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A HEAT CONDUCTION PROBLEM WITH SOURCES
DEPENDING ON THE AVERAGE OF THE HEAT FLUX ON

THE BOUNDARY

MAHDI BOUKROUCHE AND DOMINGO A. TARZIA

Abstract. Motivated by the modeling of temperature regulation in some
mediums, we consider the non-classical heat conduction equation in the do-
main D = Rn−1 × R+ for which the internal energy supply depends on an
average in the time variable of the heat flux (y, s) 7→ V (y, s) = ux(0, y, s)
on the boundary S = ∂D. The solution to the problem is found for an in-
tegral representation depending on the heat flux on S which is an additional
unknown of the considered problem. We obtain that the heat flux V must
satisfy a Volterra integral equation of the second kind in the time variable t

with a parameter in Rn−1. Under some conditions on data, we show that a
unique local solution exists, which can be extended globally in time. Finally in
the one-dimensional case, we obtain the explicit solution by using the Laplace
transform and the Adomian decomposition method.

1. Introduction

Let us consider the domain D and its boundary S defined by

D = Rn−1 × R+ = {(x, y) ∈ Rn : x = x1 > 0, y = (x2, . . . , xn) ∈ Rn−1},
S = ∂D = Rn−1 × {0} = {(x, y) ∈ Rn : x = 0, y ∈ Rn−1}.

The aim of this paper is to study the following Problem 1.1 on the non-classical
heat equation, in the semi-n-dimensional space domain D with nonlocal sources,
for which the internal energy supply depends on the average 1

t

∫ t
0 ux(0, y, s) ds of

the heat flux on the boundary S.
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Problem 1.1. Find the temperature u at (x, y, t) satisfying the following condi-
tions:

ut −∆u = −F
(

1
t

∫ t

0
ux(0, y, s) ds

)
, x > 0, y ∈ Rn−1, t > 0,

u(0, y, t) = 0, y ∈ Rn−1, t > 0,
u(x, y, 0) = h(x, y), x > 0, y ∈ Rn−1,

where ∆ denotes the Laplacian in Rn.

This problem is motivated by modeling the temperature in an isotropic medium
with the average of non-uniform and nonlocal sources that provide a cooling or heat-
ing system, according to the properties of the function F with respect to the heat
flow (y, s) 7→ V (y, s) = ux(0, y, s) at the boundary S, see [11, 13]. Some references
on the subject are [6], where F

(
1
t

∫ t
0 ux(0, y, s) ds

)
is replaced by F (ux(0, y, t)),

or [7], where it is replaced by F
(∫ t

0 ux(0, y, s) ds
)

; see also [4, 14, 23, 24], where
the semi-infinite case of this nonlinear problem with F (ux(0, y, t)) has been con-
sidered. The non-classical one-dimensional heat equation in a slab with fixed or
moving boundaries was studied in [14, 22]. See also other references on the subject:
[8]-[10], [12], [16]-[19]. To our knowledge, this is the first time that the solution to
the average of a non-classical heat conduction of the type of Problem 1.1 is given.
Other non-classical problems can be found in [5].

In [6] the basic solution to the n-dimensional heat equation and a technical
lemma were established. We prove in Section 2 the local existence of a solution for
the considered Problem 1.1 under some conditions on the data F and h which can
be extended globally in time. Moreover, in Section 3 we consider the corresponding
one dimensional problem and we obtain its explicit solution for the heat flux and
the average of the total heat flux at the face x = 0, by using the Laplace transform
and also the Adomian decomposition method [1, 2, 3, 7, 25, 26].

2. Existence results

In this Section, we give first, in Theorem 2.1, the integral representation (2.2)
of the solution of Problem 1.1, but it depends on the heat flow V on the boundary
S, which satisfies the Volterra integral equation (2.3) with initial condition (2.4).
Then we prove, in Theorem 2.3, under some assumptions on the data, that there
exists a unique solution of the problem locally in time which can be extended
globally in time.

