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THE SHAPE DERIVATIVE OF THE GAUSS CURVATURE

ANÍBAL CHICCO-RUIZ, PEDRO MORIN, AND M. SEBASTIAN PAULETTI

Abstract. We present a review of results about the shape derivatives of
scalar- and vector-valued shape functions, and extend the results from Doğan
and Nochetto [ESAIM Math. Model. Numer. Anal. 46 (2012), no. 1, 59–79] to
more general surface energies. In that article, Doğan and Nochetto consider
surface energies defined as integrals over surfaces of functions that can depend
on the position, the unit normal and the mean curvature of the surface. In
this work we present a systematic way to derive formulas for the shape de-
rivative of more general geometric quantities, including the Gauss curvature
(a new result not available in the literature) and other geometric invariants
(eigenvalues of the second fundamental form). This is done for hyper-surfaces
in the Euclidean space of any finite dimension. As an application of the re-
sults, with relevance for numerical methods in applied problems, we derive a
Newton-type method to approximate a minimizer of a shape functional. We
finally find the particular formulas for the first and second order shape deriva-
tives of the area and the Willmore functional, which are necessary for the
aforementioned Newton-type method.

1. Introduction

Energies that depend on the domain appear in applications in many areas, from
materials science, to biology, to image processing. Examples when the domain de-
pendence of the energy occurs through surfaces include the minimal surface prob-
lem, the study of the shape of droplets (surface tension), image segmentation and
shape of bio-membranes, to name a few. In the language of the shape derivative
theory [27, 8, 16, 30], these energies are called shape functionals. This theory pro-
vides a solid mathematical framework to pose and solve minimization problems for
such functionals.
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For most of the problems of interest, the energy (shape functional) can be cast
as ∫

Γ
F (geometric quantities),

where “geometric quantities” stands for quantities such as the normal n, the mean
curvature κ, the Gauss curvature κg, or in general any quantity that is well defined
for a surface Γ as a geometric object, i.e., independent of the parametrization. For
example, F = 1 in the case of a minimal surface; F = F (x,n) is used in the
modeling of crystals [2, 1, 29, 28] in materials science. The Willmore functional
corresponds to F = 1

2κ
2 [31]—where κ is the mean curvature—and the related

spontaneous curvature functional to F = 1
2 (κ − κ0)2; they are used in models for

the bending energy of membranes, particularly in the study of biological vesicles
[15, 20, 19, 26]. In these cases a term with the Gaussian curvature κG is part of
the energy which is essential when dealing with membranes with boundaries (not
closed). The modified form of the Willmore functional, which corresponds to F =
g(x)κ2, is used to model bio-membranes when the concentration or composition of
lipids changes spatially [3, 6].

The minimization of these energies requires the knowledge of their (shape)
derivatives with respect to variations of the domain and has motivated researchers
to seek formulas for the shape derivative of the normal and the mean curvature.
The shape derivative of the normal is simple and can be found in [8, 30] among other
references. Particular cases of F = F (x, n) are derived in [4, 22, 28]. The shape de-
rivative of the mean curvature or particular cases of F = F (κ) can also be found in
[32, 17, 25, 11, 10, 9, 30], where the shape derivative is computed from scratch; some
using parametrizations, others in a more coordinate-free setting using the oriented
distance function, but in general the same computations are repeated each time
a new functional dependent on the mean curvature appears. A more systematic
approach to the computations is found in [9], where Doğan and Nochetto propose
a formula for the shape derivative of a functional of the form F = F (x,n, κ), that
relies on knowing the shape derivatives of n and κ. They rightfully assert that by
having this formula at hand, it wouldn’t be necessary to redo all the computations
every time a new functional depending on these quantities appears.

The main motivation of this article was to find such a formula when F also
depends on the Gauss curvature κg which, as far as we know, has not been presented
elsewhere. With this goal in mind we performed a thorough review of existing
results in the literature and briefly summarize them in this article, hoping that
it will be a useful reference for future works. In the course of our research we
faced the need to compute shape derivatives of tangential differential operators,
so our results allow us to compute shape derivatives of surface invariants. These
are important when second order shape derivatives are necessary in Newton-type
methods for minimizing functionals. We have also discovered that the different
definitions of shape derivative of boundary-based and domain-based functionals
have led to some misunderstandings and confusion in the past. We hope to clarify
this issue in the present article.
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Our new results (Section 7) allow us to develop a more systematic approach to
compute shape derivatives of integrands that are functional relations of geometric
quantities. The method, starting from the shape derivative of the normal as the
base case, provides a recursive formula for the shape derivative of higher order
tangential derivatives of geometric quantities. In particular we give a nice formula
for the shape derivative of the Gaussian curvature and extend the results of [9] to
more generals integrands.

Outline. The outline of this article is as follows. Sections 2–5 contain a review
of known results which we have put together from different sources and hope that
can be useful for future reference, besides making the article more self-contained.
Those readers who are familiar with the existing results about shape differentiation
can skip these sections and jump to Sections 7–9 where the new results are stated
and proved. Except for a few minor results, all the statements in Sections 2–5 can
be found in the literature, but not all of them together in one reference.

In Section 2 we state some preliminary concepts and elements of basic tangential
calculus. In Section 3 we recall the concept of shape differentiable functionals
through the velocity method. In Section 4 we motivate and introduce the concept
of shape derivative of functions involved in the definition of shape functionals, and
we point out an important difference between the definition of shape derivative for
domain functions and for boundary functions, which has led to some confusion in
previous works. In Section 5 we explore some properties of shape differentiation of
(shape) functions, such as the relationship between the shape derivative of domain
functions and the classical derivative operators. Also we obtain the boundary shape
derivative of the normal and the mean curvature.

In Section 7 we look into the relationship between the shape derivative of bound-
ary functions and the tangential derivative operators, obtaining the main results
of this article.

We end with Sections 8 and 9 where we apply the newly obtained results to find
the shape derivatives of the Gauss curvature, the geometric invariants and introduce
a quasi-Newton method in the language of shape derivatives whose formula is then
computed for the Area and the Willmore functionals.

2. Preliminaries

2.1. General concepts. Our notation follows closely that of [8, Ch. 2, Sec. 3]. A
domain is an open and bounded subset Ω of RN , and a boundary is the boundary
of some domain, i.e., Γ = ∂Ω. An N − 1 dimensional surface in RN is a reasonable
subset of a boundary in RN . We will mainly consider Γ = ∂Ω as a surface and we
will call it either surface or boundary, unless we clarify otherwise. If a boundary Γ is
smooth, we denote the normal vector field by n and assume that it points outward
of Ω. The principal curvatures, denoted by κ1, . . . , κN−1, are the eigenvalues of
the second fundamental form of Γ, which are all real. The mean curvature κ and
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Gaussian curvature κg are

κ =
N−1∑
i=1

κi and κg =
N−1∏
i=1

κi. (2.1)

These quantities can also be expressed in terms of the tangential derivatives of the
normal; see Subection 2.3 for N = 3 and Section 8 for any dimension, where we
introduce the geometric invariants of a surface, following Definition 3.46 of [21].

Given a Euclidean space V of finite dimension, a tensor S is an element of the
set Lin(V) of linear operators from V into itself. The tensor product of two vectors
u and v is the tensor u ⊗ v which satisfies (u ⊗ v)w = (v ·w)u. The trace of a
tensor S is tr(S) =

∑
i Sei · ei, with {ei} any orthonormal basis of V. The trace

of a tensor u⊗ v is tr(u⊗ v) = u · v.
The scalar product of tensors S and T is given by S : T = tr(STT ), where ST

is the transpose of S, which satisfies Su · v = u · STv, and the tensor norm is
|S| =

√
S : S. Given a basis of V, S can be represented by a square matrix Sij . We

mainly consider V = RN with the canonical basis. We summarize some of their
properties in the following lemma [14, Ch. I]:

Lemma 2.1 (Tensor Properties). For vectors u, v, a, b ∈ V, and tensors S, T ,
P ∈ Lin(V), we have:

• S(u⊗ v) = Su⊗ v and (u⊗ v)S = u⊗ STv,
• I : S = tr(S), where I is the identity tensor,
• ST : P = S : PTT = T : STP ,
• S : u⊗ v = u · Sv,
• (a⊗ b) : (u⊗ v) = (a · u)(b · v),
• S : T = S : TT = 1

2S : (T + TT ) if S is symmetric.

2.2. The oriented distance function. The oriented distance function is a very
useful tool for the study of geometric properties and smoothness of the boundary
of a domain Ω. We see in Section 2.3 that it also provides a framework to deal
with the tangential derivatives of functions defined on surfaces.

For a given domain Ω ⊂ RN with boundary Γ, the oriented distance function
b = b(Ω) : RN → R is given by b(x) = d(Ω)(x) − d(RN \ Ω)(x), where d(Ω)(x) =
infy∈Ω |y−x|. It is proved in [8, Sec. 7.8] that the smoothness of b in a neighborhood
of Γ is equivalent to the local smoothness of Γ, and moreover, its gradient∇b and its
Hessian matrix D2b coincide, respectively, with the outward unit normal n and the
second fundamental form of the surface Γ when restricted to Γ. Furthermore, if Ω
is a C2 domain with compact boundary Γ, then there exists a tubular neighborhood
Sh(Γ) such that b ∈ C2(Sh(Γ)), and Γ is a C2-manifold of dimension N−1 [8, Ch. 9,
p. 492]. Therefore, ∇b is a C1 extension for the normal n which satisfies

|∇b|2 ≡ 1 in Sh(Γ). (2.2)

From this eikonal equation we obtain some useful identities. First of all, (2.2)
readily implies

D2b∇b ≡ 0. (2.3)
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Also, if Γ is C3, we can differentiate again to obtain

div(D2b) · ∇b = −|D2b|2, (2.4)

where we have used that div(STv) = S : ∇v + v · divS for S and v tensor and
vector valued differentiable functions, respectively [14, p. 30]. The divergence divS
of a tensor valued function is a vector which satisfies divS · e = div(STe) for any
vector e.

