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TRAJECTORIAL MARKET MODELS:
ARBITRAGE AND PRICING INTERVALS

SEBASTIÁN E. FERRANDO, ALFREDO L. GONZÁLEZ, IVÁN L. DEGANO,
AND MASSOOMEH RAHSEPAR

Abstract. The paper develops general, non-probabilistic market models based
on trajectory sets and minmax price bounds leading to price intervals for Eu-
ropean options. The approach provides the trajectory based analogue of a
martingale process as well as a generalization that allows a limited notion of
arbitrage in the market while still providing coherent option prices. An illus-
trative example is described in detail. Several properties of the price bounds
are obtained, in particular a connection with risk neutral pricing is established
for trajectory markets associated to a continuous-time martingale model.

1. Introduction

The present paper provides a self contained framework for financial markets
centered on a trajectory set modeling a risky asset. No probability measures,
filtrations, or topological assumptions are required on this space. The approach
singles out local trajectory properties that can be used to consistently build an
associated option price theory. Such properties have already made their appearance
in the stochastic literature ([11, 4, 15]).

By way of motivation, we mention that a recent trend in the mathematical
finance literature develops results that weaken, or eliminate entirely, stochastic as-
sumptions. For example, there are robust versions of the Fundamental Theorem of
Asset Pricing (FTAP) in [20, 6, 7, 8] and [9]. To clarify the framework and provide
perspective for the results in our paper, we describe natural connections with the
new robust literature as well as with stochastic concepts. Our approach formal-
izes and generalizes the original model introduced by Britten-Jones and Neuberger
(BJ&N) in [5], along the way we uncover some new phenomena not noticed there.

For simplicity, we model a one dimensional risky asset and rely on the availabil-
ity of a risk-free bank account (both frictionless). The case of an arbitrary number
of risky assets is developed in [12] and will be published elsewhere. The set of
trajectories S is given by sequences of real numbers S = {Si}, with S0 = s0 for all
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S ∈ S. H is a family of investment strategies, H = {Hi} ∈ H is a sequence of func-
tions acting on S, representing the portfolio holdings H(S) = {Hi(S)} along S; we
assume Hi(S) = Hi(S0, . . . , Si). The set of trajectories S plays a central role in our
work; trajectories, as opposed to probabilities, are a basic observable phenomena,
therefore, it is relevant to pursue developments based only on such characteristics of
the market. The models are discrete in the sense that we index potential portfolio
rebalances, Hi(S) → Hi+1(S), by integer numbers. The total number of portfolio
updates along a trajectory S can be unbounded as a function of S. Otherwise,
stock charts and investment amounts can take values in general subsets of the real
numbers, data could flow in a time continuous manner and portfolio rebalances
could be triggered by arbitrary events without the need to be associated to a time
variable.

For a given European option Z, we introduce sub and super replication bounds
for its price through a min-max operator. We study conditions on the market
M = S × H under which there exists a pricing interval [V (Z), V (Z)]. A general
condition implying such result is called 0-neutral (Definition 8); it indicates that
the price of the null function Z = 0 is zero. General and natural local conditions
on the trajectory space are required that ensure the existence of a price interval.

0-neutrality is a weakening of no-arbitrage (Corollary 3) that allows for rational
prices without any logical contradictions and with a basic financial supporting
argument (the basic arguments are presented in Section 3). The co-existence of
arbitrage and the price interval follows as a consequence of a worst case point
of view and reflects a basic financial situation. Market players involved in the
option’s transaction may need/prefer the option’s contract sure benefits against
the potential arbitrage rewards.

Much of the recent literature on robust modeling has concentrated on dual rep-
resentations of the nonlinear minmax operator V (·) (given in Definition 5) (e.g.
[7, 8, 9, 19, 20]). By way of contrast, our work emphasizes in Section 4 how char-
acteristics of V (·) and V (·) depend on natural properties of the trajectory set.

Stochastic versions of the FTAP as well as robust versions have to be placed in
the right perspective to appreciate our contributions. Reference [11] proves, in an
arbitrary probability space with finite/discrete time, the equivalence of the three
statements: a) No arbitrage; b) a local geometrical condition on the path of the
process; c) existence of an equivalent martingale measure. The alluded condition
b) can be described by:

if Q(∆tX > 0|Ft) > 0 then Q(∆tX < 0|Ft) > 0 as well, (1.1)
or

if Q(∆tX > 0|Ft) = 0 then Q(∆tX < 0|Ft) = 0 as well,
where Xt is an adapted process with respect to filtration Ft. Our Definition 10
is a trajectorial version of (1.1). The latter condition is not emphasized on most
versions of stochastic FTAP; this state of affairs is understandable as c) already
characterizes the stochastic models of interest. Robust versions of FTAP emphasize
analogous connections, namely dual representations which, assuming no arbitrage,
connect super and under replication with martingale measures ([7, 9, 20]). On the
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other hand, there is also the basic task of characterizing trajectory sets with simple
and general assumptions that guarantee no arbitrage in a trajectory based market.
That is, it is of interest to establish the relationships between a) and b) above in
a non probabilistic setting, this is achieved, among other results, in the present
paper.

A trajectory set is implicit in a stochastic process model; making trajectory
sets a central object of interest is of relevance, in particular, when there is insuffi-
cient information to assign a probability distribution with confidence. An example
is given by the modelling of crashes in [14] where, the number, timing and size
of a downwards stock change (a crash) is treated without probabilistic assump-
tions. More importantly, giving trajectory sets a primary role changes the usual
paradigm to model financial situations. Stochastic modeling relies on stochastic
processes and the main input for their construction is a probability distribution;
by contrast, the properties of their paths result as a by-product. References [2] and
[3] present continuous-time examples of trajectory sets which do not correspond to
semimartingales. In the present paper we describe a general discrete example that
naturally incorporates trajectory dependent volatility. A computational and more
detailed analysis of related examples is developed in [13]. The latter reference also
provides a detailed justification of an algorithm that evaluates the price bounds in-
troduced in the present paper. Section 6 also introduces trajectory sets associated
to continuous-time martingale processes.

A summary of the paper contents is provided next. Section 2 introduces the
basic definitions. Section 3 proves existence of a price interval under general 0-
neutrality conditions; that section also compares the price interval with Merton’s
bounds and explains the meaning of the pricing interval when the market allows
for arbitrage. Section 4 shows how local trajectory hypotheses lead to 0-neutral
and no arbitrage markets as well as to existence of a price interval under specific
assumptions. Section 5 deals with attainable functions, a generalization of this
notion and some implications. Some analogues of martingale-like results are proven:
in a 0-neutral market, today’s stock price is the minmax price of future stock prices.
Section 6 studies a general trajectory based market associated to a continuous-time
martingale market model and draws connections between the introduced bounds
and risk neutral pricing. Section 7 concludes. Appendix A describes an example
illustrating the framework. Other appendices collect further results, connections to
the robust literature, proofs, as well as some technical results needed in the main
body of the paper.

2. General, trajectory based models

The paper concentrates on market models centered in properties of a given
trajectory set. An example is given in Apendix A illustrating a general approach
to constructing trajectory sets without using a priori probabilistic assumptions.
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2.1. General setting.
Definition 1 (Trajectory Set). Given a real number s0, a set of trajectories S =
S(s0) is a subset of the set

S∞ = S∞(s0) = {S = {Si}i≥0 : Si ∈ R, S0 = s0}.
Definition 2 (Portfolio Set). A portfolio H is a sequence of (pairs of) functions
H = {Φi = (Bi, Hi)}i≥0 with Bi, Hi : S → R, where S ⊆ S∞(s0). H is said to be
self-financing at S ∈ S if for all i ≥ 0

Hi(S)Si+1 +Bi(S) = Hi+1(S)Si+1 +Bi+1(S). (2.1)
A portfolio H is called non-anticipative if, for all S, S′ ∈ S satisfying S′k = Sk for
all 0 ≤ k ≤ i, the equality Φi(S) = Φi(S′) holds.
Definition 3 (Trajectory Based Market). For a given real number s0, a set of
trajectories S ⊆ S∞(s0) and a set of portfolios H, a trajectory based discrete
market M = S ×H satisfies the following properties:

(1) For each (S,H) ∈ M there exists an integer N = NH(S), such that
[Hk(S) = HN−1(S), ∀k ≥ NH(S)] or [Hk(S) = HN (S) = 0, ∀k ≥ NH(S)].

(2) For (S,H) ∈M, H is non-anticipative and self-financing at S.
Let H = 0 = {(0i, 0i)}i≥0 (where 0i is the function 0i(S) = 0) denote the 0-

portfolio. We will also assume {H = 0} ∈ H, with N0 ≡ 0; also, if H 6= 0 then
NH ≥ 1. Any such M will be referred to as a market in the rest of the paper,

Our results are also valid if one restricts Si to belong to a given apriori set
of values and so, reflecting the actual discrete nature of stock chart values (for
example, values of Si could be represented by a finite number of decimal digits).
Similarly, the valuesHi(S) can belong to an arbitrary fixed subset of R, for example,
integer multiples of a given real number.
Hk(S) = HN−1(S) for all k ≥ NH(S) means rebalancing stops at, or prior to,

NH(S)− 1. The condition Hk(S) = HN (S) = 0 for all k ≥ NH(S) means definite
liquidation has taken place at, or prior to, NH(S); such portfolio will be referred to
as liquidated. In the case of pricing a European option maturing at time T , SNH(S)
is interpreted as x(T ) (i.e., as a possible stock chart value at time T ).

Section 2.2 extends the above setting to account for other sources of uncertainty,
accommodating this extension is mostly a matter of notation and, hence, most of
the paper will only employ the above introduced notation.

For simplicity, we denote ∆iS ≡ Si+1−Si. Given (S,H) ∈M, the self-financing
property (2.1) implies that the portfolio value, defined by VH(i, S) = Bi(S) +
Hi(S)Si, where Bi(S) represent the holdings in a bank account, equals:

VH(i, S) = VH(0, S0) +
i−1∑
k=0

Hk(S) ∆kS, (2.2)

during the period [i, i+ 1) for i = 0, . . . , NH(S)− 1 and valid over [NH(S),∞) for
the case i ≥ NH(S). Of course, VH(0, S0) ≡ VH(0, S) = B0(S) +H0(S)S0.

Observe that we assume zero interest rates of the bank account and that there
are no transaction costs.
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Remark 1. As defined above, a portfolio H is given by specifying the pairs of
functions {(Bi, Hi)} so that (2.1) holds. In the remaining of the paper, we will
define H more conveniently by specifying the non-anticipative functions Hi and
an initial portfolio value V0 = VH(0, S0); this will provide B0, and the remaining
functions Bi, i ≥ 1, are then obtained by solving equations (2.1).

The introduced framework is quite general; notice that nothing requires Hi(S) 6=
Hi+1(S). Si+1 is the stock value at which investors H ∈ H, that have invested so
far Hk(S), 0 ≤ k ≤ i, may rebalance their holdings to Hi+1(S).

The following conditional spaces will play a key role. GivenM, S ∈ S and k ≥ 0
fixed, set

S(S,k) ≡ {S̃ ∈ S : S̃i = Si, 0 ≤ i ≤ k}.
Unless specified otherwise, Z denotes a general function Z : S → R; pairs (S, k)

or triples (S, k,H), S ∈ S, k ≥ 0, H ∈ H, will be referred to as nodes.
Some results require that the functions NH : S → N, introduced in Definition 3,

are stopping times, according to the following definition.
Definition 4 (Trajectory Based Stopping Times). Given a trajectory space S, a
trajectory based stopping time (or stopping time for short) is a function ν : S → N
such that if S, S′ ∈ S and Sk = S′k, for 0 ≤ k ≤ ν(S), then ν(S′) = ν(S).

We refer to [21] (see also [3]) for an account of the relationship between the
above notion of trajectory based stopping time and filtration based stopping times.
Such ν will be simply referred to as a stopping time in the remaining of the paper.

2.2. Other sources of uncertainty. All results and definitions in the paper in-
volving markets M and trajectory sets S can be generalized by incorporating an-
other source of uncertainty besides the stock. This extra source of uncertainty will
be denoted by W = {Wi} which, in financial terms, will be considered to be an
observable quantity. This is analogous to moving from the natural filtration to an
augmented filtration in the stochastic setting.