We first recall here the Green’s function for the n-dimensional heat equation with
homogeneous Dirichlet boundary conditions, given by the following expression:

G1(x, y, t; ξ, η, τ) =
exp

[
−‖y−η‖

2

4(t−τ)

]
(

2
√
π(t− τ)

)n−1G(x, t, ξ, τ), (2.1)
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where G is the Green’s function for the one-dimensional case given by

G(x, t, ξ, τ) = e−
(x−ξ)2
4(t−τ) − e−

(x+ξ)2
4(t−τ)

2
√
π(t− τ)

, t > τ.

Theorem 2.1. The integral representation of a solution of Problem 1.1 is given
by the following expression:

u(x, y, t) = u0(x, y, t)

−
∫ t

0

erf
(

x
2
√
t−τ

)
(2
√
π(t− τ))n−1

[∫
Rn−1

e

[
− ‖y−η‖

2
4(t−τ)

]
F

(
1
τ

∫ τ

0
V (η, s) ds

)
dη

]
dτ, (2.2)

where ζ 7→ erf (ζ) =
(

2√
π

∫ ζ
0 e
−X2

dX
)

is the error function,

u0(x, y, t) =
∫
D

G1(x, y, t; ξ, η, 0)h(ξ, η) dξ dη

and the heat flux (y, t) 7→ V (y, t) = ux(0, y, t) on the surface x = 0, satisfies the
Volterra integral equation

V (y, t) = V0(y, t)

− 2
∫ t

0

1
(2
√
π(t− τ))n

[∫
Rn−1

e

[
− ‖y−η‖

2
4(t−τ)

]
F

(
1
τ

∫ τ

0
V (η, s) ds

)
dη

]
dτ (2.3)

in the variable t > 0, with y ∈ Rn−1 a parameter, where

V0(y, t) =
∫
D

G1,x(0, y, t; ξ, η, 0)h(ξ, η) dξ dη. (2.4)

Proof. As the boundary condition in Problem 1.1 is homogeneous, we have from
[15, 20]

u(x, y, t) =
∫
D

G1(x, y, t; ξ, η, 0)h(ξ, η) dξ dη

−
∫ t

0

∫
D

G1(x, y, t; ξ, η, τ)F
(

1
τ

∫ τ

0
V (η, s) ds

)
dξ dη dτ,

(2.5)

and therefore

ux(x, y, t) =
∫
D

G1,x(x, y, t; ξ, η, 0)h(ξ, η) dξ dη

−
∫ t

0

∫
D

G1,x(x, y, t; ξ, η, τ)F
(

1
τ

∫ τ

0
V (η, s) ds

)
dξ dη dτ.

(2.6)
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From (2.1) (the definition of G1) by differentiation with respect to x, taking
x = 0 we obtain∫

D

G1,x(0, y, t; ξ, η, τ)F
(

1
τ

∫ τ

0
V (η, s) ds

)
dξ dη

=
∫
Rn−1

F
( 1
τ

∫ τ
0 V (η, s) ds

)
e−
‖y−η‖2
4(t−τ)

(t− τ)n+2
2 (2
√
π)n

(∫ +∞

0
ξe−

ξ2
4(t−τ) dξ

)
dη

= 2
(2
√
π(t− τ))n

∫
Rn−1

F

(
1
τ

∫ τ

0
V (η, s) ds

)
e−
‖y−η‖2
4(t−τ) dη.

(2.7)

Thus taking x = 0 in (2.6) with (2.7) we get (2.3).