Applying the well known identity [14, p. 32]

div(DvT ) = ∇(div v) (2.5)

to v = ∇b, we can write (2.4) as follows:

∇∆b · ∇b = −|D2b|2. (2.6)

Since n = ∇b|Γ, we can obtain from b additional geometric information about Γ.
Indeed, the N eigenvalues of D2b|Γ are the principal curvatures κ1, κ2, . . . , κN−1
of Γ and zero [8, Ch. 9, p. 500]. The mean curvature of Γ, given by (2.1), can also
be obtained as κ = trD2b = ∆b (on Γ). Also, |D2b|2 = tr(D2b)2 =

∑
κ2
i , the

sum of the square of the principal curvatures, so that the Gaussian curvature is
κg = 1

2
[
(∆b)2 − |D2b|2

]
(for N = 3); notice that the right-hand side of this last

identity makes sense in Sh(Γ) whereas the left-hand side is defined only on Γ, so
that the equality holds on Γ. Moreover, from (2.6) and denoting ∂n := n · ∇, we
obtain that

∂n∆b = −
∑

κ2
i on Γ. (2.7)

The projection p = pΓ of a point x ∈ RN onto Γ is p(x) = arg minz∈Γ |z− x|. In
the tubular neighborhood Sh(Γ) it can be written in terms of the oriented distance
function as follows [8, Ch. 9, p. 492]:

p(x) = x− b(x)∇b(x). (2.8)

Note that p ∈ Ck−1(Sh(Γ)) if Γ ∈ Ck, k ≥ 1. For any x ∈ Sh(Γ), the orthogonal
projection operator P (x) = PΓ(x) from RN onto the tangent plane Tp(x)(Γ) is given
by P (x) = I −∇b(x)⊗∇b(x). Note that the tensor P (x) is symmetric and

P = I − n⊗ n on Γ. (2.9)

The Jacobian of the projection vector field p(x) is given, for Γ ∈ C2, by

Dp(x) = P (x)− b(x)D2b(x), x ∈ Sh(Γ), (2.10)

and satisfies Dp|Γ = P because b = 0 on Γ.

2.3. Elements of tangential calculus. We introduce some basic elements of
differential calculus on a surface. We follow the approach of [8, Ch. 9, Sec. 5]
that avoids local bases and coordinates by using intrinsic tangential derivatives.
Other reference books are [13] and [16]. For a parametric approach in local coor-
dinates, see [30], [7] and [5]. All proofs can be found in the cited books, except for
Lemma 2.6, which is proved below. In what follows Γ denotes a sub-manifold of
∂Ω with the same regularity as Ω.
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Definition 2.2 (Tangential derivatives). Assume that Γ ⊂ ∂Ω, for a domain Ω
with a C2 boundary and a normal vector field n. For a scalar field f ∈ C1(Γ) and
a vector field w ∈ C1(Γ,RN ) the tangential derivative operators are defined as

∇Γf := ∇F |Γ − ∂nF n,

DΓw := DW |Γ −DW |Γn⊗ n,

divΓ w := divW |Γ −DW |Γn · n,

where F and W are C1-extensions to a neighborhood of Γ of the functions f and
w, respectively. If Γ ∈ C2 and f ∈ C2(Γ), the second order tangential derivative of
f is given by D2

Γf = DΓ(∇Γf), which is not a symmetric tensor, and the Laplace–
Beltrami operator (or tangential Laplacian) is given by ∆Γf = divΓ∇Γf . The
tangential divergence of a tensor valued function S is defined to satisfy divΓ S ·e =
divΓ(STe), for any vector e. In particular, (divΓ S)i = divΓ(Si,·), if S is a matrix.
For a vector valued function w, we define ∆Γw = divΓDΓw in order to satisfy
(∆Γw)i = ∆Γwi.

As commented in [27, p. 85], tangential derivatives can also be defined for func-
tions in Sobolev spaces, considering weak derivatives.

Note that ∇Γf · n = 0 and DΓwn = 0, and using the orthogonal projection
operator P given by (2.9), we can write the formulas in Definition 2.2 as

∇Γf = (P ∇F )|Γ, DΓw = (DW P )|Γ, divΓ w = (P : DW )|Γ.

As it was proved in [8] these definitions are intrinsic, that is, they do not depend
on the chosen extensions of f and w outside Γ. Among all extensions of f , there
is one that simplifies the calculation of ∇Γf . That extension is f ◦ p, where p is
the projection given by (2.8), and we call it the canonical extension. The following
properties of the canonical extensions are proved in [8, Ch. 9, Sec. 5].

Lemma 2.3 (Canonical extension). For Γ, f and w satisfying the assumptions of
Definition 2.2, consider F = f ◦ p, and W = w ◦ p, the canonical extensions of f
and w, respectively, where p is the projection given by (2.8). Then, in a tubular
neighborhood Sh(Γ) where b = b(Ω) ∈ C2(Sh(Γ)), we have

∇(f ◦ p) = [I − bD2b]∇Γf ◦ p, D(w ◦ p) = DΓw ◦ p [I − bD2b],
div(w ◦ p) = [I − bD2b] : DΓw ◦ p = divΓ w ◦ p− bD2b : DΓw ◦ p.

In particular,
∇Γf = ∇(f ◦ p)|Γ, DΓw = D(w ◦ p)|Γ,

divΓ w = div(w ◦ p)|Γ, ∆Γf = ∆(f ◦ p)|Γ.
(2.11)

The product rule formulas for classical derivatives [14, p. 30] also hold for tan-
gential differentiation. In the following lemma we gather those which will be needed
later in this article. For a proof see, for instance, [16, Ch. 5.4.3], or note that they
can be obtained from their classical counterparts using the expressions (2.11) given
by canonical extensions.
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Lemma 2.4 (Product rule for tangential derivatives). Let α, u, v and S be smooth
fields in Γ, with α scalar valued, u and v vector valued, and S tensor valued. Then

(i) DΓ(ϕu) = u⊗∇Γϕ+ ϕDΓu,
(ii) divΓ(ϕu) = ϕdivΓ u + u · ∇Γϕ,

(iii) ∇Γ(u · v) = DΓu
Tv +DΓv

Tu,

(iv) divΓ(u⊗ v) = udivΓ v +DΓuv,
(v) divΓ(STu) = S : DΓu+u · divΓ S,

(vi) divΓ(αS) = S∇Γα+ α divΓ S.

It is very useful to write the geometric invariants of Γ in terms of tangential
derivatives of the normal vector field n. From [8, Ch. 7, Theorem 8.5], we know
that n ◦ p = ∇b in Sh(Γ), that is, ∇b is the canonical extension of the normal n.
Then (2.11) implies DΓn = D(n◦p)|Γ = D2b|Γ and

∑
κ2
i = |DΓn|2, and the mean

and Gaussian curvatures can be written as κ = divΓ n (in any dimension N) and
κg = 1

2
(
κ2 − |DΓn|2

)
(for N = 3), respectively. In particular, as we will see in

Section 8, any geometric invariant can be written in terms of Ip := tr(DΓn
p), for

p = 1, . . . , N − 1.
The Divergence Theorem for surfaces, whose proof can be found in [8, Ch. 9.5.5]

(the first part) and in [30, Prop. 15] (the second), is the following.

Lemma 2.5 (Tangential Divergence Theorem). If Γ = ∂Ω is C2 and w ∈ C1(Γ,RN ),
then ∫

Γ
divΓ w =

∫
Γ
κw · n, (2.12)

where κ is the mean curvature of Γ and n its normal field. If N = 3 and Γ is a
smooth, oriented surface with boundary ∂Γ, then∫

Γ
divΓ w =

∫
Γ
κw · n +

∫
∂Γ

w · ns, (2.13)

where ns is the outward normal to ∂Γ which is also orthogonal to n.

The following lemma extends formula (2.5) for tangential derivatives. We must
remark that we could not find it anywhere in the literature.

Lemma 2.6. If Γ is C3 and w ∈ C2(Γ,RN ), then ∇Γ divΓ w = P divΓDΓw
T −

DΓnDΓw
Tn, where P = I − n⊗ n is the orthogonal projection operator given by

(2.9).

Proof. We resort to (2.11) to write tangential derivatives using the projection func-
tion p:

∇Γ divΓ w = ∇(divΓ w ◦ p)|Γ = ∇(div(w ◦ p) ◦ p)|Γ.
Then we use successively the chain rule, the derivative of p given by (2.10) and the
property of classical derivatives (2.5):

∇Γ divΓ w = DpT |Γ∇ div(w ◦ p)|Γ = P ∇div(w ◦ p)|Γ = P div(D(w ◦ p)T )|Γ.
(2.14)

Note that Lemma 2.3 implies D(w ◦ p)T = DΓw
T ◦ p − bD2b (DΓw

T ◦ p), and
the product rule div(αS) = α divS + S∇α implies

div(D(w ◦ p)T ) = div(DΓw
T ◦ p)− b div(D2bDΓw

T ◦ p)−D2bDΓw
T ◦ p∇b.
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Restricting to Γ we have div(D(w ◦ p)T )|Γ = divΓ(DΓw
T ) −DΓnDΓw

Tn, which
implies the assertion from (2.14), since PDΓn = DΓn. �

Applying Lemma 2.6 to w = n we obtain for κ = divΓ n

∇Γκ = ∇Γ divΓ n = P divΓDΓn−DΓnDΓnn = P∆Γn. (2.15)

From (2.11), ∆Γn = ∆(n◦p)|Γ = div(D2b)|Γ, and (2.4) implies ∆Γn·n = −|DΓn|2,
which yields

∇Γκ = ∆Γn + |DΓn|2n,

for a C3-surface Γ.