The sequence elements Wi are assumed to belong to abstract sets Ωi from which
we only require to have defined an equality relationship. We provide next the
simple changes to the previous definitions to accommodate for the new source of
uncertainty. The arrow notation → indicates how the objects change ((s0, w0) is
fixed).

S∞(s0)→ SW∞ (s0, w0) ≡ {S = {Si ≡ (Si,Wi)}i≥0 : Wi ∈ Ωi, (S0,W0) = (s0, w0)}.
S = S(s0)→ SW ≡ SW(s0, w0) ⊆ SW∞ (s0, w0).
Hi(S)→ Hi(S).
S(S,k) → SW(S,k)(s0, w0) ≡ {S̃ ∈ SW(s0, w0), S̃i = Si, 0 ≤ i ≤ k}.

VH(k, S)→ VH(k,S) = VH(0, (S0, w0)) +
k−1∑
i=0

Hi(S)∆iS.
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Besides the above changes, that concern mostly trajectory sets and the functional
dependency Hi( ) in terms of both variables Sk,Wk (and some minor notational
changes), all statements and properties appearing in the paper, only involve the
first coordinate Si (in the tuples (Si,Wi)) in all algebraic manipulations. Clearly,
Hi is required to be non-anticipative with respect two both variables Sk and Wk

and the notion of trajectory based stopping time applies now to trajectories of the
form S = {(Si,Wi)}. These remarks can be used to show that all the results in
the paper stay true in the extended/augmented formalism. We explicitly use the
extended formalism in Subsection A.1 and Section 6.

3. Pricing with arbitrage in 0-neutral markets

The quantities V (S0, Z,M) and V (S0, Z,M) introduced below for our setting,
correspond to the usual super and sub hedging prices, respectively, defined in robust
frameworks (e.g. [6, 9, 20]) for a contingent claim (function) Z : S → R.

We provide general conditions resulting in a worst case price interval for the
possible prices for a European option. The notion of conditionally 0-neutral market
(given in Definition 8) is the essential ingredient for the result to hold. We compare
the minimax bounds with Merton’s bounds, and give a detailed justification for the
quantities introduced to be actual market prices. As already indicated, 0-neutrality
is a weakening of the no arbitrage condition which allows a price interval to exists
even when there is a certain kind of arbitrage opportunity in the market. See
discussion after Corollary 3 in Section 4.

Definition 5 (Conditional Minmax Bounds). Given a market M = S ×H and a
node (S, k), define

V k(S,Z,M) ≡ inf
H∈H

sup
S̃∈S(S,k)

[Z(S̃)−
NH(S)−1∑
i=k

Hi(S̃)(S̃i+1 − S̃i)]. (3.1)

Also V k(S,Z,M) ≡ −V k(S,−Z,M). Set V (S0, Z,M) ≡ V 0(S,Z,M) and
V (S0, Z,M) ≡ V 0(S,Z,M) as well.

The quantity V k(S,Z,M) is the minimum capital needed, conditional on a node
(S, k), to super-hedge Z. An analogous interpretation applies to V k(S,Z,M).
Sufficient conditions on Z to guarantee finiteness of the minmax bounds are given
in Subsection D.1.

The notion of extended arbitrage (see [10, Def. 2.2] and [20, Def. 3.1]) introduced
below is useful in order to partially justify the above minmax definitions as price
bounds.

Definition 6 (Extended Arbitrage). Let Z : S → R be a function defined on S
and M = S × H a discrete market. H ∈ H, with initial value V0, is an extended
arbitrage with respect to Z if

V0+
NH(S)−1∑

i=0
Hi(S) ∆iS−Z(S) ≥ 0 ∀S ∈ S, and strictly positive for some S∗ ∈ S,
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or

Z(S)−V0+
NH(S)−1∑

i=0
Hi(S) ∆iS ≥ 0 ∀S ∈ S, and strictly positive for some S∗ ∈ S.

For a comparison with the definition below, see [10].

Definition 7 (Fair Price). We say that π is a fair price for a function Z in a
discrete marketM = S ×H if there is no H ∈ H, with initial value VH(0, S0) = π,
which is an extended arbitrage with respect to Z.

Observe that neither π > V (S0, Z,M) nor π < V (S0, Z,M) are fair prices for
Z. Theorem 1 below provides conditions under which the fair prices are confined
to an interval (see Remark 2 in Section 3.1), as it is known for stochastic models
which are arbitrage free.

The following proposition shows that in a general discrete market the quantities
V (S0, Z,M), V (S0, Z,M) may behave in an unexpected way, but not so in a market
which satisfies the 0-neutral property (introduced below).

Definition 8 (Conditionally 0-Neutral). We say that a discrete market M is
conditionally 0-neutral at node (S, k) if

V k(S,Z = 0,M) = 0.

For k = 0, the conditional 0-neutral property, which depends on S only through
S0, will be referred to as 0-neutral. That notion has not taken central stage in
the literature; we borrowed it from [5], where it was considered equivalent to no-
arbitrage, while in Section 4.2 we make the point that arbitrage opportunities are
allowed under such assumption.

Proposition 1. Given a discrete market model M = S × H and c an arbitrary
constant, it follows that

if Z(S) = c for all S ∈ S, then V (S0, Z,M) ≤ c ≤ V (S0, Z,M).
In contrast, notice that if M is 0-neutral then V (S0, Z,M) = c = V (S0, Z,M).

Proof. Consider first the case that M is not 0-neutral; so V (S0,0,M) < 0 in that
case, this implies that there exists H ∈ H such that

−
NH(S)−1∑

i=0
Hi(S) ∆iS < 0, for all S ∈ S,

so

sup
S∈S

[c−
NH(S)−1∑

i=0
Hi(S) ∆iS] ≤ c,

which leads to V (S0, c,M) ≤ c.
Consider now that M is 0-neutral; it is then clear that V (S0, c,M) = c =

V (S0, c,M). Hence V (S0, c,M) ≤ c in all cases, then V (S0, c,M) =
−V (S0,−c,M) ≥ c. �
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The next theorem provides conditions under which there exists a price interval.
The definition of addition of two portfolios, implicitly required in it, is introduced
just before the statement of Lemma 2 in Appendix D.
Theorem 1. Consider a discrete market M = S × H and a function Z defined
on S. Assume M is conditionally 0-neutral at node (S, k) and H is closed under
addition, then

V k(S,Z,M) ≤ V k(S,Z,M). (3.2)
Alternatively, (3.2) also holds if S × (H + H) is conditionally 0-neutral at node
(S, k) and, furthermore, either NH is a stopping time for all H ∈ H or all H ∈ H
are liquidated.
Proof. Taking H1 = H2 = H, and having in mind that the sum of portfolios is
guaranteed by either hypothesis, the result follows directly from the conclusion
(D.3) of Lemma 2 in Appendix D. �

Section 4 gives general conditions guaranteeing the key condition of 0-neutrality
needed in Theorem 1. Proposition 5, in that section, shows that 0-neutrality is a
weakening of no-arbitrage. Notice that assuming S × (H+H) to be conditionally
0-neutral at node (S, k) implies M to be conditionally 0-neutral at that node as
well. Assuming the stronger hypothesis H + H = H is not necessary, as it is
clearly shown by Corollary 2 in Section 4, which provides assumptions implying
the conditional 0-neutral property as well as (3.2) without requiring H to be closed
under addition.

The following is another condition on S that also ensures (3.2); the proof is
immediate and so omitted.
Proposition 2. Consider a market M = S × H, a function Z defined on S, a
fixed S ∈ S and k ≥ 0. If there exists a sequence S0 ∈ S(S,k) such that S0

i = Sk
for all i ≥ k, then M is conditionally 0-neutral at (S, k), and

V k(S,Z,M) ≤ Z(S0) ≤ V k(S,Z,M).
We provide next the simple connection between the minmax bounds and Mer-

ton’s bounds [18]. For a call option CK(x) = (x − K)+, with K > 0, Merton’s
bounds are CK(S0) and S0.
Proposition 3 (Merton’s Bounds Comparison). Consider a marketM, an integer
valued function N = N(S), S ∈ S, and a function Z defined on S. Assume there
exists H± ∈ H such that H±i (S) = ±1 and for any S ∈ S and 0 ≤ i ≤ NH(S) ≡
N(S). We obtain:

(a) If Z(S) = CK(SN ) and M is 0-neutral, then CK(S0) ≤ V (S0, Z,M).
(b) If Z(S) ≤ SN for all S ∈ S, V (S0, Z,M) ≤ S0.

Proof. Fix S ∈ S, 0-neutrality implies V (S0, Z,M) ≥ 0, so (a) is clearly valid if
S0 ≤ K. If S0 > K,

CK(S0) = S0 −K ≤ (SN −K)+ − (SN − S0) = Z(S) +
N−1∑
i=0
−∆iS.
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Thus, CK(S0) ≤ infS∈S [Z(S)−
∑N−1
i=0 ∆iS] ≤ V (S0, Z,M).

(b) SN − S0 =
∑N−1
i=0 ∆iS, then S0 = SN −

∑N−1
i=0 ∆iS ≥ Z(S) −

∑N−1
i=0 ∆iS.

Consequently S0 ≥ supS∈S [Z(S)−
∑N−1
i=0 ∆iS] ≥ V (S0, Z,M). �

In a situation where Proposition 2 and Proposition 3, item a), are both appli-
cable, we obtain the interesting result CK(S0) = V (S0, Z,M). This shows that a
characteristic of the trajectory space, namely the presence of a globally constant
trajectory, implies that the lower Merton bound is attained.

We refer to Appendix D for complementary material.

3.1. Meaning of option prices in 0-neutral markets. Having in mind the as-
sumptions leading to the conclusion V (S,Z,M) ≤ V (S,Z,M) (as in Theorem 1,
Proposition 2, and Corollary 2), we introduce the following definition of price in-
terval.

Definition 9. Consider a marketM = S×H and a function Z on S. Under the as-
sumption that V (S0, Z,M) ≤ V (S0, Z,M), we will call [V (S0, Z,M), V (S0, Z,M)]
the price interval of Z relative to M.

Remark 2. Observe that under the referred assumptions
π ∈ (V (S0, Z,M), V (S0, Z,M))

is a fair price for Z.

The assumptions in Theorem 1 guarantee a pricing interval and at the same
time allow for arbitrage in the market. See Section 4.2, Corollary 3 and discussion
afterwards. It should be noted that the presence of arbitrage nodes (see Section 4)
will impact the actual value of the option bounds. Examples for the extent to
which this could happen are documented in [13].

Under the assumption that an option contract has been traded, the existence of
the minmax price interval, independently of the presence of an arbitrage strategy,
is substantiated on the need to have enough funds to match the certainty of future
financial obligations. This is in contrast to an investment in an arbitrage oppor-
tunity (see Definition 12) which profits are uncertain as they may not materialize
in a 0-neutral market. In a general 0-neutral market, an investment following an
arbitrage portfolio will not guarantee enough returns under all scenarios in order
to cover the obligations required by Z.

The simplest mathematical example illustrating such a financial situation is
given by a one-step marketM where NH(S) = 1 for all (S,H), supS̃∈S (S̃1−s0) > 0
and inf S̃∈S (S̃1−s0) = 0 is realized at a unique Ŝ ∈ S. So, the market is 0-neutral.
Furthermore, if {H0(S) : S ∈ S, H ∈ H} = R one can also see that V (s0, Z,M) =
Z(Ŝ1) where Z is a European call option. The minmax price provides a solution
reflecting the needs of investors dealing with the option. Namely, if the option
selling price is smaller than V (s0, Z,M) the potential obligation Z(S1) could not
be matched under all scenarios through investing on the arbitrage (as actual profits
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may not materialize) resulting in a shortage of funds, under some scenarios, for the
seller of the option. So, it is the worst case approach, requiring coverage under
all scenarios, that allows for the co-existence of arbitrage and a price interval in a
0-neutral market. If 0-neutrality does not hold, it is easy to see that the minmax
optimization falls back into the arbitrage opportunity by giving V (s0, Z,M) = −∞
and the optimal investment h given by h∗ =∞ in the above example.

See also related arguments in [16] where, in a context of portfolio selection,
a numeraire portfolio is shown to exist under conditions that allow for arbitrage
opportunities.

