
is the endomorphism given by σ(f(t)) = f(0), then B[x;σ] is not a quasi-
Baer ring. This example shows that there is an example of a quasi-Baer
ring B and an endomorphism σ of B such that B[x;σ] is not a quasi-Baer
ring.

(ii) ([4, Example 11]). Let B = Z2[t]/〈t2〉, with the derivation δ such that
δ(t̄) = 1 where t̄ = t + 〈t2〉 in B, and Z2[t] is the polynomial ring over
the field Z2 of two elements. Consider the Ore extension B[x; δ]. If we set
e11 = t̄x, e12 = t̄, e21 = t̄x2 +x, and e22 = 1 + t̄x in B[x; δ], then they form
a system of matrix units in B[x; δ]. Now the centralizer of these matrix
units in B[x; δ] is Z2[x2]. Therefore B[x; δ] ∼= M2(Z2[x2]) ∼= M2(Z2)[y],
where M2(Z2)[y] is the polynomial ring over M2(Z2). So the ring B[x; δ]
is a Baer ring, but B is not quasi-Baer. This example shows that there is
a ring B and a derivation δ of B such that B[x; δ] is a Baer ring but B is
not quasi-Baer.
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(iii) ([15, Example 2.1]). Let B1 be a non-reduced left p.p.-ring, D a domain
and B = B1 ⊕D[y]. If σ : D[y] → D[y] is a monomorphism which is not
surjective, then (i) B is a left p.p.-ring (note that B1 and D[y] are left
p.p.), and (ii) if σ : B → B is the endomorphism defined by σ(a⊕ f(y)) =
a⊕ σ(f(y)) for every a ∈ B1 and f(y) ∈ D[y], then σ is a monomorphism
of B which is not surjective and B is σ-compatible and not σ-rigid.

Since Σ-rigid rings are (Σ,∆)-compatible, we have immediately the following
results established in the literature.

Corollary 4.18 ([19, Theorem 14]; [35, Theorems 3.10 and 3.13]). Let R be a
Σ-rigid ring. Then R is quasi-Baer (left p.q.-Baer) if and only if A is quasi-Baer
(left p.q.-Baer).

Proof. The assertions follow from Proposition 3.4 and Theorem 4.15. �

Finally, we will characterize the (Σ,∆)-compatibility for the classical ring of
quotients of a bijective skew PBW extension.

Let us recall the key facts about noncommutative localization. If B is a ring and
S is a multiplicative subset of B (1 ∈ S, 0 /∈ S, ss′ ∈ S for every s, s′ ∈ S), then the
left ring of fractions of B exists if and only if two conditions hold: (i) given a ∈ B
and s ∈ S with as = 0, there exists s′ ∈ S such that s′a = 0; (ii) given a ∈ B and
s ∈ S, there exist s′ ∈ S and a′ ∈ B with s′a = a′s (left Ore condition). If these
conditions hold, then the left ring of fractions of B with respect to S is denoted by
S−1B, and its elements are classes denoted using fractions. More exactly, a

s := b
t

are equal if and only if there exist c, d ∈ B such that ca = db, cs = dt ∈ S;
a
s + b

t := ca+db
u , where u := cs = dt ∈ S, for some c, d ∈ B; a

s
b
t := cb

us , where
ua = ct, for some u ∈ S and c ∈ B. Similarly, one defines the right Ore condition
and hence the right ring of fractions of B. The nonzero divisor elements of B are
called regular and the set of regular elements of B is denoted by S0(B). Recall
that if B is both left and right Ore, then its classical left ring of quotients Qlcl(B)
and its classical right ring of quotients Qrcl(B) coincide, and it is denoted by Q(B).
A key result about the classical ring of quotients of B is the common denominator
property: if B is a ring, S ⊂ B is a multiplicative subset and S−1B exists, then
any finite set {q1, . . . , qn} of elements of S−1B posses a common denominator, i.e.,
there exist r1, . . . , rn ∈ B and s ∈ S such that qi = ri

s for every i (see [21] for a
detailed treatment of localization in noncommutative rings).

Proposition 4.19 ([25, Lemma 2.6]). Let A be a bijective skew PBW extension
of a ring R. If S ⊆ S0(R) is a multiplicative subset of R with σi(S) = S for every
i = 1, . . . , n, then

(a) If S−1R exists, then S−1A exists and it is a bijective skew PBW extension
of S−1R, denoted S−1A = σ(S−1R)〈x′1, . . . , x′n〉, where x′i := xi

1 , and the
system of constants of S−1R is given by c′i,j = ci,j

1 , c′i, rs
:= σi(r)

σi(s) , for
1 ≤ i, j ≤ n. The automorphisms σi of S−1R and the σi-derivations δi
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(1 ≤ i ≤ n), are defined by σi(as ) := σi(a)
σi(s) , and δi(as ) := − δi(s)

σi(s)
a
s + δi(a)

σi(s) .
Let Σ := {σ1, . . . , σn} and ∆ := {δ1, . . . , δn}.

(b) If RS−1 exists, then AS−1 exists and it is a bijective skew PBW extension
of RS−1, denoted AS−1 = σ(RS−1)〈x′′1 , . . . , x′′n〉, where x′′i := xi

1 , and the
system of constants of S−1R is given by c′′i,j = ci,j

1 , c′′i, rs
:= σi(r)

σi(s) , for
1 ≤ i, j ≤ n. The automorphisms σi of S−1R and the σi-derivations δi
(1 ≤ i ≤ n), are defined by σi(as ) := σi(a)

σi(s) , and δi(as ) := −σi(a)
σi(s)

δi(s)
s + δi(a)

s .
Let Σ := {σ1, . . . , σn} and ∆ := {δ1, . . . , δn}.