3. Shape functionals and derivatives

A shape functional is a function J : A → R defined on a set A = A(D) of
admissible subsets of a hold-all domain D ⊂ RN . Those subsets can be domains,
boundaries or surfaces.

Let the elements of A be smooth domains and for each Ω ∈ A, let y(Ω) : Ω→ R
be a function in W (Ω), some Sobolev space over Ω. Then the shape functional
given by J(Ω) =

∫
Ω y(Ω) is called a domain functional. For example the volume

functional is obtained with y(Ω) ≡ 1, but the domain function y(Ω) could be more
involved, such as the solution of a PDE in Ω.

Our main interest in this work are the boundary functionals given by J(Γ) =∫
Γ z(Γ), where z is a function that to each surface Γ in a family of admissible

surfaces A it assigns a function z(Γ) ∈W (Γ), with W (Γ) some Sobolev space on Γ.
The area functional corresponds to z(Γ) ≡ 1, but more interesting functionals are
obtained when the boundary function z(Γ) depends on quantities such as the mean
curvature κ of Γ or more generally on the geometric invariants Ip(Γ) = tr(DΓn

p),
with p a positive integer, or any real function which involves the normal field n or
higher order tangential derivatives on Γ.

3.1. The velocity method. On a hold-all domain D (not necessarily bounded), a
velocity field is a vector field v ∈ V k(D) := Ckc (D,RN ), the set of all Ck vector value
functions f such that Dαf has compact support in D, for 0 ≤ |α| ≤ k; hereafter
we assume that k is a fixed positive integer. A velocity field v induces a trajectory
x = xv ∈ C1([0, ε], V k(D)), through the system of ODE [27, Theorem 2.16]

ẋ(t) = v ◦ x(t), t ∈ [0, ε], x(0) = id, (3.1)

where we use a dot to denote derivative with respect to the time variable t. More
precisely, for every p ∈ D, x(t)(p), t ∈ [0, ε] satisfies ẋ(t)(p) = v

(
(x(t)(p)

)
and

x(0)(p) = p.

3.2. Shape differentiation. Given a velocity field v and a set S ⊂ D, let St =
x(t)(S) be its perturbation by v at time t, where x(t) is the trajectory given by
(3.1). For a shape functional J : A → R, where A is a family of admissible

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



THE SHAPE DERIVATIVE OF THE GAUSS CURVATURE 319

sets S (domains or boundaries), and a velocity field v ∈ V k(D), the Eulerian
semi-derivative of J at S in the direction v is given by

dJ(S;v) = lim
t↘0

J(St)− J(S)
t

, (3.2)

whenever the limit exists.
If the functional J is shape differentiable with respect to V k(D) (see [8] or [27]

for the details on the definition) then the functional v → dJ(S;v) is linear and
continuous in V k(D).

Definition 3.1 (Shape derivative). If J is shape differentiable, then dJ is called its
shape derivative, and dJ(S;v) is the shape derivative of J at S in the direction v.

Remark 3.2 (Taylor formula). Given v ∈ V k(D) we define S + v to be St for
t = 1 provided it is admissible. Then if J is shape differentiable (see [8, Ch. 9]) it
follows that J(S + v) = J(S) + dJ(S;v) + o(|v|).

3.3. The structure theorem. One of the main results about shape derivatives
is the (Hadamard–Zolesio) Structure Theorem (Theorem 3.6 of [8, Ch. 9]). It
establishes that, if a shape functional J is shape differentiable at the domain Ω
with boundary Γ, then the only relevant part of the velocity field v in dJ(Ω,v) is
vn := v ·n|Γ. In other words, if v ·n = 0 in Γ, then dJ(Ω,v) = 0. More precisely:

Theorem 3.3 (Structure Theorem). Let Ω ∈ A be a domain with Ck+1-boundary
Γ, k ≥ 0 integer, and let J : A → R be a shape functional which is shape differen-
tiable at Ω with respect to V k(D). Then there exists a functional g(Γ) ∈

(
Ck(Γ)

)′
(called the shape gradient) such that dJ(Ω;v) = 〈g(Γ), vn〉Ck(Γ), where vn = v · n.
Moreover, if the gradient g(Γ) ∈ L1(Γ), then dJ(Ω,v) =

∫
Γ g(Γ) vn.

4. Shape differentiation of functions

Having defined the shape derivatives of functionals, we now turn to the definition
of shape derivatives of functions. We consider, on the one hand, domain functions
y = y(Ω) which assign a function y(Ω) : Ω → R to each domain Ω in a class of
admissible domains, and on the other hand, boundary functions z = z(Γ) which
assign a function z(Γ) : Γ→ R to each surface Γ in a set of admissible surfaces.

We start with the first kind, and to motivate the definition, consider a shape
functional of the form J(Ω) =

∫
Ω y(Ω)dΩ, where y(Ω) ∈ W r,p(Ω) (1 ≤ r ≤ k)

for any admissible Ck domain Ω, and a velocity field v ∈ V k(D), k ≥ 1, with
trajectories x ∈ C1([0, ε], V k(D)) satisfying (3.1). Note that the Eulerian semi-
derivative (3.2) can be written as dJ(Ω;v) = d

dt+ J(Ωt)|t=0, where Ωt = x(t)(Ω)
and Ω0 = Ω. Then,

J(Ωt) =
∫

Ωt

y(Ωt) =
∫

Ω
[y(Ωt) ◦ x(t)] γ(t), (4.1)

where γ(t) := detDx(t), with Dx(t) denoting derivative of x(t) with respect to the
spatial variable. From Theorem 4.1 of [8, Ch. 9] we know that γ ∈ C1([0, ε], V 1(D)),
and its (time) derivative at t = 0 is given by γ̇(0) := dγ(t)

dt |t=0 = div v.
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If we suppose that the function t→ y(Ωt) ◦ x(t) from [0, ε] to W r,p(Ω) is differ-
entiable at t = 0 in the sense of L1(Ω), and denote its time derivative at t = 0 with
ẏ(Ω,v), then we can differentiate inside the integral (4.1) to obtain

dJ(Ω;v) =
∫

Ω
ẏ(Ω,v)γ(0) + y(Ω)γ̇(0)

=
∫

Ω
[ẏ(Ω,v)−∇y(Ω) · v] + div (y(Ω)v) .

(4.2)

As a particular case, suppose that y(Ω) is independent of the geometry, namely:
y(Ω) = φ|Ω, with φ ∈ W 1,1(D). The chain rule yields ẏ(Ω,v) − ∇y(Ω) · v = 0 in
Ω, which suggests the following definition [27, Sec. 2.30].

Definition 4.1 (Shape derivative of a domain function). Consider a velocity vector
field v ∈ V k(D), with k ≥ 1, an admissible domain Ω ⊂ D of class Ck, and a
function y(Ω) ∈W r,p(Ω), with r ∈ [1, k]∩Z. Suppose there exists y(Ωt) ∈W r,p(Ωt)
for all 0 < t < ε, where Ωt = x(t)(Ω) is the perturbation of Ω by the trajectory
x(t) induced by v. If the limit ẏ(Ω,v) := d

dt+ [y(Ωt) ◦ x(t)]t=0 exists in W r−1,p(Ω),
then the (domain) shape derivative of y(Ω) at Ω in the direction v is given by

y′(Ω,v) := ẏ(Ω,v)−∇y(Ω) · v.
We can replace the space W r,p(Ω) by Cr(Ω), 1 ≤ r ≤ k, obtaining y′(Ω,v) ∈
Cr−1(Ω).

With this definition, the existence of y′(Ω,v) ∈W r−1,p(Ω) gives us

dJ(Ω;v) =
∫

Ω
y′(Ω,v) + div (y(Ω)v) .

If ∂Ω ∈ C1, the Divergence Theorem leads to

dJ(Ω;v) =
∫

Ω
y′(Ω,v) +

∫
∂Ω
y(Ω) vn, with vn = v · n.

In the particular case of y(Ω) = φ|Ω for φ ∈W 1,1(D), we have y′(Ω,v) = 0.

Remark 4.2 (Extension for vector and tensor valued functions). For a general
finite dimensional space V, the shape derivative of a vector valued function w(Ω) ∈
W r,p(Ω,V) is given component-wise by the shape derivative of each component
of w(Ω) on some basis, whenever they exist. In particular, if V = RN , then
w′(Ω,v) ∈W r−1,p(Ω,RN ) is given by

w′(Ω,v) = ẇ(Ω,v)−Dwv. (4.3)
For a tensor valued function A(Ω) : Ω → Lin(V), the shape derivative A′(Ω,v) is
the tensor valued function which satisfies

A′(Ω,v)e = (Ae)′(Ω,v) for any e ∈ V.