4. Trajectory based conditions for 0-neutral markets

Theorem 1, in Section 3, shows the key role of conditional 0-neutrality in order
to obtain a worst case price interval. The present section provides natural and
general sufficient conditions that imply a market M to be conditionally 0-neutral.
The key ingredients are the local (i.e., relative to a given node) path conditions,
introduced in Definition 10, that allow trajectories to move in a contrarian way
to an arbitrary investment. These are a trajectorial version of properties satisfied
by a martingale process. There is also a need for global conditions related to how
market participants may stop their portfolio rebalances. We provide a general
financial setting leading to one such global condition, these assumptions also imply
existence of a price interval.

Definition 10 (Local Conditions: 0-Neutral & Arbitrage-Free Nodes). Given a
trajectory space S and a node (S, j):

• (S, j) is called a 0-neutral node if
sup

S̃∈S(S,j)
(S̃j+1 − Sj) ≥ 0 and inf

S̃∈S(S,j)
(S̃j+1 − Sj) ≤ 0. (4.1)

• (S, j) is called an arbitrage-free node if
sup

S̃∈S(S,j)
(S̃j+1 − Sj) > 0 and inf

S̃∈S(S,j)
(S̃j+1 − Sj) < 0 (4.2)

or
sup

S̃∈S(S,j)
(S̃j+1 − Sj) = inf

S̃∈S(S,j)
= 0 = (S̃j+1 − Sj). (4.3)

S is called locally 0-neutral if every node is 0-neutral. S is said to be locally
arbitrage-free if every node is arbitrage free. A node that satisfies (4.2) will be
called an up-down node, and a node satisfying (4.3) will be called a flat node. A
node that is 0-neutral but that is not an arbitrage-free node, will be called an
arbitrage node.

An arbitrage-free node is clearly a 0-neutral node as well. If all nodes (S̃, k),
S̃ ∈ S(S,j) and k ≥ j, are 0-neutral and H is a set of portfolios, it follows that
infH∈H{supS̃∈S(S,j)

[−Hj(S)∆jS̃ ]} = 0.

The following definition contains a main tool: it introduces a trajectory that for
a given investment provides arbitrarily small profits.
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Definition 11 (ε-contrarian). Given H ∈ H, S ∈ S, ε ≥ 0 and n ≥ 1, if

∃Sn,ε ∈ S(S,n) and
NH(Sn,ε)−1∑

i=n
Hi(Sn,ε)∆iS

n,ε < ε, (4.4)

we will say that Sn,ε is ε-contrarian beyond n w.r.t. (S,H).

Notice that Sn,ε = S trivially satisfies the above definition for the case n ≥
NH(S) and ε > 0.

The following is a useful characterization of 0-neutrality of the market, which fol-
lows directly from the corresponding definitions, connecting it with local properties
of the trajectories.

Proposition 4. M is conditionally 0-neutral at node (S, k) if and only if for each
H ∈ H and ε > 0, there exists Sk,ε which is ε-contrarian beyond k w.r.t. (S,H).

The local 0-neutral property of S makes it possible to obtain trajectories which
are almost ε-contrarian, this is shown in the next lemma.

Lemma 1. Given a market M = S × H, k ≥ 0, Sk ∈ S, and H ∈ H. Assume
each node (S, j), with S ∈ S(Sk,k) and j ≥ k, is 0-neutral. Then, for any ε > 0,
there exists a sequence of trajectories (Sm)m≥k satisfying

Sm ∈ S(Sm−1,m−1), and
n−1∑
i=k

Hi(Sm)∆iS
m <

n−1∑
i=k

ε

2i ≤ ε, for m ≥ n > k.

(4.5)

Proof. Fix ε > 0. By the assumed 0-neutral property of the nodes, there exists
Sk+1 ∈ S(Sk,k) such that

Hk(Sk+1)∆kS
k+1 <

ε

2k . (4.6)

Recursively, for m ≥ k + 1, once Sm ∈ S(Sm−1,m−1) was chosen, satisfying (4.6),
with m− 1 taking the place of k, and then

m−1∑
i=k

Hi(Sm)∆iS
m <

m−1∑
i=k

ε

2i ≤ ε, (4.7)

there exists Sm+1 ∈ S(Sm,m) satisfying (4.6) with k replaced by m, and (4.7) with
m replaced by m+ 1. �

The local hypotheses, from Definition 10, are not sufficient to guarantee condi-
tional (global) 0-neutrality ofM. The next corollary, requiring boundedness of NH
for any H ∈ H, is a hypothesis that, when added to the local 0-neutral property,
guarantees that a market is 0-neutral. Boundedness of NH is a strong condition
that is not necessary, this is made clear in Corollary 2. Other sufficient conditions
for the existence of a price interval allowing NH to be unbounded are also possible;
for reasons of space they are just sketched in Appendix C.
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Corollary 1. Given a market M = S × H, k ≥ 0, Sk ∈ S. Assume each node
(S, j), with S ∈ S(Sk,k) and j ≥ k, is 0-neutral and NH is bounded for any H ∈ H.
Then M is conditionally 0-neutral at node (S, k).

Proof. Fix H ∈ H and ε > 0. By Lemma 1 there exist a sequence of trajectories
(Sm)m≥k for which (4.5) holds. Let M a bound for NH , then SM is ε-contrarian
beyond k w.r.t. (Sk, H). So, the conclusion is given by Proposition 4. �

4.1. Debt limited portfolios. Here we introduce a set of financially motivated
hypotheses, of a general nature, that, when combined with the local 0-neutral (local
arbitrage-free) assumption on S, provide conditionally 0-neutral (arbitrage-free)
markets M. In fact, the following theorem shows that for all practical financial
purposes, as long as the number of arbitrage and flat nodes are bounded along
each trajectory, the assumption of existence of contrarian trajectories is always
satisfied. The results rely on limiting the capital that a portfolio owner may be
able to borrow; this condition is usually used to exclude arbitrage opportunities
created by doubling strategies ([4]). The setting allows for unbounded NH .

The next theorem provides a natural and general setting, ensuring that a market
is conditionally 0-neutral.

Theorem 2. Given a market M = S ×H, S ∈ S, and n ≥ 0. Assume each node
(S′, j), S′ ∈ S(S,n) with j ≥ n, is 0-neutral. We further assume:

(1) The number of arbitrage 0-neutral and flat nodes (as per Definition 10)
allowed in each trajectory is bounded by an absolute constant m̂.

Also, for H ∈ H:
(2) There exists A = A(H) ≥ 0, a constant independent of S and k, satisfying:

V0 +
k−1∑
i=0

Hi(S′)∆iS
′ ≥ −A, 0 ≤ k ≤ NH(S′), ∀S′ ∈ S(S,n). (4.8)

(3) There exists δ, a constant that may depend on H, satisfying:
∀S′ ∈ S(S,n) and i ≥ n such that (S′, i) is an up-down node: (4.9)

if Hi(S′) 6= 0 then ∃ Ŝ ∈ S(S′,i) such that −Hi(Ŝ) ∆iŜ ≥ δ > 0.
Then, for any ε > 0, there exists Sn,ε ∈ S(S,n) so that H and Sn,ε are ε-contrarian
beyond n. In particular, if hypotheses (2) and (3) above are satisfied for all H ∈ H,
then M is conditionally 0-neutral at (S, n).

Item 1 above only allows a constant maximum m̂ of arbitrage 0-neutral and
flat nodes along each trajectory but, those nodes, are allowed to be arbitrarily
distributed along such trajectory.

Proof. It is enough to consider the case n < NH(S′) for any S′ ∈ S(S,n). We will
establish the existence of S∗ ∈ S(S,n) such that −

∑NH(S∗)−1
i=n Hi(S∗)∆iS

∗ ≥ 0, and
this will conclude the proof.

Let n0 be the smallest integer satisfying n ≤ n0 < NH(S) and Hn0(S) 6= 0. If
such n0 does not exist we take S∗ ≡ S. There are two possibilities: a) (S, n0) is an
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arbitrage 0-neutral node; b) (S, n0) is an up-down node. In case a), it follows that
there exists Sn,0 ∈ S(S,n0) ⊂ S(S,n) satisfying ∆n0S

n,0 = 0, hence

−Hn0(Sn,0)∆n0S
n,0 ≥ 0. (4.10)

In case b), from the up down property, there exists Sn,0 ∈ S(S,n) such that

−Hn0(Sn,0)∆n0S
n,0 ≥ δ. (4.11)

If NH(Sn,0) ≤ n0 + 1, since Hi(S) = 0, n ≤ i < n0, then (4.10) or (4.11) show
that S∗ ≡ Sn,0 satisfies the conditions of a contrarian trajectory we are looking
for. So, assume n0 + 1 < NH(Sn,0).

Proceeding recursively, we may assume that we have either constructed the
desired trajectory or we have at our disposal a trajectory Sn,k ∈ S(Sn,k−1,nk),
satisfying

−Hnk(Sn,k)∆nkS
n,k ≥ 0 or −Hnk(Sn,k)∆nkS

n,k ≥ δ
as well as

−Hi(Sn,k)∆iS
n,k = 0, for nk−1 < i < nk.

We then look for the smallest nk+1 satisfying nk < nk+1 < NH(Sn,k) and
Hnk+1(Sn,k) 6= 0. If such nk+1 does not exist the construction terminates by taking
S∗ ≡ Sn,k, thus concluding the proof. Otherwise, there exists Sn,k+1 ∈ S(Sn,k,nk+1),
and by means of the alternatives a) and b), and other considerations above, we ob-
tain that the following holds:
−Hnk+1(Sn,k+1)∆nk+1S

n,k+1 ≥ 0 or −Hnk+1(Sn,k+1)∆nk+1S
n,k+1 ≥ δ,

as well as
−Hi(Sn,k)∆iS

n,k+1 = 0, for nk < i < nk+1.

Continuing in this way, we have the following exclusive alternatives: i) we man-
aged to construct the desired trajectory and, hence, the recursion terminates; ii)
the recursion continues indefinitely, in which case we have:

−
m∑
k=0

Hnk(Sn,k)∆nkS
n,k = −

nm∑
i=n

Hi(Sn,m)∆iS
n,m

= −
nm∑
i=n0

Hi(Sn,m)∆iS
n,m ≥ [m+ 1− m̂)]δ, ∀m > m̂,

(4.12)

where we used the fact that Hnk(Sn,k)∆nkS
n,k = Hnk(Sn,m)∆nkS

n,m for 0 ≤ k ≤
m.

Let us show that (4.12) conflicts with (4.8) (recall that Hi(Sn,m) = Hi(S) = 0,
n ≤ i < n0):

V0 +
nm∑
i=0

Hi(Sn,m)∆iS
n,m = V0 +

n−1∑
i=0

Hi(S)∆iS +
nm∑
i=n

Hi(Sn,m)∆iS
n,m

≤ V0 +
n−1∑
i=0

Hi(S)∆iS − [m+ 1− m̂)] δ < −A,

(4.13)

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)
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where we obtained the last inequality by taking m sufficiently large; let us denote
the smallest integer satisfying (4.13) by m∗. This argument just proves that we
can not have nm∗ ≤ NH(Sn,m∗) as otherwise we have a contradiction with (4.8); it
then follows that nm∗ > NH(Sn,m∗) > n. To sum up: −Hi(Sn,m

∗)∆iS
n,m∗ ≥ 0 for

all n ≤ i < NH(Sn,m∗), Sn,m∗ ∈ S(S,n) hence S∗ ≡ Sn,m∗ is a contrarian trajectory
that extends S beyond n. The conditionally 0-neutral property then follows from
Proposition 4. �

Remark 3. Notice that we have established more than is required in Definition 11
as each term in (4.4) has proven to be non-negative. The hypothesis (4.9) is only
used to extract the required information from the up-down nodes.

The following corollary provides existence of the pricing interval in the setting of
Theorem 2, we borrow all assumptions from that theorem but need to strengthen
(4.9) so that the addition of portfolios obeys that equation as well.