If no confusion arises, we simply denote x′i and x′′i by xi for 1 ≤ i ≤ n. Now,
analogously to the definition of (Σ,∆)-compatibility, we consider the notion of
(Σ,∆)-compatibility for the classical quotient ring Q(R) of R.
Theorem 4.20. Let A be a bijective skew PBW extension of a ring R. Suppose
that the classical ring of quotients Q(R) of R exists. If R is (Σ,∆)-compatible,
then the classical quotient ring Q(R) of R is (Σ,∆)-compatible.
Proof. If R is (Σ,∆)-compatible, and ac−1bd−1 = 0, then we obtain ac−1b =
0. Note that we also have ac−1 = c′−1a′, so c′−1a′b = 0, whence a′b = 0.
By assumption, R is Σ-compatible, so a′σα(b) = 0, for every α ∈ Nn. Hence,
c′−1a′σα(b)(σα(d))−1 = 0, i.e., ac−1σα(b)(σα(d))−1 = 0, that is, ac−1σα(bd−1) =
0. In a similar way, we can see that ac−1σα(bd−1) = 0 implies that ac−1bd−1 = 0,
which means that Q(R) is Σ-compatible.

Now, if ac−1bd−1 = 0, then ac−1δβ(bd−1) = ac−1(δβ(b)− bδβ(d)d−1)(σβ(d))−1.
Using a similar reasoning as above, a′b = 0, where ac−1 = c′−1a′, and hence
a′δβ(b) = 0. Therefore c′−1a′δβ(b)(σβ(d))−1 = 0, which implies that
ac−1δβ(b)(σβ(d))−1 = 0. Note that a′b = 0 implies that a′bδβ(d)d−1(σβ(d))−1 = 0,
and so ac−1bδβ(d)d−1(σβ(d))−1 = 0. In this way, ac−1δβ(bd−1) = ac−1(δβ(b) −
bδβ(d)d−1)(σβ(d))−1 = 0, that is, Q(R) is ∆-compatible. This fact concludes the
proof. �

5. Examples

In this section we present some remarkable examples of skew PBW extensions
which cannot be expressed as Ore extensions (see [27] for a detailed reference of
every example, and a more complete list of noncommutative rings).

(a) Let k be a commutative ring and g a finite dimensional Lie algebra over
k with basis {x1, . . . , xn}. The universal enveloping algebra of g, denoted
U(g), is a skew PBW extension of k, since xir − rxi = 0, xixj − xjxi =
[xi, xj ] ∈ g = k+ kx1 + · · ·+ kxn, r ∈ k, for 1 ≤ i, j ≤ n. In particular, the
universal enveloping algebra of a Kac-Moody Lie algebra is a skew PBW
extension of a polynomial ring.

(b) The universal enveloping ring U(V,R,k), where R is a k-algebra and V is
a k-vector space which is also a Lie ring containing R and k as Lie ideals
with suitable relations. The enveloping ring U(V,R,k) is a finite skew
PBW extension of R if dimk(V/R) is finite.
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(c) Let k, g, {x1, . . . , xn} and U(g) be as in the previous example; let R be
a k-algebra containing k. The tensor product A := R ⊗k U(g) is a skew
PBW extension of R, and it is a particular case of crossed product R∗U(g)
of R by U(g), which is a skew PBW extension of R.

(d) The twisted or smash product differential operator ring R #σ U(g), where
g is a finite-dimensional Lie algebra acting on R by derivations, and σ is a
Lie 2-cocycle with values in R.

(e) Diffusion algebras arise in physics as a possible way to understand a large
class of 1-dimensional stochastic process. A diffusion algebra A with pa-
rameters aij ∈ C \ {0}, 1 ≤ i, j ≤ n, is an algebra over C generated by
variables x1, . . . , xn subject to relations

aijxixj − bijxjxi = rjxi − rixj ,

whenever i < j, bij , ri ∈ C for all i < j. A admits a PBW-basis of standard
monomials xi11 · · ·xinn , that is, A is a diffusion algebra if these standard
monomials are a C-vector space basis for A. From Definition 2.1, (iii) and
(iv), it is clear that the family of skew PBW extensions are more general
than diffusion algebras. We will denote qij := bij

aij
. The parameter qij can

be a root of unity if and only if it is equal to 1. It is therefore reasonable to
assume these parameters not to be a root of unity other than 1. If all the
coefficients qij are nonzero, then the corresponding diffusion algebra has a
PBW basis of standard monomials xi11 · · ·xinn , and hence these algebras are
skew PBW extensions. More precisely, A ∼= σ(C)〈x1, . . . , xn〉.
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School of Mathematics and Statistics, Universidad Pedagógica y Tecnológica de Colombia
hector.suarez@uptc.edu.co

Received: October 12, 2016
Accepted: September 15, 2017

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)

http://www.ams.org/mathscinet-getitem?mr=3547275
http://www.ams.org/mathscinet-getitem?mr=3621421
https://doi.org/10.1007/s00006-017-0800-4
http://www.ams.org/mathscinet-getitem?mr=2442419

	1. Introduction
	2. Skew PBW extensions
	3. (Sigma, Delta)-compatible rings
	4. Baer, quasi-Baer, p.p. and p.q.-rings
	5. Examples
	References