Remark 4.3 (Material derivatives). For S domain or boundary, the limit

ẏ(S,v) := d

dt+
[y(St) ◦ x(t)]t=0
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is called material derivative of y at S in the direction v (see [27] for a proper
definition).

Consider now a boundary integral functional of the form J(Γ) =
∫

Γ z(Γ) where
z(Γ) ∈ W r,p(Γ) for each admissible Ck-boundary Γ, 1 ≤ r ≤ k. Omitting the
details, that can be found in [27, Sec. 2.33], we obtain a formula for dJ(Γ;v)
analogous to (4.2):

dJ(Γ;v) =
∫

Γ
[ż(Γ,v)−∇Γz(Γ) · v] + divΓ(z(Γ)v),

where we assume that the time derivative ż(Γ,v) := d
dt [z(Γt) ◦ x(t)]t=0 exists in

L1(Γ). By analogy with the previous case of domain functions, we arrive at the
following definition.

Definition 4.4 (Shape derivative of a boundary function). Let z be a boundary
function which satisfies z(Γ) ∈ W r,p(Γ) for all Γ in an admissible set A of bound-
aries of class Ck+1, with 1 ≤ r ≤ k. If, for a velocity field v ∈ V k(D), Γt ∈ A for
all small t > 0 and the limit ż(Γ,v) := d

dt+ [z(Γt) ◦ x(t)]t=0 exists in W r−1,p(Γ),
then the (boundary) shape derivative of z(Γ) at Γ in the direction v is given by

z′(Γ,v) = ż(Γ,v)−∇Γz(Γ) · v,
and it belongs toW r−1,p(Γ). We can replace the spaceW r,p(Γ) by Cr(Γ), 1 ≤ r ≤ k,
obtaining z′(Γ,v) ∈ Cr−1(Γ). This definition extends for vector and tensor valued
functions analogously to Remark 4.2 for domain functions.

With this definition we obtain

dJ(Γ;v) =
∫

Γ
z′(Γ,v) + divΓ(z(Γ)v) =

∫
Γ
z′(Γ,v) + κz(Γ)vn, (4.4)

where the last equality arises, for Γ ∈ C2, from the tangential divergence formula
(2.12) of Lemma 2.5.

It is worth noticing that in the particular case of z(Γ) = φ|Γ for φ ∈W r+1,p(D)
(which gives z(Γ) ∈ W r,p(Γ)), it is not true in general that z′(Γ;v) = 0. Instead,
z′(Γ,v) = ∂nφ vn, with vn = v · n.

Remark 4.5 (Boundary conditions on Γ). For a surface Γ ( ∂Ω, we can consider
the space of velocity fields V kΓ (D) = V k(D)

⋂
{v : v|∂Γ = 0}, in order to obtain

(4.4) by applying formula (2.13) of Lemma 2.5.

4.1. Warning: shape derivatives are different for domain and boundary
functions. If a boundary function z(Γ) is the restriction to Γ of a domain function
y(Ω), it is not true, in general, that its shape derivative z′(Γ,v) is y′(Ω,v)|Γ. Even
though practitioners know this, they (we) sometimes get confused.

In order to clarify this issue, let us first consider a function Φ ∈ C2
c (D) and,

for any domain Ω ⊂ D with boundary Γ, define y(Ω) := Φ|Ω and z(Γ) := Φ|Γ.
It is easy to check, for any velocity field v, that ẏ(Ω,v) = ∇Φ · v in Ω, and also
ż(Γ,v) = ∇Φ · v on Γ (the material derivatives do coincide). Then, Definitions 4.1
and 4.4 yield y′(Ω,v) = 0 and z′(Γ,v) = (∇Φ|Γ −∇ΓΦ) · v = ∂nΦ vn, respectively,
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with vn = v · n. That is, the shape derivative of a domain function y(Ω) and a
boundary function z(Γ) are different, even if they are restrictions of the same global
function Φ. The relationship that holds in general is summarized in the following
lemma, whose proof is immediate from Definitions 4.1 and 4.4.

Lemma 4.6. Consider a domain Ω with C2-boundary Γ, and functions defined on
Γ: z(Γ) and z(Γ), scalar and vector valued, respectively, such that z(Γ) = y(Ω)|Γ
and z(Γ) = y(Ω)|Γ, for some y(Ω) ∈ C2(Ω) and y(Ω) ∈ C2(Ω,RN ). If y(Ω) and
y(Ω) are (domain) shape differentiable at Ω in the direction v ∈ V k(D), then z(Γ)
and z(Γ) are (boundary) shape differentiable at Γ in the direction v, and

z′(Γ,v) = y′(Ω,v)|Γ + ∂ny vn, z′(Γ,v) = y′(Ω,v)|Γ +Dy|Γn vn,
with ∂n = n · ∇ and vn = v · n.

The identities in the previous lemma hold for any extension y(Ω) of z(Γ). In
the particular case when y(Ω) coincides with the canonical extension of z(Γ) in a
tubular neighborhood Sh(Γ) (see Lemma 2.3) we get z′(Γ,v) = y′(Ω,v)|Γ because
∂ny(Ω)|Γ = 0. The existence of such an extension y(Ω) from z(Γ) is justified (for
low regularity) in the following lemma.

Lemma 4.7 (Canonical extension). If 1 ≤ k ≤ 2, Γ = ∂Ω ∈ Ck+1 and z(Γ) ∈
W k,p(Γ), 1 ≤ p ≤ ∞, then there exists y(Ω) ∈ W k,p(Ω) such that y(Ω)|Γ = z(Γ)
a.e. and ∂ny(Ω)|Γ = 0.

Proof. Since Γ ∈ Ck+1, the orthogonal projection p is a Ck-function in Sh(Γ) and
then the canonical extension f = z(Γ) ◦ p ∈ W k,p(Sh(Γ)). Then we obtain from f
an extension F ∈ W k,p(RN ) (see [12, Ch. 5.4]) and finally we define y(Ω) := F |Ω,
which satisfies the desired properties. �

The difference between the definitions of shape derivatives for domain and
boundary functions, which coincide when using the canonical extension, has led
to confusion in the literature. For instance, in Lemma 6.2 we show that the
shape derivative of the mean curvature κ(Γ), which is a boundary function, is
κ′(Γ,v) = −∆Γvn − |DΓn|2vn. However, the expression κ′(Γ,v) = −∆Γvn can
be found in [9] and [30], where they obtained not the (boundary) shape deriva-
tive of κ(Γ) but the domain shape derivative of its extension ∆b, which satisfies
(∆b)′(Ω,v)|Γ = −∆Γvn, which can be found in [17, p. 451]. Note also that ∆b is not
the canonical extension of κ, as can be deduced from (2.7). On the other hand, ∇b is
the canonical extension of the normal n, giving n′(Γ,v) = (∇b)′(Ω,v)|Γ = −∇Γvn
(cf. Section 6).

In this paper, the type of shape derivative we use is established from the kind
of function considered (domain or boundary).

5. Properties of shape derivatives of functions

The following lemma establishes the dependence of y′(Ω,v) and z′(Γ,v) on v
only through vn = v · n restricted to Γ. This was expected by the Structure
Theorem 3.3 applied to the integral functionals

∫
Ω y(Ω) and

∫
Γ z(Γ), respectively.
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Lemma 5.1 ([27, Propositions 2.86, 2.87 and 2.90]). Consider an admissible set
S ⊂ D (domain or boundary) such that S is Ck+1, k ≥ 1, a velocity field v ∈ V k(D)
and a shape differentiable function w(S) ∈ W r,p(S), 1 ≤ r ≤ k, 1 ≤ p < ∞.
Suppose that v → w′(S,v) is linear and continuous from V k(D) into W r−1,p(S).
If the velocity fields v1 and v2 are such that v1 · n = v2 · n on Γ ( Γ = ∂S for S
domain, Γ = S for S boundary), then w′(S,V1) = w′(S,V2).

The following lemma states that shape derivatives commute with linear trans-
formations, both for domain and boundary functions. The proof is straightforward
from the definitions.

Lemma 5.2. Let F ∈ Lin(V1,V2), with V1 and V2 two finite dimensional vector
or tensor spaces, and let w(S) ∈ Ck(S,V1) for any admissible domain or boundary
S ⊂ D which is Ck+1, k ≥ 1. If w(S) is shape differentiable at S in the direction
v, then F ◦ w(S) ∈ Ck(S,V2) is also shape differentiable at S in the direction v,
and its shape derivative is given by

(F ◦ w)′ (S,v) = F ◦ w′(S,v).

The next lemma states a chain rule combining usual derivatives with shape
derivatives.