Corollary 2. Consider a market M = S ×H, a function Z defined on S, S ∈ S,
and n ≥ 0 fixed. Assume that all hypotheses of Theorem 2 are satisfied, and that
either NH is a stopping time for all H ∈ H or all H ∈ H are liquidated. Moreover,
we strengthen (4.9) by assuming there are absolute positive constants δH > 0, ρ > 0,
γ < 0 such that
Hi(S′) ∈ {k δH : k ∈ Z} and for all up-down nodes (S′, i), S′ ∈ S(S,n), i ≥ n,

(4.14)
and the following holds:

sup
Ŝ∈S(S′,i)

∆iŜ > ρ and inf
Ŝ∈S(S′,i)

∆iŜ < γ.

Then,
V n(S,Z,M) ≤ V n(S,Z,M).

Proof. Let H̃ ≡ H+H. We will argue that Theorem 2 is applicable to S × H̃ and
borrow the notation used in that theorem. Assumption (2) in Theorem 2 can be
made to hold for H̃ by defininig A(H1 +H2) = A(H1)+A(H2) whenever Hk ∈ H,
k = 1, 2. Also assumption (3) in Theorem 2 holds with δ ≡ min(δH ρ,−γ δH) for
H̃ given our assumption (4.14). Therefore, M̃ = S × H̃ is conditionally 0-neutral
at (S, n). It follows that

V n(S,Z,M) ≤ V n(S,Z,M̃) ≤ V n(S,Z,M̃) ≤ V n(S,Z,M),
where the innermost inequality follows from Theorem 1. �

4.2. Relation with arbitrage. This short section connects the approach of the
paper with the usual notion of arbitrage. In particular, Corollary 4 provides a
sufficient condition for a market to be arbitrage free.

See Equation (2.2) for the precise definitions of quantities appearing below.

Definition 12 (Arbitrage-Free Market). Given a marketM, H ∈ H is an arbitrage
strategy if:
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• ∀S ∈ S, VH(NH(S), S) ≥ VH(0, S0).
• ∃S∗ ∈ S satisfying VH(NH(S∗), S∗)) > VH(0, S0).

We will say that M is arbitrage-free if H contains no arbitrage strategies.

The above definition is the classical probabilistic definition ([4]), but inequal-
ities are now required to hold pointwise (as opposed to a.e.). When NH(S) =
T, ∀S,∀H, it corresponds to the notion of 1-point arbitrage introduced in [20]
and [6]. Comparing with Definition 6, H with initial capital V0 = 0 is an arbitrage
strategy if and only if it is an extended arbitrage with respect to Z = 0.

The following proposition mimics Proposition 4; some of the similarity is lost
because we have not introduced conditional versions of arbitrage.

Proposition 5. M is arbitrage-free if and only if for each H ∈ H we have:

∃S0 ∈ S such that H and S0 are 0-contrarian beyond n = 0, or

NH(S)−1∑
i=0

Hi(S)∆iS = 0 ∀S ∈ S.

Clearly if H and S are ε′-contrarian then they will be also ε-contrarian if ε ≥ ε′;
this comment and Proposition 4 imply the following corollary, which shows that
0-neutral is a necessary condition for a market to be arbitrage-free.

Corollary 3. If M is arbitrage-free, then M is 0-neutral.

The converse of Corollary 3 does not hold in general. Consider a market with
NH = 1, ∀H ∈ H. If supS∈S ∆0S > 0 and infS∈S ∆0S = 0, it provides a clear
arbitrage with H0 ≡ 1, nonetheless the market is 0-neutral. We have seen in the
previous section that a well defined option pricing methodology is still possible.

A study of the proof of Theorem 2 in conjunction with Proposition 5 gives the
following corollary.

Corollary 4. Assume the same hypothesis as in Theorem 2 and, furthermore,
require m̂ = 0. Then, M = S ×H is arbitrage-free.

5. Attainability. Formal martingale properties

This section concerns the notion of attainability, as well as a generalization
of this notion and some implications. Under the assumption of attainability the
minmax bounds are additive; we also present results providing formal analogues of
martingale properties.

Definition 13. Given a marketM = S ×H and non-negative numbers ε↑ and ε↓,
a function Z is called ε↑-upward attainable if there exists H↑ ∈ H and a number
V ↑ such that

0 ≤ V ↑ +
N
H↑ (S)−1∑
i=0

H↑i (S) ∆iS − Z(S) ≤ ε↑ ∀S ∈ S. (5.1)
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Analogously, Z is called ε↓-downward attainable if there exists H↓ ∈ H and a
number V ↓ such that

0 ≤ −V ↓ −
N
H↓ (S)−1∑
i=0

H↓i (S) ∆iS + Z(S) ≤ ε↓ ∀S ∈ S. (5.2)

Finally Z is called attainable (or replicable) if it is 0-upward (or downward) at-
tainable, in such a case we use the notation Hz = H↑ and VHz = V ↑.

The next proposition shows that the distance separating the price bounds is
bounded by the maximum profits.

Proposition 6. Let M = S ×H be a market, S∗ ∈ S, k ≥ 0 and Z a function on
S. Assume all H ∈ H are liquidated and consider the statements:
a) Z is ε↑-upward attainable and −H↑ ∈ H.
b) Z is ε↓-downward attainable and −H↓ ∈ H.
Then, the following holds:

V k(S∗, Z,M)− V k(S∗, Z,M) ≤ ε, (5.3)

where ε = ε↑ if a) holds, ε = ε↓ if b) holds and ε = ε↑ ∧ ε↓ if a) and b) hold.

Proof. Introduce the notation V ↑(k, S∗) ≡ V ↑+
∑k−1
i=0 H

↑
i (S∗) ∆iS

∗ and V ↓(k, S∗) ≡
V ↓ +

∑k−1
i=0 H

↓
i (S∗) ∆iS

∗. If a) holds, it follows from (5.1) and −H↑ ∈ H that

−V k(S∗, Z,M) ≤ sup
S∈S(S∗,k)

[−Z(S)−
N
H↑ (S)−1∑
i=k

−H↑i (S)∆iS] = −V ↑(k, S∗) + ε↑.

Display (5.1) also implies V k(S∗, Z,M) ≤ V ↑(k, S∗), therefore

V k(S∗, Z,M) ≥ V ↑(k, S∗)− ε↑,

so (5.3) holds.
Similarly if b) holds, it follows from (5.2) that

V k(S∗, Z,M) ≤ V ↓(k, S∗) + ε↓ and V k(S∗, Z,M) ≥ V ↓(k, S∗).

So (5.3) holds. �

In general, the bounds are not linear as functions of the payoff. The following
result presents a case where the bounds are additive. For the sake of generality
the corollary below directly assumes V k(S∗, Z,M) ≤ V k(S∗, Z,M) instead of any
specific hypothesis leading to this inequality.

Corollary 5. Consider a market M = S ×H, S∗ ∈ S, k ≥ 0 and Z a function on
S. Assume all H ∈ H are liquidated and V k(S∗, Z,M) ≤ V k(S∗, Z,M).
a) If Z is attainable with portfolio Hz and −Hz ∈ H then

V k(S∗, Z,M) = V k(S∗, Z,M) = VHz +
k−1∑
i=0

Hz
i (S∗)∆iS

∗. (5.4)
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b) If Zj, j = 1, 2, are attainable with portfolios Hzj satisfying: −Hzj ∈ H and
Hz1 +Hz2 ∈ H, then

V k(S∗, Z1 + Z2,M) = V k(S∗, Z1,M) + V k(S∗, Z2,M). (5.5)

Proof. By assumption,

Z(S) = VHz (k, S) +
NHz (S)−1∑

i=k
Hz
i (S)∆iS, ∀S ∈ S,

where we have used the abbreviation VHz (k, S) ≡ VHz +
∑k−1
i−0 H

z
i (S)∆iS, with

some abuse of notation (as VHz may not be necessarily equal to VHz (0, S)). It then
follows that

V k(S∗, Z,M) ≤ VHz (k, S∗).
Similarly, since −Hz ∈ H, thus

V k(S∗, Z,M) = −V k(S∗,−Z,M) ≥ VHz (k, S∗).

Notice that Proposition 6 is applicable and (5.3), together with our hypothesis,
gives V k(S∗, Z,M) = V k(S∗, Z,M). This equality combined with the above in-
equalities concludes the proof of (5.4).

The proof of (5.5) follows from (5.4) after noticing that Z ≡ Z1+Z2 is attainable
and VHz (k, S∗) = VHz1 (k, S∗) + VHz2 (k, S∗). �

The following corollary expresses a consistency result, namely today’s stock price
is the minmax price in a 0-neutral market M. Assumptions leading to the con-
clusion V (S,Z,M) ≤ V (S,Z,M), for any S ∈ S (as in Theorem 1, Proposition 2,
and Corollary 2), will be required. The corollary below can be considered as a
trajectorial analogue of the optional stopping theorem for martingales, one could
also prove that a stopped 0-neutral trajectory set is also 0-neutral and so providing
a fuller analogy to the mentioned theorem.

For a stopping time τ we introduce notation to be used in the following corollary.
Define Gτ by:

Gτi (S) = 1 for 0 ≤ i ≤ τ(S)− 1, NGτ (S) = τ(S), and VGτ (0, S0) = S0;

also set Gτi (S) = 0 for i ≥ τ(S).

Corollary 6. Let τ be a stopping time and M = S ×H a market and assume all
H ∈ H are liquidated. Fix S∗ ∈ S, k ≥ 0 and assume the conditions on M that
assure the existence of a pricing interval. If Gτ and −Gτ belong to H, then

V k(S∗, Sτ ,M) = V k(S∗, Sτ ,M) = S∗k∧τ(S∗), (5.6)

where Sτ denotes the function Z, defined on S by Z(S) = Sτ(S).

Conversely, set τ(S) ≡ k+1 for all S, and assume that for all H ∈ H, H+Gτ ∈
H. Then if V k(S∗, Sτ ,M) = S∗k , it follows that M is conditionally 0-neutral at
(S∗, k).
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Proof. Notice that Sτ(S) = S0 +
∑τ(S)−1
i=0 ∆iS, for any S ∈ S, and Gτ is clearly

non-anticipative. So Z = Sτ is attainable. Therefore, Corollary 5 is applicable
giving (5.6) since VGτ (k, S∗) = S∗k∧τ(S∗).

For the second statement, if V k(S∗, Sτ ,M) = S∗k , then

0 = inf
H∈H
{ sup
S∈S(S∗,k)

[Sτ(S) − Sk −
NH(S)−1∑
i=k

Hi(S) ∆iS)]}

= inf
H∈H
{ sup
S∈S(S∗,k)

[−(
NH(S)−1∑
i=k

Hi(S)−
τ(S)−1∑
i=k

Gτi (S)) ∆iS)]}

≤ inf
H∈H
{ sup
S∈S(S∗,k)

[−
NH(S)−1∑
i=k

Hi(S) ∆iS)]}.

The last inequality holds, because H +Gτ ∈ H for all H ∈ H, and then H ⊂ {H −
Gτ : H ∈ H}. Finally, since the portfolio 0 ∈ H, it follows that V k(S∗, 0,M) = 0.
Therefore, M is conditionally 0-neutral at (S∗, k). �

6. Relation to risk neutral pricing

This section defines a marketM from a continuous-time martingale market. The
results give some perspective to our approach and allow to establish connections
between the minmax bounds and risk neutral pricing. Trajectory spaces are defined
by stopping times samples of continuous-time martingale paths. A main point
to emphasize is that the 0-neutral property holds due to the discrete sampling
via stopping times and the martingale property; we do make use of the extended
formalism as described in Section 2.2.

Consider a stochastic market model consisting of a probability space (Ω,F , P )
where F = {Ft}0≤t≤T is a continuous-time filtration. Also there is an adapted
process X = {Xt}0≤t≤T taking values on R, we also assume F0 is the trivial sigma
algebra. Moreover, there exists a measure Q, equivalent to P , such that X is a
martingale relative to F and Q. This setting represents an arbitrage-free (in a
stochastic sense), 1-dimensional market with a deterministic bank account with 0
interest rates. A European payoff Y is a real valued function defined on Ω, non-
negative, FT -measurable with respect to Q. A risk neutral price of such a claim is
then given by EQ(Y ), where the expectation is with respect to a measure Q.

Naturally, we assume that quantities defined on Ω are only defined a.e., we will
not explicitly indicate this fact in every instance but will do so in critical aspects
of the constructions. The context should make it easy to realize if we are referring
to filtration-based stopping times or trajectory-based stopping times.