Lemma 5.3 (Chain rule). Consider two finite dimensional vector or tensor spaces
V1 and V2, a function F ∈ C1(V1,V2) and a domain (or boundary) function y(S) ∈
C1(S,V1), where S is an admissible domain (boundary) in D ⊂ RN with a C2

boundary. If y(S) is shape differentiable at S in the direction v, then the function
F ◦ y(S) ∈ C1(S,V2) is also shape differentiable at S in the direction v, and its
shape derivative is given by

(F ◦ y)′ (S,v) = DF ◦ y(S) [y′(S,v)]. (5.1)

Proof. First suppose that S is a domain, then Dy(x) ∈ Lin(RN ,V1) for any x ∈ S.
Since F is differentiable, for every X ∈ V1 there exists a linear operator DF (X) ∈
Lin(V1,V2) such that

lim
‖u‖V1→0

‖F (X + u)− F (X)−DF (X)[u]‖V2

‖u‖V1

= 0,

whereDF (X)[u] denotes the application of the linear operatorDF (X) ∈ Lin(V1,V2)
to u ∈ V1. With this notation, the chain rule applied to F ◦ y reads D(F ◦ y)[v] =
DF ◦ y[Dy[v]] (∀v ∈ RN ), so that from (4.3),
(F ◦ y)′(S,v) = (F ◦ y)·(S,v)−D(F ◦ y)[v] = (F ◦ y)·(S,v)−DF ◦ y[Dy[v]] in S,

with (F ◦ y)·(S,v) = d
dt+ [F ◦ y(St) ◦ x(t)]t=0 denoting the material derivative of

F ◦ y. Then we only need to prove the chain rule for the material derivative of
y(S) ∈ C1(S,V1) in the direction v, i.e.,

(F ◦ y)·(S,v) = DF ◦ y[ẏ(S,v)],
which is straightforward from the usual chain rule applied to the mapping t →
F ◦ (y(St) ◦ x(t)). The remaining details are left to the reader.
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Suppose now that S = Γ = ∂Ω and y(Γ) is a boundary function, and consider
the canonical extension ŷ(Ω) that satisfies y′(Γ,v) = ŷ′(Ω,v)|Γ. Then F ◦ ŷ is the
canonical extension of F ◦ y and (5.1) applied to the domain function ŷ(Ω) yields
the desired result for y(Γ). �

Remark 5.4 (Product rule for shape derivatives). The product rules for domain
shape derivatives follow directly from Definition 4.1.

The following lemma allows us to swap shape derivatives with classical deriva-
tives of domain functions. This is a known result, which we decided to include here
to make the article more self-contained. It is worth noting that this is not true for
boundary functions and tangential derivatives. This issue is discussed in Section 7,
where the main results of this article are presented.

Lemma 5.5 (Mixed shape and classical derivatives). The following results about
interchanging classical and shape derivatives hold:

(1) If y(Ω) ∈ C2(Ω) is shape differentiable at Ω in the direction v ∈ V k(D),
k ≥ 2, then ∇y(Ω) ∈ C1(Ω,RN ) is also shape differentiable at Ω and

(∇y)′(Ω,v) = ∇y′(Ω,v).

(2) If w(Ω) ∈ C2(Ω,RN ) is shape differentiable at Ω in the direction v ∈
V k(D), k ≥ 2, then Dw(Ω) ∈ C1(Ω,RN×N ) and divw(Ω) ∈ C1(Ω) is also
shape differentiable and

(Dw)′(Ω,v) = Dw′(Ω,v), (divw)′(Ω,v) = divw′(Ω,v).

(3) If y(Ω) ∈ C3(Ω) is shape differentiable at Ω in the direction v ∈ V k(D),
k ≥ 3, then ∆y(Ω) ∈ C1(Ω) is also shape differentiable at Ω and

(∆y)′(Ω,v) = ∆y′(Ω,v).

Proof. We will prove the first assertion. The other ones are analogous.
First note that

∇ (y(Ωt) ◦ x(t)) = Dx(t)T ∇y(Ωt) ◦ x(t) in Ω.

Differentiating with respect to t and evaluating at t = 0 we have
∂

∂t
∇ (y(Ωt) ◦ x(t)) |t=0 = ∂

∂t
Dx(t)T |t=0∇y(Ω) + ∇̇y(Ω,v), (5.2)

where we denote with ∇̇y(Ω,v) := d
dt+ [∇y(Ωt) ◦ x(t)]t=0 the material derivative of

∇y(Ω).
Since x ∈ C1([0, ε], V k(D)), k ≥ 1, and recalling that ẋ(0) = ∂

∂tx(t, ·)|t=0 = v,
we have that, uniformly,

lim
t↘0

Dα

(
x(t)− x(0)

t

)
= Dαv for any 0 ≤ |α| ≤ k,

so that
∂

∂t
Dx(t)|t=0 = Dv pointwise in D. (5.3)
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Analogously, the existence of the material derivative ẏ(Ω,v) in C1(Ω) implies
that, uniformly,

lim
t↘0

∂

∂Xi

(
y(Ωt) ◦ x(t)− y(Ω)

t

)
= ∂

∂Xi
ẏ(Ω,v) for 1 ≤ i ≤ N,

and then
∂

∂t
∇ (y(Ωt) ◦ x(t)) |t=0 = ∇ẏ(Ω,v) pointwise in Ω. (5.4)

Replacing (5.3) and (5.4) in (5.2), we obtain

∇ẏ(Ω,v) = DvT∇y(Ω) + ∇̇y(Ω,v).

By Definition 4.1 of shape derivative we have

∇y′(Ω,v) = ∇ẏ(Ω,v)−∇ (∇y(Ω) · v) = ∇ẏ(Ω,v)−DvT∇y(Ω)−D2y(Ω)Tv
= ∇̇y(Ω,v)−D2y(Ω)Tv = (∇y)′ (Ω,v),

where we have used that D2y(Ω)T is symmetric because y(Ω) ∈ C2(Ω). �

6. The shape derivative of b, n and κ

Although some of these results can be found in [8] and [17], we present here a
derivation for the sake of completeness. In the following, we consider a domain
Ω ⊂ D with a C2-boundary Γ and a velocity field v ∈ V 1(D). The next lemma
gives the connection to obtain the shape derivatives of the geometric quantities
from the shape derivative of the oriented distance function.

Lemma 6.1 ([17, Lemma 4]). Suppose that y(Ω) ∈ H 3
2 +ε(Ω) satisfies y(Ω)|Γ = 0

for all domains Ω ∈ A and that the shape derivative y′(Ω;v) exists in H
1
2 +ε(Ω) for

some ε > 0. Then, we have

y′(Ω,v)|Γ = −∂ny vn, with vn = v · n.

Proof. This lemma is proved in [17]. However, it can be more directly obtained if we
consider the boundary function z(Γ) := y(Ω)|Γ. In fact, by hypothesis, z(Γt) ≡ 0
for all small t ≥ 0. This gives us ż(Γ,v) = 0 and ∇Γz(Γ) = 0, so that z′(Γ,v) = 0.
The claim thus follows from Lemma 4.6. �

This lemma allows us to obtain the shape derivative of an extension to Ω of
the oriented distance function b = bΓ, and thus for ∇b and ∆b. Since b|Γ = 0,
Lemma 6.1 leads to

b′(Ω,v)|Γ = −vn, (6.1)
where we have used that ∂nb = ∇b ·∇b|Γ = 1. Note that this is the shape derivative
of the domain function b, but restricted to Γ.

Consider now the canonical extension n̂ ∈ C1(D) of n ∈ C1(Γ) given by n̂|Sh(Γ) =
∇b. Computing the shape derivative of n̂(Ω) · n̂(Ω) which equals 1 in Sh(Γ) we
obtain n̂′(Ω,v) · n(Ω) = 0 in Sh(Γ), so that, if x ∈ Γ, n̂′(Ω,v)(x) belongs to the
tangent plane Tx(Γ). Also, from Lemma 5.5, n̂′(Ω,v) = (∇b)′(Ω,v) = ∇ b′(Ω,v)
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in Sh(Γ), so that n̂′(Ω,v)|Γ = ∇Γb
′(Ω,v) = −∇Γvn from (6.1). We have thus

obtained
n̂′(Ω,v)|Γ = −∇Γvn, where n̂|Sh(Γ) = ∇b. (6.2)

Since n̂ is the canonical extension of the outward normal n = n(Γ), we conclude,
from Lemma 4.6 and the fact that Dn̂n̂ = D2b∇b = 0 from (2.3), the known result

n′(Γ,v) = −∇Γvn. (6.3)
Consider now Γ ∈ C3. To obtain the domain shape derivative of an extension of

∆b (restricted to the boundary Γ), we commute derivatives and use the definition
of tangential divergence (Definition 2.2) to obtain

(∆b)′(Ω,v)|Γ = div(∇b)′(Ω,v)|Γ = divΓ (n̂′(Ω,v)|Γ) +Dn̂′(Ω,v)|Γn · n.
Computing the shape derivative with respect to Ω of Dn̂n̂ = 0 we obtain

Dn̂′(Ω,v)n̂ · n̂ = −Dn̂n̂ · n̂′(Ω,v) = 0 in Sh(Γ)
and then (6.2) implies

(∆b)′(Ω,v)|Γ = −∆Γvn.

Since the mean curvature of Γ satisfies κ(Γ) = ∆b|Γ, by Lemma 4.6 we have
κ′(Γ,v) = (∆b)′(Ω,v)|Γ + (∇∆b ·∇b)|Γvn. The second term is equal to −|DΓn|2vn
due to (2.6), and the fact that DΓn = D2b|Γ. We have thus obtained the following
formula for the shape derivative of the mean curvature (boundary function).

Lemma 6.2 (Shape derivative of κ). If κ is the mean curvature of Γ, the boundary
of a C3 domain Ω, then κ is shape differentiable in Γ and

κ′(Γ,v) = −∆Γvn − |DΓn|2vn, (6.4)
where vn = v · n, |DΓn|2 = DΓn : DΓn = tr(DΓn

2) and ∆Γf = divΓ∇Γf is the
Laplace–Beltrami operator of f .

As a consistency check, note that, since κ = divΓ n, the same result about the
shape derivative of κ can be obtained without considering the extension ∆b, using
only Corollary 7.2 of the next section and formula (6.3) for n′(Γ,v).