6.1. Martingale trajectory market. A sequence of (filtration-based) stopping
times τ = {τi}, relative to the filtration F , is said to be admissible if τi ≤ τi+1,
0 = τ0 and, for a given ω, there exists a smallest integer M = Mτ (ω) such that
τM (ω) = T . All sequences of stopping times considered in the remaining of this
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section are admissible, this fact may not be explicitly indicated. For simplicity, we
may write Xτi(ω)(ω), and related quantities, as Xτi(ω).

On the stochastic side, at some points we will look at portfolios of the form

uy0 +
Mτ−1∑
i=0

Uyi (Xτi+1 −Xτi), for a constant uy0,

where the investment Uyi is Fτi-measurable. For technical reasons we will assume
there exists a countable subset C of [0, T ], with 0, T ∈ C, and the quantities Ui(ω)
depend only on Xs, s ∈ C. This assumption is formalized next.

We will assume that all τ = {τi} are such that the τi take values on C. Let Ω0
be a set of full measure where all random variables Xs, s ∈ C, are defined and let
Ω0(τ) be a set of full measure contained in Ω0 where all random variables {Xτi}
are defined.

For given τ and ω ∈ Ω0(τ) define xω,τi : C → R by xω,τi(s) = Xs∧τi(ω)(ω); also
set
U(τ) = {U = {Ui}i≥0 : Ui : Ω0(τ)→ R, Ui(ω) = 1{Mτ>i}(ω)FUi (xω,τi)}, (6.1)

where FUi : RC → R is a bounded and Borel measurable function.
Recall that the Borel subsets of RC , denoted by B(RC), are generated by the

family of cylinders {x ∈ RC : x(cj) ∈ Γ, 1 ≤ j ≤ n}, with Γ ∈ B(R).

Corollary 7. Let U = {Ui}i≥0 ∈ U(τ). Assume Mτ is a Fτ ≡ {Fτi}i≥0 stopping
time. Then Ui ∈ Fτi for all i ≥ 0.

Proof. Fix i ≥ 0. Consider the function φ : (Ω,Fτi) → (RC ,B(RC)), defined by
φ(ω) = xω,τi . Lemma 3, in Appendix E, shows that φ is measurable. It follows
that for Fi as in (6.1) and any Γ ∈ B(R)

(Fi ◦ φ)−1(Γ) = φ−1(F−1
i (Γ)) ∈ Fτi ,

since F−1
i (Γ) ∈ B(RC), thus Fi ◦ φ is Fτi-measurable.

Given that Ui = 1{Mτ>i}(Fi ◦ φ), and 1{Mτ>i} is Fτi -measurable, Ui ∈ Fτi
too. �

Regarding the trajectories defined below: we sample, a finite (but arbitrary)
number of times, every random trajectory, and we record those values as well as
other information that will be needed (see comments below). The notation below
is from Section 2.2.

Given τ , define

SW(τ) = {S = (S,W ) = {(Si,Wi)}i≥0 : ∃ω ∈ Ω0(τ),
Si = Xτi(ω)(ω), Wi = (τi(ω), xω,τi)}. (6.2)

Also define SW ≡ ∪τSW(τ), where the union is taken over admissible sequences of
stopping times.

The inclusion of τi(ω) and xω,τi in Wi allows the functions Hi and NH (defined
below) to be well defined and H to be non-anticipative. Equality is defined as
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follows. Let (S,W ) ∈ SW(τ), (S′,W ′) ∈ SW(τ ′);then (S,W ) = (S′,W ′) if and
only if Xτi(ω) = Xτ ′

i
(ω′), τi(ω) = τ ′i(ω′), and xω,τi = xω′,τ ′

i
, ∀ i ≥ 0.

As a shorthand notation, the association between martingale paths, the stopping
time and the trajectory values described in (6.2) will be denoted by S � Xτ (ω).

Define
H = {H = {Hi}i≥0 : Hi : SW → R}, (6.3)

where the functions Hi are defined as follows: there exists a bounded Borel function
Fi : RC → R with the property that, for S � Xτ (ω),

Hi(S) = 1{Mτ>i}(ω)Fi(xω,τi) and NH(S) = Mτ (ω). (6.4)

Proposition 7 below shows thatH andNH are well defined andH is non-anticipative.
We allow arbitrary values for VH(0, S0), initial portfolio values, and define the bank
account value sequence {Bi} such that portfolios are self financing as indicated in
Remark 1.

The association described in (6.4) will be denoted by H � F .

Proposition 7. Portfolios H and functions NH introduced by (6.3) and (6.4) are
well defined on SW and portfolios H are non-anticipative as well.

Proof. Let S = (S,W ), S′ = (S′,W ′) ∈ SW with S � Xτ (ω) and S′ � Xτ ′(ω′).

1. Assume that S = S′, then W = W ′ implies τ ′j(ω′) = τj(ω) ∀j ≥ 0. Thus

τ ′j(ω′) = τj(ω) < T for 0 ≤ j < Mτ (ω) so Mτ ′(ω′) ≥Mτ (ω).

Since the former reasoning is symmetric, Mτ ′(ω′) = Mτ (ω), and NH is well defined.
Fix now i ≥ 0, therefore by the previous statement, Mτ (ω) > i if and only if

Mτ ′(ω′) > i. Moreover, since xω,τi = xω′,τ ′
i
, it follows that

Hi(S′) = 1{Mτ′>i}(ω
′)Fi(xω′,τ ′

i
) = 1{Mτ>i}(ω)Fi(xω,τi) = Hi(S).

This shows that H is well defined.

2. To prove that H is non-anticipative, let i ≥ 0 fixed and assume (Sk,Wk) =
(S′k,W ′k), k = 0, . . . , i. We need to prove that Hi(S) = Hi(S′). Observe that
Mτ (ω) ≤ i if and only if Mτ ′(ω′) ≤ i. Indeed, if Mτ (ω) = N ≤ i, then τ ′N (ω′) =
τN (ω) = T, so Mτ ′(ω′) ≤ N ≤ i and, consequently, Hi(S) = Hi(S′) if that is the
case.

On the other hand, since xω,τk = xω′,τ ′
k

for 0 ≤ k ≤ i, again

Hi(S′) = 1{Mτ′>i}(ω
′)Fi(xω′,τ ′

i
) = 1{Mτ>i}(ω)Fi(xω,τi) = Hi(S). �

Define the martingale trajectory markets

M = SW ×H and M(τ) = SW(τ)×H,

where, in the case of M(τ), portfolios H act on SW(τ) ⊆ SW by restriction.

Remark 4. To lighten the notation, we will write SW(S,k)(τ) as S(S,k)(τ). Similarly,
we will write SW(S,k) as S(S,k).
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As preparation for the next result, let P = P(P ) be the set of all martingale
probability measures equivalent to P and let EQ(Y ) denote expectation with re-
spect to the probability measure Q.

For the next two results in this section, we are going to assume conditions under
which {Xτi}i≥0 behaves as a martingale with respect to Fτ ≡ {Fτi}i≥0; namely,

EQ[Xτi |Fτk ] = Xτk , i ≥ 1, k ≤ i.

Proposition 8. Let Y be a European payoff and, for a given τ , define Zτ (S) =
Y (ω) where S � Xτ (ω) and ω ∈ Ω0(τ). Assume that

sup
S∈SW(τ)

[Zτ (S)−
NH∗ (S)−1∑

i=0
H∗i (S)∆iS] <∞,

for some H∗ ∈ H. Assume also that Mτ is a stopping time w.r.t. Fτ , and that the
hypotheses of Lemma 4, in Appendix E, are satisfied. Then,

sup
τ

V ((S0,W0), Zτ ,M(τ)) ≤ inf
Q∈P

EQ(Y ) ≤ sup
Q∈P

EQ(Y )

≤ inf
τ
V ((S0,W0), Zτ ,M(τ)).

(6.5)

Proof. Notice that Ω0(τ), and hence also SW(τ), depends on P only through null
sets of P ; therefore, it remains unchanged if defined through any Q ∈ P.

For i ≥ 1 set Ωi(τ) ≡ {ω ∈ Ω0(τ) : Mτ (ω) > i}; it is clear that Ωi(τ) ∈ Fτi ,
and if Mτ is bounded then Ω0(τ) = Ωcm(τ) for some m ≥ 1. Consider H ∈ H
and S = (S,W ) ∈ SW with S � Xτ (ω). For any i ≥ 0, from definition (6.3),
Hi(S) = 1Ωi(τ)(ω)Fi(xω,τi), with Fi : RC → R a bounded Borel function. Defining
Ui(ω) = 1Ωi(τ)(ω) Fi(xω,τi), it follows that U = {Ui}i≥0 ∈ U(τ), and by Corollary 7
Ui ∈ Fτi . We have

Y (ω)−
Mτ (ω)−1∑
i=0

Ui(ω)(Xτi+1(ω)−Xτi(ω)) = Zτ (S)−
NH(S)−1∑

i=0
Hi(S)∆iS

≤ sup
S∈SW(τ)

[Zτ (S)−
NH(S)−1∑

i=0
Hi(S)∆iS]. (6.6)

So, since it holds with H∗, and
∑Mτ−1
i=0 Ui(Xτi+1 −Xτi) is integrable by Lemma 4,

Y also results integrable.
Taking infimum and supremum on SW in (6.6), and then expectation w.r.t.

Q ∈ P,

− sup
S∈SW(τ)

[−Zτ (S)−
NH(S)−1∑

i=0
−Hi(S)∆iS] ≤ EQ[Y −

Mτ−1∑
i=0

Ui(Xτi+1 −Xτi)]

= EQ[Y ] ≤ sup
S∈SW(τ)

[Zτ (S)−
NH(S)−1∑

i=0
Hi(S)∆iS], (6.7)
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where we have used the fact that {Xτi}i≥0 is a martingale [17, Thm. 1.86] and
Lemma 4.

Notice that −H = H, we then obtain (6.5) by taking supremum and infimum
over H in the left hand side and right hand side of (6.7) respectively and then
making use of the fact that τ , admissible, was taken arbitrary in the above argu-
ments. �

Remark 5. The condition supS∈SW(τ)[Zτ (S) −
∑NH(S)−1
i=0 Hi(S)∆iS] < ∞ re-

quired in the previous Proposition, is equivalent to V (S0, Zτ ,Mτ ) < ∞, so it is
satisfied when Zτ is an upper minmax function (see [13]).

For the case when Ω is finite or, more generally, purely atomic, it should be clear
that all nodes in SW are arbitrage-free nodes according to Definition 10 (this can
be readily obtained from Theorem 3.1 in [22]).

The next result represents the key property connecting martingale trajectory
markets with the formalism of the paper.

Theorem 3. Consider a martingale trajectory market M(τ) which satisfies the
conditions of Lemma 4 in Appendix E. Then, for any S = (S,W ) ∈ SW(τ) and
k ≥ 0,

V k(S, Z ≡ 0,M(τ)) = 0. (6.8)

That is, M(τ) is conditionally 0-neutral at any S and for any k ≥ 0, according to
Definition 8.

Proof. Fix τ admissible, k ≥ 0 and define, for a given ω ∈ Ω0(τ):

Ωω,k(τ) = {ω′ ∈ Ω0(τ) : Xs(ω′) = Xs(ω) ∀ s ∈ C ∩ [0, τk(ω)],
and τi(ω′) = τi(ω), for 0 ≤ i ≤ k}.

Lemma 5, in Appendix E, shows that Ωω,k(τ) ∈ Fτk .
Notice that ω′ ∈ Ωω,k(τ) implies S′ = (S′,W ′) ∈ S(S,k)(τ), where S � Xτ (ω),

S′ � Xτ (ω′), this claim is obvious as we have Xτ ′
i
(ω′)(ω′) = Xτi(ω)(ω), 0 ≤ i ≤ k.