7. Shape derivatives of tangential operators

We are now in position to present the main results of this paper, namely, formulas
for the shape derivatives of boundary functions that are tangential derivatives of
boundary functions. More precisely, we find the shape derivatives of boundary
functions of the form ∇Γz, DΓw, divΓ w and ∆Γz, when z(Γ) and w(Γ) are shape
differentiable boundary functions, scalar and vector valued, respectively. Examples
of important applications are presented in the two subsequent sections.

It is worth noting the difference with Lemma 5.5 where we established that stan-
dard differential operators commute with the shape derivative of domain functions.

Theorem 7.1 (Shape derivative of surface derivatives). For any admissible bound-
ary Γ = ∂Ω, where Ω is a C2 domain in D ⊂ RN , consider a real function
z(Γ) ∈ C2(Γ) such that there exists an extension y to Ω, i.e., z(Γ) = y(Ω)|Γ,

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



THE SHAPE DERIVATIVE OF THE GAUSS CURVATURE 327

which is shape differentiable at Ω in the direction v ∈ V 2(D). Then z(Γ) and ∇Γz
are shape differentiable at Γ in the direction v, and

(∇Γz)′ (Γ,v) = ∇Γz
′(Γ,v) + (n⊗∇Γvn − vnDΓn)∇Γz(Γ), (7.1)

where vn = v · n.

Proof. Let y = y(Ω) be an extension of z(Γ) to Ω, i.e., z(Γ) = y(Ω)|Γ; then by
definition

∇Γz(Γ) = ∇y|Γ − ∂nyn = (∇y − (∇y · ∇b)∇b) |Γ.
Then Φ(Ω) := ∇y − (∇y · ∇b)∇b is an extension to Ω of ∇Γz(Γ). Due to

Lemma 4.6 these shape derivatives satisfy
(∇Γz)′ (Γ,v) = Φ′(Ω,v)|Γ +DΦ(Ω)|Γn vn. (7.2)

We now compute the domain shape derivative of Φ(Ω). Using the product rule
we have
Φ′(Ω,v) = (∇y)′(Ω,v)− (∇y)′(Ω,v) · ∇b ∇b

−∇y · (∇b)′(Ω,v) ∇b−∇y · ∇b (∇b)′(Ω,v)
= (I −∇b⊗∇b)∇y′(Ω,v)−∇y · (∇b)′(Ω,v) ∇b−∇y · ∇b (∇b)′(Ω,v),

where we have used Lemma 5.5 to commute the shape derivative and the gradient
of y. Restricting to Γ, using the definition of tangential gradient and formula (6.2)
for (∇b)′(Ω,v)|Γ, we obtain

Φ′(Ω,v)|Γ = ∇Γy
′(Ω,v) + (n⊗∇Γvn)∇Γz(Γ) + ∂ny∇Γvn,

where we have used ∇y(Ω)|Γ · ∇Γvn n = ∇Γz(Γ) · ∇Γvn n = (n⊗∇Γvn)∇Γz(Γ).
From Lemma 4.6 y′(Ω,v)|Γ = z′(Γ,v)− ∂ny vn and the product rule for tangential
derivative yields

Φ′(Ω,v)|Γ = ∇Γz
′(Γ,v)−∇Γ(∂ny vn) + (n⊗∇Γvn)∇Γz(Γ) + ∂ny∇Γvn

= ∇Γz
′(Γ,v) + (n⊗∇Γvn)∇Γz(Γ)− vn∇Γ(∂ny).

Then, from (7.2), to complete the proof of (7.1) we need to show that
DΦ(Ω)|Γn−∇Γ(∂ny) = −DΓn∇Γz(Γ). (7.3)

Applying the product rule of classical derivatives to Φ(Ω) = ∇y− (∇y · ∇b)∇b,
we obtain, using n = ∇b|Γ,

DΦ(Ω)|Γn = D2y|Γn− (n⊗∇(∇y · ∇b)|Γ)n− ∂nyD2b∇b|Γ
= D2y|Γn− ∂n(∇y · ∇b)n,

because D2b∇b = 0. Besides,
∇Γ(∂ny) = ∇(∇y · ∇b)|Γ − ∂n(∇y · ∇b)n

= D2y|Γn−D2b∇y|Γ − ∂n(∇y · ∇b)n
= DΦ(Ω)|Γn−DΓn∇Γz(Γ),

where we have used that D2b∇y|Γ = DΓn∇Γy = DΓn∇Γz(Γ). From this equation
we obtain (7.3) and the assertion follows. �
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Corollary 7.2 (For vector fields). If the function w(Γ) ∈ C2(Γ,RN ) has an exten-
sion W (Ω) to Ω, with Γ = ∂Ω ∈ C2, and if W (Ω) is shape differentiable at Ω in
the direction v ∈ V 2(D), then w(Γ), DΓw and divΓ w are shape differentiable at
Γ in the direction v and

(DΓw)′(Γ,v) = DΓw
′(Γ,v) +DΓw(Γ)[∇Γvn ⊗ n− vnDΓn], (7.4)

(divΓ w)′(Γ,v) = divΓ w′(Γ,v) + [n⊗∇Γvn − vnDΓn] : DΓw(Γ), (7.5)

where S : T = tr(STT ) denotes the scalar product of tensors.

Proof. In order to obtain (7.4), note that DΓw
Tei = ∇Γwi, where wi = w ·ei, with

{e1, . . . , eN} being the canonical basis of RN . By definition, the shape derivative
of the tensor DΓw

T must satisfy

(DΓw
T )′(Γ,v)ei = (DΓw

Tei)′(Γ,v) = (∇Γwi)′(Γ,v).

Applying (7.1) to z(Γ) = wi = w · ei, we obtain

(DΓw
T )′(Γ,v)ei = (∇Γwi)′(Γ,v)

= ∇Γw
′
i(Γ,v) + [n⊗∇Γvn − vnDΓn]∇Γwi(Γ)

=
(
DΓw

′(Γ,v)T + [n⊗∇Γvn − vnDΓn]DΓw
T (Γ)

)
ei.

The linearity of the transpose operator and Lemma 5.2 yield the desired result.
Finally, we recall that (divΓ w)′(Γ,v) = tr(DΓw)′(Γ,v) and (a⊗b) : S = a ·Sb.

Therefore (7.4) implies

(divΓ w)′(Γ,v) = divΓ w′(Γ,v) +DΓw∇Γvn · n− vnDΓn : DΓw,

and (7.5) follows. �

As an immediate consequence of this corollary we can compute the shape deriv-
ative of the second fundamental form.

Corollary 7.3 (Shape derivative of the second fundamental form). For a C3 sur-
face Γ and a smooth velocity field v, the shape derivative of the tensor DΓn at Γ
in the direction v is given by

(DΓn)′(Γ,v) = −D2
Γvn +DΓn∇Γvn ⊗ n− vnDΓn

2. (7.6)

We end this section establishing the shape derivative of the Laplace–Beltrami
operator of a boundary function, which is more involved because it is of second
order.

Theorem 7.4 (Shape derivative of the surface Laplacian). If Γ = ∂Ω is a C3-
boundary contained in D, z = z(Γ) ∈ C3(Γ), and if there exists an extension y(Ω)
of z(Γ) which is shape differentiable at Ω in the direction v ∈ V 3(D), then z(Γ)
and ∆Γz := divΓ∇Γz are shape differentiable at Γ in the direction v, and the shape
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derivative of ∆Γz is given by
(∆Γz)′(Γ,v) = ∆Γz

′(Γ,v)− 2vnDΓn : D2
Γz

+ (κ∇Γvn − 2DΓn∇Γvn − vn∇Γκ) · ∇Γz

= ∆Γz
′(Γ,v)− vn

(
2DΓn : D2

Γz +∇Γκ · ∇Γz
)

+∇Γvn · (κ∇Γz − 2DΓn∇Γz) .

Proof. In order to simplify the calculation, we denote M = n ⊗ ∇Γvn − vnDΓn.
Using successively the formulas for the shape derivative of a tangential divergence
(Corollary 7.2) and for a tangential gradient (Theorem 7.1), we have

(∆Γz)′(Γ,v) = (divΓ∇Γz)′(Γ,v)
= divΓ((∇Γz)′(Γ,v)) +M : DΓ∇Γz

= divΓ[∇Γz
′(Γ,v) +M∇Γz] +M : D2

Γz

= ∆Γz
′(Γ,v) + divΓ(M∇Γz) +M : D2

Γz.

Using the product rule (v) of Lemma 2.4 we obtain

(∆Γz)′(Γ,v) = ∆Γz
′(Γ,v) +MT : D2

Γz + divΓM
T · ∇Γz +M : D2

Γz

= ∆Γz
′(Γ,v) + (M +MT ) : D2

Γz + divΓM
T · ∇Γz.

(7.7)

Since DΓn
T = DΓn, the second term in the right-hand side reads

M +MT = n⊗∇Γvn +∇Γvn ⊗ n− 2vnDΓn.

Using the tensor property (a⊗ b) : S = a · Sb and that D2
Γzn = 0, we obtain

(M +MT ) : D2
Γz = n ·D2

Γz∇Γvn − 2vnDΓn : D2
Γz.

Observe that differentiating n · ∇Γz = 0 leads to D2
Γz
Tn = −DΓn∇Γz, which

implies n ·D2
Γz∇Γvn = −DΓn∇Γvn · ∇Γz. Then

(M +MT ) : D2
Γz = −DΓn∇Γvn · ∇Γz − 2vnDΓn : D2

Γz. (7.8)
The last term in the second line of (7.7) contains divΓM

T , which can be com-
puted with the product rules of Lemma 2.4 to obtain

divΓM
T = divΓ(∇Γvn ⊗ n)− divΓ(vnDΓn)

= ∇Γvn · divΓ n +DΓ∇Γvnn−DΓn∇Γvn − vn divΓ(DΓn)
= κ∇Γvn −DΓn∇Γvn − vn∆Γn,

where we have used that κ = divΓ n and DΓ∇Γvnn = D2
Γvnn = 0. Since ∆Γn ·

∇Γz = (P∆Γn) · ∇Γz, where P is the orthogonal projection to the tangent plane,
equation (2.15) yields P∆Γn = ∇Γκ, whence

divΓM
T · ∇Γz = κ∇Γvn · ∇Γz −DΓn∇Γvn · ∇Γz − vn∇Γκ · ∇Γz. (7.9)

Finally we add equations (7.8) and (7.9) and replace in (7.7) to obtain
(∆Γz)′(Γ,v) = ∆Γz

′(Γ,v)− 2DΓn∇Γvn · ∇Γz

− 2vnDΓn : D2
Γz + κ∇Γvn · ∇Γz − vn∇Γκ · ∇Γz,
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which completes the proof. �

8. Geometric invariants and Gaussian curvature

The geometric invariants of a C2-surface Γ determine its intrinsic properties.
They are defined as the invariants of the tensor DΓn, which, in turn, are the
coefficients of its characteristic polynomial p(λ) (see [23]). The geometric invariants
of Γ, ij(Γ) : Γ→ R, j = 1, . . . , N , thus satisfy

p(λ) = det(DΓn(X)− λI) = λN + i1λ
N−1 + i2λ

N−2 + · · ·+ iN−1λ+ iN ,

and can also be expressed using the eigenvalues of the tensor DΓn, one of which is
always zero and the others are the principal curvatures κ1, . . . , κN−1. Indeed,

i1(Γ) =
N−1∑
j=1

κj , i2(Γ) =
∑
j1 6=j2

κj1κj2 , . . . , iN−1(Γ) = κ1 . . . κN−1, iN (Γ) = 0.

We can observe from definitions (2.1) that the first invariant i1(Γ) is the mean
curvature κ and the last nonzero invariant iN−1(Γ) is the Gaussian curvature κg.
The invariant ik(Γ), for 2 ≤ k ≤ N − 2, is the so-called k-th mean curvature [21,
Ch. 3F].

The geometric invariants of Γ can also be defined recursively through the func-
tions Ip(Γ) : Γ → R, given by Ip(Γ) = tr(DΓn

p) = (DΓn)p−1 : DΓn, p =
1, . . . , N − 1. More exactly, from [18, Ch. 4.5] we have:

i1 = I1,

i2 = 1
2 (i1I1 − I2) ,

i3 = 1
3 (i2I1 − i1I2 + I3) ,

...
ip = 1

p

(
ip−1I1 − ip−2I2 + · · ·+ (−1)p−1Ip

)
= 1

p

p∑
i=1

(−1)i−1ip−iIi.

Note that I1 = divΓ n and I2 = |DΓn|2, which leads to i1 = κ and (for N = 3)
i2 = κg.

We now establish the shape derivatives of the functions Ip(Γ) = tr(DΓn
p),

which are also intrinsic to the surface Γ and will lead to the shape derivatives of
the geometric invariants ip(Γ).

Proposition 8.1 (Shape derivatives of the invariants). Let Γ be a C3-boundary in
RN and p a positive integer. For any integer p ≥ 1, the shape derivative of the
scalar valued boundary function Ip(Γ) := tr(DΓn

p) at Γ in the direction v ∈ V 2(D)
is given by

(Ip)′(Γ,v) = −p
(
D2

Γvn : DΓn
p−1 + vnIp+1

)
,

where vn = v · n and DΓn
0 = I, the identity tensor in V.

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



THE SHAPE DERIVATIVE OF THE GAUSS CURVATURE 331

For the proof of this proposition we need the following lemma.

Lemma 8.2. Let A(Γ) : Γ → Lin(V) be a symmetric tensor valued function and
let p be a positive integer. If A(Γ) is shape differentiable at Γ in the direction v,
then the shape derivative of Ap(Γ) satisfies

(Ap)′(Γ,v) : Aj = p
(
A′(Γ,v) : Aj+p−1), (8.1)

for any integer j ≥ 0.

Proof. We proceed by induction. It is trivial to see that equation (8.1) holds for
p = 1 and any integer j ≥ 0.

Assuming that equation (8.1) holds for p ≥ 1 and any j ≥ 0, we want to prove
that

(Ap+1)′(Γ,v) : Aj = (p+ 1)
(
A′(Γ,v) : Aj+p

)
, for any integer j ≥ 0. (8.2)

Applying the product rule for the shape derivative to Ap+1 = ApA, we have

(Ap+1)′(Γ,v) : Aj = (Ap)′(Γ,v)A : Aj +ApA′(Γ,v) : Aj .

The tensor product property BC : D = B : DCT = C : BTD and the fact that
the tensor A is symmetric, yield

(Ap+1)′(Γ,v) : Aj = (Ap)′(Γ,v) : Aj+1 +A′(Γ,v) : Aj+p. (8.3)

The inductive assumption for p and j + 1 implies

(Ap)′(Γ,v) : Aj+1 = p
(
A′(Γ,v) : Aj+p

)
.

Using this in equation (8.3), we obtain the desired result (8.2). �

Proof of Proposition 8.1. Note that I ′p(Γ,v) = tr(DΓn
p)′(Γ,v) = (DΓn

p)′(Γ,v) :
DΓn

0. Then Lemma 8.2 with j = 0 and A = DΓn, which is a symmetric tensor,
leads to

I ′p(Γ,v) = p
(
DΓn

′(Γ,v) : DΓn
p−1).

From formula (7.6) we have that (DΓn)′(Γ,n) : DΓn
p−1 = −D2

Γvn : DΓn
p−1 −

vnIp+1(Γ), where we have used that DΓn∇Γvn ⊗ n : DΓn
p−1 = 0 for any integer

p ≥ 1. This completes the proof. �

We now obtain the shape derivatives of the geometric invariants, which gives
us, as particular cases, the shape derivatives of the Gaussian and mean curvatures.
The goal is to obtain them in terms of the geometric invariants.

We start with i1 = κ:

i′1(Γ,v) = I ′1(Γ,v) = −D2
Γvn : DΓn

0 − vnI2 = −∆Γvn − vnI2,

which is consistent with the previous result (6.4). Since I2 = i21 − 2i2, we can also
write i′1(Γ,v) in terms of ip as follows:

i′1(Γ,v) = −∆Γvn − vni21(Γ) + 2vni2(Γ). (8.4)
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For the second invariant, note that I ′2(Γ,v) = −2
(
D2

Γvn : DΓn + vnI3
)
. Since

i2 = 1
2 (I2

1 − I2), we have

i′2(Γ,v) = I1I
′
1(Γ,v)− 1

2I
′
2(Γ,v) = −I1∆Γvn − vnI1I2 +D2

Γvn : DΓn + vnI3

= −I1∆Γvn +D2
Γvn : DΓn + vn(I3 − I1I2).

To obtain a formula only involving the invariants ip, observe that i3 = 1
3 (I3 −

I1I2 + i1i2), whence

i′2(Γ,v) = −i1∆Γvn +D2
Γvn : DΓn + vn(3i3 − i1i2). (8.5)

Remember that, for N = 3, the Gaussian curvature κg is the second invariant
i2(Γ). Then, on the one hand, from (8.4), we have the following expression for the
shape derivative of the mean curvature κ in terms of κg:

κ′(Γ,v) = −∆Γvn − vnκ2 + 2vnκg. (8.6)

On the other hand, since i3 = 0, we obtain from (8.5) the following formula for
the shape derivative of the Gaussian curvature.

Theorem 8.3 (Shape derivative of the Gauss curvature). For a C3-surface Γ in
R3, the shape derivative of the Gaussian curvature κg is given by

κ′g(Γ,v) = −κ∆Γvn +D2
Γvn : DΓn− vnκκg,

where κ is the mean or additive curvature, n the normal vector field and vn = v ·n.

9. Application: A Newton-type method

Most of shape optimization problems consist in finding a minimum of some
functional restricted to a family of admissible sets (domains or surfaces), e.g.,

Γ∗ = arg min
Γ∈A

J(Γ). (9.1)

If J is shape differentiable in A and Γ∗ is a minimizer, then dJ(Γ∗,v) = 0 for
all v ∈ V , where V is a vector space of admissible velocity fields, for example
V = V k(D) := Ckc (D,RN ), or a proper subset to account for boundary restrictions
of the admissible shapes A. We thus focus our attention in the following alternative
problem:

Find Γ∗ ∈ A : dJ(Γ∗,v) = 0, for allv ∈ V . (9.2)
A scheme to approximate the solutions of (9.2) for surfaces of prescribed con-

stant mean curvature was presented in [5], where numerical experiments document
its performance and fast convergence. The scheme was a variation of the Newton
algorithm, which requires the computation of second derivatives of the shape func-
tional. There, the computations were tailored to the specific problem of prescribed
mean curvature, and based on variational calculus using parametrizations, rather
than using shape calculus. Similar schemes for specific problems can be found
in [17, 24].
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Observe that, due to the Structure Theorem (Theorem 3.3), Problem (9.2) is
equivalent to the following:

Find Γ∗ ∈ A : dJ(Γ∗, vn̂∗) = 0, for all v ∈ V∗ := {w ∈ V : ∂nw = 0 in Γ∗} ,
(9.3)

where V = Ckc (D) and n̂∗ ∈ V is an extension of n∗ the normal vector of Γ∗ (this
equivalence arises if, for each v ∈ V , we let v ∈ V∗ be the canonical extension of
v · n∗, as it was done in Lemma 4.7).