Furthermore, Xs∧τ ′
i
(ω′)(ω′) = Xs∧τi(ω)(ω) ∀s ∈ C ∩ [0, τk(ω)] and so W ′i = Wi,

0 ≤ i ≤ k.
Given Hi(S,W ) = 1Ωi(τ)(ω)Fi(xω,τi) where Fi : RC → R is bounded and Borel

and S � Xτ (ω), define Ui(ω) = 1Ωi(τ)(ω)Fi(xω,τi) for ω ∈ Ω0(τ). From the above
claim, the following holds everywhere on Ωω,k(τ):

[−
Mτ (ω)−1∑
i=k

Ui(ω) (Xτi+1 −Xτi)(ω)] = [−
NH(S)−1∑
i=k

Hi(S) (Si+1 − Si)]

≤ sup
S̃∈S(S,k)(τ)

[−
NH(S̃)−1∑
i=k

Hi(S̃) ∆iS̃].
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Under the assumptions of Lemma 4 (b),

0 = 1Ωω,k(τ)E[−
Mτ−1∑
i=k

Ui (Xτi+1 −Xτi)|Fτk ]}

= E[1Ωω,k(τ) −
Mτ−1∑
i=k

Ui (Xτi+1 −Xτi)|Fτk ]}

≤ 1Ωω,k(τ) sup
S̃∈S(S,k)(τ)

[−
NH(S̃)−1∑
i=k

Hi(S̃) ∆iS̃].

Therefore

0 ≤ sup
S̃∈S(S,k)(τ)

[−
NH(S̃)−1∑
i=k

Hi(S̃) ∆iS̃]

holds for all S = (S,W ) ∈ SW(τ) and so:

0 ≤ inf
H∈H

sup
S̃∈S(S,k)(τ)

[−
NH(S̃)−1∑
i=k

Hi(S̃) ∆iS̃]. (6.9)

As the portfolio Hi = 0, ∀ i ≥ 0, is in H, it follows from (6.9) that (6.8) holds. �

Theorem 3 extends trivially to martingale trajectory sets of the form SW =
∪τSW(τ).

A function Y : Ω → R is called τ -attainable if there exist an admissible τ and
Uy ∈ U(τ) such that

Y = uy0 +
Mτ−1∑
i=0

Uyi (τ)(Xτi+1 −Xτi), a.e. for a constant uy0.

Theorem 4. Consider a martingale trajectory market M(τ) which satisfies the
conditions of Lemma 4 in Appendix E. Let Y be τ -attainable and define Z(S) =
Zτ (S) = Y (ω) where S � Xτ (ω) and ω ∈ Ω0(τ). Then

Yk(ω) = V k(S, Z,M(τ)) = V k(S, Z,M(τ)), ∀ω ∈ Ω0(τ) and ∀ 0 ≤ k ≤Mτ(ω),

where Yk ≡ uy0 +
∑k−1
i=0 U

y
i (Xτi+1 − Xτi), holds everywhere on Ω0(τ). Moreover,

Yk = E(Y |Fτk) a.e. on Ω and E(·) = EQ(·) and Q is any martingale measure
equivalent to P .

Proof. Notice that the following holds for all ω ∈ Ω0(τ):

k−1∑
i=0

Uyi (ω)(Xτi+1(ω)−Xτi)(ω))+uy0 = Y (ω)−
Mτ (ω)−1∑
i=k

Uyi (ω)(Xτi+1(ω)−Xτi(ω)),

(6.10)
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which, given that S � Xτ (ω), is the same as:
k−1∑
i=0

Hz
i (S) ∆iS + uy0 = Z(S)−

NHz (S)−1∑
i=k

Hz
i (S) ∆iS.

We have used the notation Hz
i (S) ≡ 1Ωi(τ)F

Uy

i (xω,τi) = Uyi (ω).
Taking the conditional expectation of both sides of (6.10) with respect to Fτk

and using Lemma 4, gives

Yk =
k−1∑
i=0

Uyi (Xτi+1 −Xτi) + uy0 = E(Y −
Mτ−1∑
i=k

Uyi (Xτi+1 −Xτi))|Fτk) = E(Y |Fτk).

(6.11)
The right hand side of (6.11) is only defined a.e. on Ω; in the case that is not
defined everywhere on Ω0(τ) (which, we recall, is a set of probability one) we do
extend E(Y |Fτk) to all of Ω0(τ) by means of the left hand side of (6.11).

At this point we recall Corollary 5, which is applicable to M(τ) because of
Theorem 3, which gives:

V k(S, Z,M(τ)) = V k(S, Z,M(τ)) =
k−1∑
i=0

Hz
i (S) ∆iS + uy0 = Yk(ω),

valid for all ω ∈ Ω0(τ) and S = Xτ (ω). �

Model uncertainty is usually treated by considering a subset of the set of equiv-
alent measures. There are examples of stochastic market models for which the
bounds infQ(Y ) and supQ(Y ) provide too large an interval in order to be infor-
mative for practical purposes. From a trajectory point of view such a situation
suggests: a) a deficiency of the market model (in particular the trajectory set S
may be too large), or b) the need to replace the super-hedging philosophy (and
hence risk-free approach) for a risk taking philosophy. In this last case, the error
functional used to define the bound V has to be replaced by an appropriate, tra-
jectory based, risk-functional. There are several other logical possibilities besides
a) and b), for example including liquid derivatives in the portfolio approximations
(see [1]).

We have considered the set P; it is also natural to seek an extension of the above
results to the case on non-equivalent martingale measures.

7. Conclusions and extensions

The paper develops basic results on arbitrage and pricing in a general trajectory
based market model. The setting naturally allows one to resort to a worst case
point of view which, in turn, permits arbitrage opportunities while at the same
time providing coherent prices. This fact reveals a basic extension to the classical
martingale market structure. The proposed framework has also a clear conceptual
and formal relationship to the well established risk-neutral approach. Given the
basic nature of the arguments it is expected that extensions to other settings are
possible as well.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)



TRAJECTORIAL MARKET MODELS 173

We have concentrated on bounding the price of an option through superhedging
and underhedging, selecting an actual price inside of this interval may require to
adopt a functional to accommodate the ensuing risk-taking.

Arguably, attempting a direct evaluation of the minmax optimization required in
(3.1) and in related results, is a daunting task. Moreover, the minmax formulation
of the problem gives no clues on how to construct the hedging values Hi(S), for a
given payoff Z, by means of the unfolding path values S0, S1, S2, . . . In the paper
[13], and following [5], we propose another pair of numbers, obtained through a
dynamic, or iterative, definition, each instance involving a local minmax optimiza-
tion. Using the new dynamic minmax definitions, [13] provides conditions under
which the global and the iterated definitions coincide.

Appendix A. Example

To motivate and illustrate markets M = S × H, we introduce a family of ex-
amples modeling discretizations of stock charts. For the time being such charts are
assumed to be given as a family of continuous-time functions X (x0) ⊆ X∞(x0) ≡
{x ∈ R[0,T ] : x(0) = x0}, with x0, T > 0 and s0 = ex0 . We will rely on some
definitions.
Refining Sequence of Partitions: Consider a sequence {Πn}n≥1, where Πn = {rni }
is a finite partition of [0, T ] with rn0 = 0 and Πn ⊆ Πn+1. Let Π ≡ ∪n≥1Πn.
Selected times: Let t = {ti}i≥0 be a sequence of functions ti : X (x0) → Π such
that t0 = 0,
∀x ∈ X (x0) ∃m(x) ∈ N : ti(x) < ti+1(x), if 0 ≤ i < m(x), ti(x) = T, if i ≥ m(x),
and
∀i ≥ 1, if x̃, x ∈ X (x0) with x̃(s) = x(s) for 0 ≤ s ≤ ti(x) then ti(x̃) = ti(x).

Observe that for any x ∈ X (x0) there exists n ≥ 1 such that {ti(x)}i≥0 ⊂ Πn.
This is so because ti(x) ∈ Π implies that there exists ni, the minimum such that
ti(x) ∈ Πni , and n = max{ni : 0 ≤ i ≤ m(x)}.

Let R = (Π, t), and define the following general class of discrete trajectories:
S(s0,X ,R) ≡ {S = {Si}i≥0 : Si = exp(x(ti)), i ≥ 0, for some x ∈ X (x0)},

(ti = ti(x)).
General aspects. A refining sequence of partitions reflects a financial situation
where the investor re-balances her/his portfolio with a certain minimum time res-
olution but is willing to refine it further if deemed necessary. The case of a fixed
partition (Πn the same for all n) means that the investor will never rebalance more
often than an a-priori given time resolution.

There is no essential result in our paper that requires Si ≥ 0, so there is no need
to use the exponential function in the definition Si = ex(ti) but, doing so makes it
easier to connect with the usual geometric stochastic models as well as with [5].

We are interested in prescribing “structured” subsets of S(s0,X ,R), we do this
by means of an observable functional F . For simplicity, the functional could be
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174 S. E. FERRANDO, A. L. GONZÁLEZ, I. L. DEGANO, AND M. RAHSEPAR

defined on X (x0) (and could depend on other variables as well) and takes values
on R ∪ {∞}. As a particular case, the functional F selects those x ∈ X (x0) such
that x has finite quadratic variation in the interval [s, t] respect to Π, that is, the
following limit exists

F (x, s, t) = lim
n→∞

∑
s≤rn

i
, rn
i+1≤t

(x(rni+1)− x(rni ))2. (A.1)

Other observable, additive, non-decreasing and non-negative quantities could be
used as well, for example, the number of transactions from t0 = 0 to t, or the total
number of shares transacted from t0 = 0 to t. Intuitively, each time a transaction
takes place, the value for the observable quantity represents the tick of a trajectory
based clock (usually interpreted as a “business clock” with trajectory dependent
rate.)

The following is an example of a structured discrete trajectory set. For c, d > 0
real numbers and Q ⊂ (0,∞), define

S(s0, c, d,Q) = {S ∈ S(s0,X ,R) : |x(ti+1)− x(ti)| ≤ d,
F (x, ti, ti+1) ≤ c, F (x, t0, tm(x)) ∈ Q, 0 ≤ i < m(x)}. (A.2)

For the case of the functional given by (A.1), the requirements defining S(s0, c, d,Q)
can be interpreted as imposing constraints on the maximum consumed quadratic
variation and on the maximum absolute value of the change on chart values, both in
between consecutive trading instances. In addition, the condition F (x, t0, tm(x)) ∈
Q means that we deal with trajectories whose total quadratic variation in the inter-
val [0, T ] belongs to the a-priori given subset Q. In effect, the imposed constraints
restrict the outcomes resulting from the interaction between market fluctuations
and portfolio rebalances.

A.1. Construction of trajectory sets from augmented data. Here we de-
scribe a set of trajectories that does not require a continuous time model for the
charts, we rely on the formalism from Section 2.2. The general principle guiding
the construction is to isolate an observable quantity (representing a variable of
interest) and proceed to define a trajectory space by imposing constraints relating
the trajectories and a free variable representing this observable. We work with ob-
servables given by a functional, still denoted by F , but now defined on charts (i.e.,
the values of some unfolding financial data), F may also depend on other variables
as well.

The definition of S(s0, c, d,Q) in (A.2) depends on having access to the func-
tions x ∈ X . We now turn the tables around and re-define S(s0, c, d,Q) as
SW(s0, c, d,Q), a set which does not require any reference to a given class of
continuous-time trajectories. We still allow observable charts to unfold in continuous-
time. Trajectories are given by a sequence of tuples S = {(Si,Wi)}i≥0, which will
be associated to samples of continuous-time charts. This is a natural way to pro-
ceed; information deemed important for modelling is lost when sampling, hence this
information will be encoded by the variable Wi (associated to the functional F ).
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The definition below assumes given: w0 = 0, s0 and c, d > 0 real numbers,∑
i ⊆ R and sets Q,Ωi ⊂ (0,∞).

Definition 14. SW(s0, d, c,Q) will denote a subset of SW∞ (s0, w0) so that S ∈
SW(s0, d, c,Q) satisfies Si ∈ Σi, Wi ∈ Ωi and:

(1) | logSi+1 − logSi| ≤ d for all i ≥ 0,
(2) 0 < Wi+1 −Wi ≤ c for all i ≥ 0.

Moreover, there exists at least one i∗ such that
(3) Wi∗ ∈ Q.

Associated markets SW(s0, c, d,Q) × H are required to satisfy: If H ∈ H then
WNH(S) ∈ Q.

Remark 6. As already mentioned, the condition | logSi+1 − logSi| ≤ d could
equally be replaced by |Si+1 − Si| ≤ d (of course with an appropriately chosen
value for d).