We now present a Newton-type method to approximate the solution of (9.3)
that generalizes the previous works. It uses the language of shape derivatives and
it has the potential to work for a large class of shape functionals, not just the area
or other specific function.

Furthermore it allows us to apply the computational power of the results previ-
ously obtained in this work. Namely, to give computable expressions for interesting
examples.

We start by defining, for each Γ ∈ A and v ∈ V, the functional Jv(Γ) :=
dJ(Γ, vn̂) (with n̂ ∈ V denoting an extension of the normal n of Γ), so that
the solution Γ∗ satisfies Jv(Γ∗) = 0 for all v ∈ V∗. Assume now that Γ0 ∈ A is
sufficiently close to the solution Γ∗ so that there exists u ∈ V (small, in some sense)
such that Γ∗ := Γ0 + u, in the sense of Remark 3.2; this Remark also implies that

Jv(Γ∗) = Jv(Γ0 + u) = Jv(Γ0) + dJv(Γ0,u) + o(|u|). (9.4)

The goal of finding Γ∗ = Γ0+u such that Jv(Γ0+u) = 0 is now switched to a simpli-
fied problem of finding u0 such that the linear approximation of Jv around Γ0 van-
ishes at Γ1 := Γ0 +u0, i.e., Jv(Γ0) +dJv(Γ0,u0) = 0. Another simplification arises
when asking this equality to hold for all v ∈ V0 := {w ∈ V : ∂nw = 0 in Γ0} (instead
of V∗). Moreover, we simplify it further by considering only v ∈ V (Γ0) := Ck(Γ0)
and defining Jv(Γ0) := dJ(Γ0, v̂n̂0), where v̂ ∈ V0 coincides, in some tubular neigh-
borhood of Γ0, with the canonical extension v◦pΓ0 . Since dJv(Γ0,u0) only depends
on the normal component of u0 on Γ0, this last problem has multiple solutions,
so we restrict it by considering normal velocities of the form u0 = û0n̂0 with
u0 ∈ V (Γ0), and arrive at the following problem:

Find u0 ∈ V (Γ0) : Jv(Γ0) + dJv(Γ0, u0n0) = 0 ∀v ∈ V (Γ0). (9.5)

Hereafter, we usually identify scalar/velocity fields defined on Γ with their canonical
extensions, and we slightly abuse the notation writing dJv(Γ0, u0n0) to denote
dJv(Γ0, û0n̂0), owing to the Structure Theorem. Finally, define Γ1 = Γ0+P (u0n0),
with P some projection from Ck−1 to Ck. This sets the basis for an iterative method
that will be implemented and further investigated in forthcoming articles.

9.1. Examples. Using the results of Section 8, we provide computable expressions
for the functional dJv(Γ, un) of (9.5) for the cases when J(Γ) is a boundary in-
tegral operator. Later we will apply those formulas to the area and the Willmore
functional.
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Lemma 9.1. Let A be a family of admissible Ck+1 surfaces contained in D, with
k ≥ 2, z = z(Γ) ∈ C2(Γ) and J(Γ) =

∫
Γ z a shape differentiable functional on A

with respect to V k(D). Let Γ0 ∈ A and u, v ∈ Ck(Γ0); then

dJv(Γ0, un0) =
∫

Γ0

z′v(Γ0, un0) + 2zuv i2 − zv∆Γu+ κ(vzu + uzv), (9.6)

where zw := z′(Γ;wn), for each Γ with normal n and each w ∈ Ck(Γ0), and i2 is
the second geometric invariant of Γ.

Proof. Consider functions v, u ∈ V = Ckc (D) and n the normal vector of Γ. Then,
from (4.4) the functional Jv(Γ) := dJ(Γ, vn) is given by Jv(Γ) =

∫
Γ zv + κzv.

Hence (4.4) again yields

dJv(Γ, un) =
∫

Γ
z′v(Γ, un)+κ′(Γ, un)zv+κz′(Γ, un)v+κzv′(Γ, un)+zvκu+κ2zvu.

Recall from (8.4) that κ′(Γ, un) = −∆Γu− uκ2 + 2ui2. Then

dJv(Γ, un) =
∫

Γ
z′v(Γ, un)− zv∆Γu+ 2i2zvu+ κ (vzu + uzv) + κz v′(Γ, un)

for any u, v ∈ V. Since v does not depend on Γ, we have obtained at the beginning
of Subsection 4.1 that v′(Γ, un) = u∂nv. If we fix Γ0 ∈ A, we have v′(Γ0, un) = 0
for any v ∈ V such that ∂nv = 0 in Γ0. Then we have obtained (9.6) for any u ∈ V
and v ∈ V0 := {w ∈ V : ∂nw = 0 in Γ0}. In particular, for any u, v ∈ Ck(Γ0), we
have (9.6) for their canonical extensions. �

Area functional. Given a regular surface Γ0 in RN with boundary γ, a minimal
surface Γ∗ with boundary γ is a solution of the minimization problem (9.1) with
J(Γ) =

∫
Γ dΓ, the area functional, and the admissible family A = A(γ) consists of

all regular N −1 dimensional surfaces in RN with boundary γ. For a fixed Γ0 ∈ A,
the set of scalar velocity fields we need to consider is V k(Γ0) = {w ∈ Ck(Γ0) :
w|∂Γ0 = 0}.

For the area functional we have z(Γ) ≡ 1, zv(Γ) ≡ 0 and z′v(Γ, un) ≡ 0. Then
Jv(Γ) =

∫
Γ κ(Γ)v and, for a fixed Γ0, formula (9.6) gives us

dJv(Γ0, un0) =
∫

Γ0

2i2uv +∇Γu · ∇Γv,

for any u ∈ V and v ∈ V (Γ0), where we have used formula (2.13) of Lemma 2.5 to
obtain

∫
Γ0
−∆Γu v =

∫
Γ0
∇Γu · ∇Γv.

If N = 3, the second invariant i2 coincides with the Gaussian curvature κg.
Then, solving (9.5) for a C2-surface Γ0 ∈ A(γ) is equivalent to finding u0 ∈ V 1(Γ0)
such that ∫

Γ0

∇Γu0 · ∇Γv + 2κgu0v = −
∫

Γ0

κv, ∀v ∈ V 1(Γ0).
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Willmore functional. Consider now the Willmore functional J(Γ) =
∫

Γ z(Γ) with
z(Γ) = 1

2κ
2, and the scalar velocities u, v ∈ V. By the product rule for shape

derivatives (Remark 5.4), we have zv = z′(Γ, vn) = κκ′(Γ, vn) = −κ
(
∆Γv + vI2

)
,

where I2 = |DΓn|2. In order to apply formula (9.6) we need to compute, for
u = un,

z′v(Γ,u) = −κ′(Γ,u)
(
∆Γv + vI2

)
− κ
(
(∆Γv)′(Γ,u) + v′(Γ,u)I2 + vI ′2(Γ,u)

)
.

Recall that κ′(Γ,u) = −∆Γu− uI2, I ′2(Γ,u) = −2
(
D2

Γu : DΓn + uI3
)

by Proposi-
tion 8.1, v′(Γ,u) = u∂nv, and the shape derivative of ∆Γv is, by Theorem 7.4,

(∆Γv)′(Γ,u) = ∆Γ(u∂nv)− u
(
2DΓn : D2

Γv +∇Γκ · ∇Γv
)

+∇Γu · (κ∇Γv − 2DΓn∇Γv).

For a fixed Γ0, consider any u ∈ V and v ∈ V0 in order to have ∂nv = 0 in Γ0.
Putting all these ingredients together in (9.6), we obtain

dJv(Γ0, un0) =
∫

Γ0

(
∆Γu+ uI2

)(
∆Γv + vI2

)
+ 2κv

(
D2

Γu : DΓn0 + uI3
)

+ κu
(
2DΓn0 : D2

Γv +∇Γκ · ∇Γv
)
− κ2∇Γu · ∇Γv

+ 2κ∇Γu ·DΓn0∇Γv + κ2uv i2 −
1
2κ

2v∆Γu

− κ2(v∆Γu+ u∆Γv + 2uv I2
)
.

Considering the canonical extension of functions u, v ∈ V 2(Γ0) := {w ∈ C2(Γ0) :
w|Γ0 = 0}, we obtain (omitting technical details) the following simplification of the
Newton problem (9.5) for a C3-surface Γ0 ⊂ RN :

Find u ∈ V 2(Γ0) : bΓ0(u, v) = lΓ0(v) ∀v ∈ V 2(Γ0), (9.7)

with

lΓ(v) =
∫

Γ
∇Γv · ∇Γκ+ v(k

3

2 − κI2)

and

bΓ(u, v) =
∫

Γ
∆Γu∆Γv +∇Γu ·AΓ∇Γv + uv cΓ,

where AΓ is a tensor-valued function defined on Γ by

AΓ :=
(

3
2κ

2 − 2I2
)

I− 2κDΓn,

with I being the identity matrix, and cΓ is a scalar function on Γ given by

cΓ := κ4

2 −
5
2κ

2I2 + I2
2 + 2κI3 + |∇Γκ|2 − κ∆Γκ+ ∆ΓI2 + 2DΓn : D2

Γκ.
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