We emphasize that SW(s0, d, c,Q), as characterized above, does not need to be,
in general, the set of all trajectories S satisfying the listed constraints in Definition
(14); specific examples are described in [13]. Comparing with (A.2), we see that
we have allowed F to be an independent variable W . For S ∈ SW(s0, d, c,Q) there
could be multiple indexes i∗.

The set SW(s0, c, d,Q) is used for modelling the unfolding of a data chart x(ti)
by mapping {(ex(ti), F (x, t0, ti))}, one index i at a time (i.e., as the chart unfolds),
to its closest path {(Si,Wi)}i≥0.

The trajectory set introduced in [5] can be recovered as a special case of Defini-
tion 14 by taking Q = {v0} and defining

Wi =
i−1∑
k=0

(logSk+1 − logSk)2; (A.3)

moreover, we need to require the existence of i∗ satisfying Wi∗ = v0. Therefore
Wi+1 −Wi = (logSi+1 − logSi)2 and the constraint 0 < Wi+1 −Wi ≤ c in Defini-
tion 14 corresponds to c = d2. Moreover, as Wi depends on Sk, 0 ≤ k ≤ i, there
is no need to work with tuples (Si,Wi) in this case. Not imposing (A.3) allows
to incorporate 0-neutral nodes which are arbitrage nodes (see Definition 10 and
related comments afterwards.) An analysis of these considerations in the context
of the example is outside the scope of the paper, details are given in [13].

A natural discretization leading to an implementation of SW(s0, c, d,Q) is ob-
tained by introducing real numbers δ, β > 0. The coordinates Si are then restricted
to belong to the sets Σi = Σ(δ) ≡ {s0e

kδ, k ∈ Z} and Wi to Ωi ≡ Ω(β) = {jβ2, j ∈
N}, thus Q is now a set Q(β) ⊆ Ω(β).

Local behavior. The way of defining trajectory sets SW(s0, d, c,Q), or their finite
versions, will make it easy to check if the local properties of 0-neutral or up-down
are satisfied. This is so because our constraints are given locally (i.e., at each node)
and the combinatorial definitions will allow trajectories to move up or down. Next,
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as an illustration, we provide a general argument on how to argue for the validity
of these local properties.

Assume that the the sets Σi in the trajectory space SW(s0, c, d,Q) of Defini-
tion 14 do not attain minimum nor maximum and fix a node (Si,Wi) of a trajec-
tory S. Clearly, there exists the possibility of choosing trajectories S̃, Ŝ ∈ SW(S,i)

such that S̃i+1 > Si, and Ŝi+1 < Si respectively, so any node is up-down, and
in that case the market results locally arbitrage-free, see Definition 10. Specific
instances of the sets SW(s0, c, d,Q) or their discrete or finite versions will impose
further constraints beyond the ones listed in Definition 14. In each such case, we
will need to check the validity of the needed local requirements, 0-neutrality or
arbitrage-free, so that our results hold.

For display purposes, consider a finite space SW(s0, c, d,Q) consisting of all
trajectories satisfying the conditions in Definition 14 with N2 = N1 = 100, β =
δ = 0.0082, Q = {N2β

2}, c = d2, s0 = 1, p = 3 (and so d = 0.0246). Figure 1
shows 200 random samples of trajectories from such trajectory space. Figure 2
shows random samples of trajectories from two conditional spaces from the above
trajectory space.

Figure 1. Samples from trajectory space.

Appendix B. Connection with robust literature

This appendix relies on notation and results from [6] and [7]. Reference [7]
proves a dual representation for the superhedging functional V (·); the results are
only presently available for finitely many integer times t = 0, . . . , T .

We rely on notation from the mentioned references; we have replaced their sto-
chastic process notation {St} by {Xt}, to avoid confusion with our trajectory no-
tation S. For the sake of brevity, we refer to these references for some of the
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Figure 2. Sampled trajectories from conditional spaces.

notions that we have to rely upon. Also, the notation M from [6] and [7] has a
specific meaning (as described below) for this appendix only (i.e., unrelated to its
use elsewhere in the paper).

Let Ω be a Polish space with F ≡ B(Ω) the Borel sigma algebra. Let X = {Xt}
be random variables on Ω; let FX = {FXt } be the canonical filtration and consider
the universal filtration F = {Ft}, containing FX ([7]).

Let N (here, again, we depart from the notation used in [7]) be the set of prob-
ability measures Q on the measure space (Ω,F) such that X is a (Q,F) martingale
Let N+ ⊆ N be such that if Q ∈ N+ then supp(Q) = Ω (where supp(Q) denotes
the (topological) support of the measure Q).

With some abuse of notation let H denote the class of F-predictable processes
H = {Ht}. For the next result it is necessary to introduce another definition of
local arbitrage. That concept represents the situation when we know a trajectory
and an instance where an arbitrage opportunity will arise. It also assumes the
existence of a portfolio that takes advantage of the arbitrage opportunity.

A discrete market modelM = S×H is said to have a node of arbitrage (S, j,H)
if

inf
S̃∈S(S,j)

[Hj(S) ∆jS̃] ≥ 0 and sup
S̃∈S(S,j)

[Hj(S) ∆jS̃] > 0. (B.1)

The logical negation of the conditions in (B.1) will give local sufficient conditions
leading to (global) no arbitrage results:
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A discrete market M is said free of nodes of arbitrage if it has no nodes of
arbitrage at any (S,H, j), that is, the following holds at any node (S,H, j):

inf
S̃∈S(S,j)

[Hj(S) ∆jS̃] < 0, (B.2)

or
sup

S̃∈S(S,j)

[Hj(S) ∆jS̃] ≤ 0. (B.3)

Remark 7. Notice that above we refer to M as being free of nodes of arbitrage,
this is in contrast to saying, in Definition 10, that S is locally arbitrage-free. The
obvious relationship is spelled out in Proposition 9 below.

Proposition 9. Consider a trajectory space S that is locally arbitrage-free (as per
Definition 10) and H a portfolio set. Then,M = S×H is free of nodes of arbitrage
(as per equations (B.2) and (B.3)).

Proof. Fix H ∈ H, S ∈ S and j ≥ 0. If Hj(S) = 0, (B.3) is clearly verified. While
if Hj(S) 6= 0, then (B.2) or (B.3) are satisfied, whenever either (4.2) or (4.3) are
valid. �

The following proposition connects our setting with results from [6] and [7].

Proposition 10. Let S be a trajectory set, and assume Ω ≡ S to be Polish and H
as defined above. Set NH(ω) = T , for all ω ∈ Ω and H ∈ H. Then, if Ω is locally
arbitrage-free and Z is F-measurable:

V (Z) = sup
Q∈N

EQ(Z), (B.4)

and N+ 6= ∅.

Proof. To obtain (B.4) we will apply Theorem 1.1 from [7] to the process X = Π =
{Πt}, with Πt(S) = St. From this theorem and the definition of V (Z), equation
(B.4) will follow if Ω∗ = Ω (Ω∗ as defined in [7]). Our assumption on Ω being
locally arbitrage-free implies, by Proposition 9, that H has no 1-point arbitrage (as
in [7]). Therefore, from Proposition 4.1 in [6] and its proof, it follows that the no
1-point arbitrage property implies Ω∗ = Ω and N+ 6= ∅ as well. �

Apparently the above results also hold if one starts initially with a larger filtra-
tion {Gt} containing the canonical filtration and constructs the associated universal
filtration associated to such initial filtration. If that case, the above proposition
extends to the situation when Ω ≡ SW and if {Gt} is a filtration containing the
canonical filtration GS = {GSt }, the latter generated by the process Π = {Πt},
where Πt(S) ≡ St, t = 0, 1, . . ., with S = {(Si,Wi)}i≥0. So each Πt : Ω → R is
Gt-measurable.

Also observe that in [6, Lemma 3.6] it is proven that H ∈ H is a 1p-arbitrage
if and only if (S,H, t) is a node of arbitrage, for some S ∈ S and t ∈ {1, . . . , T}.
Consequently, if M is free of nodes of arbitrage the conclusion of Proposition 10
follows.
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The existence of 1-point arbitrage is the weakest possible arbitrage hence the
absence of such arbitrage is the strongest notion of no arbitrage considered in [6].
It guarantees the existence of a martingale measure having as support the original
trajectory space.

Appendix C. Other conditions to have a price interval

The following definition reflects the situation of an investor who decides condi-
tionally on a bounded number of transactions, that he/she will stop trading after
a certain fixed number of future trades. The setting allows for unbounded NH .

Definition 15 (Initially Bounded). Given a market M = S × H and H ∈ H; we
will call NH initially bounded if there exists a bounded function ρ : S → N (which
may depend on H) such that for all S ∈ S:

NH is bounded on S(S,ρ(S)). (C.1)

If NH is bounded, then it is actually initially bounded by taking ρ = NH .

The above definition gives a setting ensuring that a marketM is 0-neutral. For
reasons of space, we omit the proof of the following theorem, a particular case of
which was established in Corollary 1, Section 4.

Theorem 5. Given a market M = S ×H, k ≥ 0 and Sk ∈ S, assume that NH is
initially bounded for any H ∈ H and each node (S, j), with S ∈ S(Sk,k) and j ≥ k,
is 0-neutral. Then M is conditionally 0-neutral at (Sk, k).

The following corollary provides existence of the pricing interval in the setting
of Theorem 5. The sum of portfolios, used in the proof, is presented preceding
Lemma 2 in Appendix D.

Corollary 8. Consider a discrete market M = S × H, a function Z defined on
S, S ∈ S and k ≥ 0 fixed. Assume NH to be initially bounded for all H ∈ H and
either NH is a stopping time for all H ∈ H or all H ∈ H are liquidated. Then, if
each node (S̃, j), with S̃ ∈ S(S,k) and j ≥ k, is 0-neutral:

V k(S,Z,M) ≤ V k(S,Z,M).

Proof. Observe that the initially bounded property is closed under addition. In-
deed, let ρ1, ρ2 be the functions required by Definition 15 for H1, H2 ∈ H respec-
tively. Then, set H = H1 + H2 and ρ ≡ max{ρ1, ρ2}; since S(S,ρ(S)) ⊂ S(S,ρj(S)),
j = 1, 2, and so NH is bounded in S(S,ρ(S)). Therefore, Theorem 5 applies implying
M̃ = S × (H+H) is conditionally 0-neutral at (S, k). It follows that

V k(S,Z,M) ≤ V k(S,Z,M̃) ≤ V k(S,Z,M̃) ≤ V k(S,Z,M),
where the innermost inequality follows from Theorem 1. �

Remark 8. A more basic result is concealed in the proof of the last corollary,
indeed, under those hypotheses S × (H+H) is conditionally 0-neutral.
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Appendix D. Further properties of price bounds

The following developments are stated and proven with two portfolio setsH1,H2,
the reader could take H = H1 = H2, as the extra generality is not used in the rest
of the paper.

Define
H1 +H2 = {H1 +H2 : H1 ∈ H1, H2 ∈ H2},

where the sum H ≡ H1 +H2 is defined as follows:

NH ≡ max{NH1 , NH2},

Hi =
{
H1
i +H2

i if 0 ≤ i < min{NH1 , NH2},
Hj
i if min{NH1 , NH2} ≤ i,

(D.1)

where NH is attained in Hj , j = 1 or j = 2. We now check that the portfolio
sum H is non-anticipative under the assumption that NHj , j = 1, 2, are stopping
times. Let S′j = Sj , 0 ≤ j ≤ i; if i < min{NH1(S), NH2(S)} ≡ m, it is clear that
Hi(S) = Hi(S′). Consider then i ≥ m and assume, without lost of generality, that
N1
H(S) = m, then NH1(S′) = NH1(S). If NH2(S′) < NH1(S′), it would result that

S′j = Sj , 0 ≤ j ≤ NH2(S′), and so NH2(S′) = NH2(S) ≥ NH1(S) = NH1(S′), a
contradiction.

In case that the functions NHj are not stopping times, the portfolio sum H
is still non-anticipative if liquidation is assumed. Indeed, if the portfolios Hj are
liquidated at NHj , j = 1, 2 (i.e., for any S ∈ S, Hj

i (S) = 0 for i ≥ NHj (S)), the
sum definition in (D.1) reduces to

Hi = H1
i +H2

i for any i ≥ 0.

It is clear that if S, S′ ∈ S with S′j = Sj , 0 ≤ j ≤ i, for some i ≥ 0, then
Hi(S′) = H1

i (S′) +H2
i (S′) = H1

i (S) +H2
i (S) = Hi(S).

Observe also that for any S ∈ S and k ≥ 0,

NH(S)−1∑
i=k

Hi(S) ∆iS =
NH1 (S)−1∑

i=k
H1
i (S) ∆iS +

NH2 (S)−1∑
i=k

H2
i (S) ∆iS.

Lemma 2. Let M1 = S ×H1 and M2 = S ×H2 be markets, and assume either:
for all Hj ∈ Hj, j = 1, 2, NHj are stopping times or all Hj ∈ Hj, j = 1, 2, are
liquidated. Set M̃ = S × (H1 +H2) and S ∈ S and 0 ≤ k. Assume Z1, Z2, Z are
real valued functions defined on S; then

V k(S,Z1 + Z2,M̃) ≤ V k(S,Z1,M1) + V k(S,Z2,M2). (D.2)

Moreover, if M̃ is conditional 0-neutral at (S, k) then

V k(S,Z,M1) ≤ V k(S,Z,M2). (D.3)
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Proof. Let Hj be generic elements of Hj , j = 1, 2, so H1 +H2 ∈ H1 +H2. Then

V k(S,Z1 + Z2,M̃)

≤ sup
S̃∈S(S,k)

[Z1(S̃)−
NH1 (S̃)−1∑

i=k
H1
i (S̃) ∆iS̃ + Z2(S̃)−

NH2 (S̃)−1∑
i=k

H2
i (S̃) ∆iS̃]

≤ sup
S̃∈S(S,k)

[Z1(S̃)−
NH1 (S̃)−1∑

i=k
H1
i (S̃) ∆iS̃] + sup

S̃∈S(S,k)

[Z2(S̃)−
NH2 (S̃)−1∑

i=k
H2
i (S̃) ∆iS̃].

Therefore, taking infimum over H1 and H2,

V k(S,Z1 + Z2,M̃) ≤ V k(S,Z1,M1) + V k(S,Z2,M2).

This proves (D.2). For (D.3), by the result on (D.2) with Z1 = −Z and Z2 = Z,
and the conditional 0-neutral property of M̃ we have

0 = V k(S, 0,M̃) ≤ V k(S,−Z,M1) + V k(S,Z,M2),

which gives the desired result. �

D.1. Minmax functions. Conditions for boundedness of V (Z) and V (Z).
The general setting works with a general function Z : S → R but, in order to link
to finance and guarantee finiteness of the bounds, we introduce sufficient conditions
through the (so called) minmax functions.

The function Z is called a European option when there exist an integer M ,
a function Ẑ : RM → R, and stopping times τi ≤ τi+1, i = 1, . . . ,M , so that
Z(S) = Ẑ(Sτ1(S), . . . , SτM (S)). Ẑ will be called a payoff ; the setting allows for path
dependency. For a European call or put option (and so M = 1) portfolios in H
could/should be required to satisfy NH(S) ≤ τ1(S) for all H ∈ H and for all S.

Definition 16 (Upper and Lower Minmax Functions). Given a finite sequence of
stopping times (νi)ni=1 with νi < νi+1 for 1 ≤ i < n, a real sequence (ai)ni=1, and
b ∈ R, we call Z an upper minmax function if

Z(S) ≤
n∑
i=1

ai Sνi(S) + b, ∀S ∈ S.

Similarly, Z is called a lower minmax function if

Z(S) ≥
n∑
i=1

ai Sνi(S) + b, ∀S ∈ S.

Examples. The following examples show that some common options belong to
the class of minmax functions.

(1) If Z is a European call option with strike price K > 0 and N(S) a stopping
time, Z(S) = (SN(S) −K)+ ≤ SN(S), then Z is an upper minmax function with
n = 1, a1 = 1, ν1(S) = N(S), and b = 0.
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(2) If Z is a European put option with strike price K > 0 and N(S) a stopping
time, Z(S) = (K−SN(S))+ ≤ K, then Z is an upper minmax function with n = 1,
a1 = 0 and b = K.

Clearly, the above two examples are also lower minmax functions.

(3) Under the assumption Sk ≥ 0 for all S ∈ S and all k ≥ 0, if Z(S) =
amax1≤i≤n Sνi(S) + b with a > 0, then Z(S) ≤

∑n
i=1 a Sνi(S) + b and so Z is

an upper minmax function with ai = a for all i = 1, . . . , n.

(4) If Z(S) = 1
n

∑n
i=1 Sνi(S), then Z is an upper minmax function with ai = 1

n for
all i = 1, . . . , n and b = 0.

Notice that, in particular, if Sj is uniformly bounded from below by a constant,
for all j, then examples (3) and (4) are lower minmax functions as well.

Remark 9. Under some assumptions on the market M, such as conditionally 0-
neutral, it can be proven that the conditional bounds V k(S,Z,M) and/or
V k(S,Z,M) are finite when Z is an upper or lower minmax function; for reasons
of space, details are provided elsewhere ([13]).

Appendix E. Connections with risk neutral pricing. Auxiliary
material

Lemma 3. The function φ : (Ω,Fτi) → (RC ,B(RC)) defined by φ(ω) = xω,τi is
measurable.

Proof. For 1 ≤ j ≤ n, fix cj ∈ C,Γj ∈ B(R) and let C = {x ∈ RC : x(cj) ∈ Γj , 1 ≤
j ≤ n}. Thus

φ−1(C) = ∩nj=1{ω : xω,τi(cj) ∈ Γj} = ∩nj=1X
−1
cj∧τi(Γj).

For showing that φ−1(C) ∈ Fτi , it is then enough to prove that, for any c ∈ C and
Γ ∈ B(R), X−1

c∧τi(Γ) ∈ Fτi . This happens if, for any t ≥ 0,
A = {ω : Xc∧τi(ω)(ω) ∈ Γ, τi(ω) ≤ t} ∈ Ft.

To prove this, let us first define B = {ω : Xτi(ω)(ω) ∈ Γ, τi(ω) ≤ t} and consider
two cases.

I. Assume t ≤ c, then for ω ∈ A, c ∧ τi(ω) = τi(ω) which implies that A ⊂ B.
Conversely, if ω ∈ B then c∧τi(ω) = τi(ω), and B ⊂ A. Now we are going to prove
that

B = ∪{s∈C:s≤t}{ω : τi(ω) = s,Xs(ω) ∈ Γ}.
Indeed, if ω ∈ B there exists s ∈ C such that s = τi(ω) ≤ t and then Xτi(ω)(ω) =
Xs(ω) ∈ Γ. The converse is also clearly true. Finally, since for each s ∈ C, s ≤ t
we have {ω : τi(ω) = s,Xs(ω) ∈ Γ} ∈ Fs ⊂ Ft, it follows that A ∈ Ft.

II. The case when c < t follows from this decomposition of A:
A = ({ω : τi(ω) ≤ c} ∩B) ∪ ({ω : τi(ω) > c} ∩ {ω : Xc(ω) ∈ Γ, τi(ω) ≤ t}).

Since {ω : τi(ω) ≤ c}, {ω : τi(ω) > c}, {ω : Xc(ω) ∈ Γ} ∈ Fc ⊂ Ft and B ∈ Ft,
A ∈ Ft as well. �
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Recall that P = P(P ) is the set of all martingale probability measures equivalent
to P and EQ(Y ) denotes expectation with respect to the probability measure Q.

Lemma 4. Let Q ∈ P(P ) and assume, for i ≥ 0, that Ui are Fτi-measurable
bounded functions, |Xτ | Q-integrable, and define

Y0 ≡ 0 and Yn ≡
n−1∑
i=0

Ui(Xτi+1 −Xτi) for n ≥ 1.

Then
(a) {Yn}n≥0 is a martingale w.r.t. Fτ = {Fτi}i≥0 and Q.

Assume further that Mτ is a Fτ -stopping time and that Mτ is bounded or the
sequence |Yn| is bounded uniformly by an integrable function. Then, for any k ≥ 0,

(b) EQ[
∑Mτ−1
i=k Ui (Xτi+1 −Xτi)|Fτk ] = 0.

Proof. For (a), fix n ≥ 0, then it holds that

EQ[Yn+1|Fτn ] = EQ[
n∑
i=0

Ui(Xτi+1 −Xτi)|Fτn ] =
n−1∑
i=0

Ui(Xτi+1 −Xτi) = Yn,

since for 0 ≤ i ≤ n, Ui, Xτi are Fτi-measurable, so EQ[(Xτn+1 −Xτn)|Fτn ] = 0.
For (b), first observe that Zn ≡

∑n−1
i=k Ui(Xτi+1 −Xτi) = Yn−Yk for n > k, and

Zn ≡ 0 if 0 ≤ n ≤ k is also a martingale w.r.t. Fτ .
For m ≥ 1, consider σm : Ω0(τ)→ N defined as follows:

σm(ω) =


k if Mτ (ω) < k + 1,
Mτ (ω) if k + 1 ≤Mτ (ω) ≤ m,
m if k + 1 ≤ m < Mτ (ω).

σm is clearly bounded, and also a Fτ -stopping time; this follows from

{σm ≤ n} = ({k ≤ n} ∩ {Mτ < k + 1})
∪ ({Mτ ≤ n} ∩ {Mτ ≥ k + 1} ∩ {Mτ ≤ m})
∪ ({m ≤ n} ∩ {Mτ > m}).

If n ≤ k, the second and third sets in the union are empty, and the first one belongs
to Fτn . For k + 1 ≤ n < m, the third set is empty, the first is in Fτn , and

{Mτ ≤ n} ∩ {Mτ ≥ k + 1} ∩ {Mτ ≤ m}) = {Mτ ≤ n} ∩ {Mτ ≤ k + 1}) ∈ Fτn .

On the other hand, if k+ 1 ≤ m ≤ n the first and third sets belong clearly to Fτn ,
and

{Mτ ≤ n}∩{Mτ ≥ k+1}∩{Mτ ≤ m}) = {Mτ ≥ k+1}∩{Mτ ≤ m}) ∈ Fτm ⊂ Fτn .

It follows, from [17, Prop. 1.83], using the stopping time σ0 ≡ k ≤ σm, that

EQ[Zσm |Fτk ] = EQ[
σm−1∑
i=k

Ui (Xτi+1 −Xτi)|Fτk ] = EQ[Yσm − Yk|Fτk ] = 0.
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Observe that if Mτ is bounded then ZMτ = Zσm for some m ≥ 1. In general,
Zσm → ZMτ

pointwise, and from our hypotheses it follows that |Zσm | is bounded
by an integrable function, so we have

EQ[
Mτ−1∑
i=k

Ui (Xτi+1 −Xτi)|Fτk ] = lim
m→∞

EQ[Zσm |Fτk ] = 0. �

Lemma 5. For a given ω ∈ Ω0(τ) and k ≥ 0, the set Ωω,k(τ), defined in Theo-
rem 3, belongs to Fτk .

Proof. We have to show that A = Ωω,k(τ) ∩ {τk ≤ t} ∈ Fτk , for all t ≥ 0. Setting
Cω,k = C ∩ [0, τk(ω)], observe that Ωω,k(τ) can be decomposed in the following
way:

Ωω,k(τ) =

 ⋂
s∈Cω,k

{ω′ : Xs(ω′) = Xs(ω)}

 ∩( k⋂
i=0
{ω′ : τi(ω′) = τi(ω)}

)
.

Note that if t < τk(ω), then {ω′ : τk(ω′) = τk(ω)}∩{τk ≤ t} = ∅, thus A = ∅ ∈ Fτk .
Consequently it is enough to consider τk(ω) ≤ t. Let s ∈ Cω,k; it follows that s ≤ t
and

{ω′ : Xs(ω′) = Xs(ω)} = X−1
s ({Xs(ω)}) ∈ Fs ⊂ Ft.

Therefore X−1
s ({Xs(ω)}) ∈ Fτk . On the other hand, since for 0 ≤ i ≤ k, τi ≤ τk

then τi are Fτk -measurable [21], which concludes that Ωω,k(τ) ∈ Fτk . �

Acknowledgments. S. Ferrando would like to thank Zsolt Bihary and H. Föllmer
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