Also by (2.1) we obtain∫
D

G1(x, y, t; ξ, η, τ)F
(

1
τ

∫ τ

0
V (η, s) ds

)
dξ dη

= 1
(2(
√
π(t− τ))n

∫
D

e
−‖y−η‖2

4(t−τ)

[
e−

(x−ξ)2
4(t−τ) − e−

(x+ξ)2
W4(t−τ)

]
F

(
1
τ

∫ τ

0
V (η, s) ds

)
dξ dη

= 1
(2(
√
π(t− τ))n

∫
R+

[
e−

(x−ξ)2
4(t−τ) − e−

(x+ξ)2
4(t−τ)

]
dξ

×
∫
Rn−1

e
−‖y−η‖2

4(t−τ) F

(
1
τ

∫ τ

0
V (η, s) ds

)
dη

using ∫ +∞

0
e
−(x−ξ)2

4(t−τ) dξ = 2
√
t− τ

(∫ 0

−∞
e−X

2
dX +

∫ x

2
√
t−τ

0
e−X

2
dX

)

=
√
π(t− τ)

(
1 + erf

(
x

2
√
t− τ

))
and ∫ +∞

0
e
−(x+ξ)2

4(t−τ) dξ = 2
√
t− τ

(∫ +∞

0
e−X

2
dX −

∫ x

2
√
t−τ

0
e−X

2
dX

)

=
√
π(t− τ)

(
1− erf

(
x

2
√
t− τ

))
,

so we get∫
D

G1(x, y, t; ξ, η, τ)F
(

1
τ

∫ τ

0
V (η, s) ds

)
dξ dη

=
erf
(

x
2
√
t−τ

)
(2
√
π(t− τ))n−1

∫
Rn−1

e−
‖y−η‖2
4(t−τ) F

(
1
τ

∫ τ

0
V (η, s) ds

)
dη.

Taking this formula in (2.5) we obtain (2.2). �
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Lemma 2.2. The simplified form of the Volterra integral equation (2.3) is given
by

V (y, t) = 1
t(2
√
π t)n

∫
R+
ξe−

ξ2
4t

(∫
Rn−1

e−
‖y−η‖2

4t h(ξ, η) dη
)
dξ

− 2
(2
√
π)n

∫ t

0

1
(t− τ)n/2

∫
Rn−1

F

(
1
τ

∫ τ

0
V (η, s) ds

)
e−
‖y−η‖2
4(t−τ) dη dτ.

(2.8)

Proof. Using the derivative with respect to x of (2.1), then taking x = 0 and
τ = 0, and then taking the new expression of V0(y, t) in the Volterra integral
equation (2.3), we obtain (2.8). �

Theorem 2.3. Assume that h ∈ C(D), F ∈ C(R) and locally Lipschitz in R; then
there exists a unique solution of Problem 1.1 locally in time which can be extended
globally in time.

Proof. We know from Theorem 2.1 that, to prove the existence and uniqueness
of the solution (2.2) of Problem 1.1, it is enough to solve the Volterra integral
equation (2.8). So we rewrite it as

V (y, t) = f(y, t) +
∫ t

0
g(y, τ, V (y, τ)) dτ,

with

f(y, t) = 1
t(2
√
π t)n

∫
R+
ξe−

ξ2
4t

(∫
Rn−1

e−
‖y−η‖2

4t h(ξ, η) dη
)
dξ

and

g(t, τ, y, V (y, τ)) = −2(t− τ)−n/2

(2
√
π)n

∫
Rn−1

F

(
1
τ

∫ τ

0
V (η, s) ds

)
e−
‖y−η‖2
4(t−τ) dη.

So we have to check the conditions H1 to H4 in [21, Theorem 1.1, p. 87], and
H5 and H6 in [21, Theorem 1.2, p. 91].

• The function f is defined and continuous for all (y, t) ∈ Rn−1×R+, so H1 holds.

• The function g is measurable in (t, τ, y, x) for 0 ≤ τ ≤ t < +∞, x ∈ R+, y ∈ Rn−1,
and continuous in x for all (y, t, τ) ∈ Rn−1 × R+ × R+, g(y, t, τ, x) = 0 if τ > t, so
here we need the continuity of

V (η, τ) 7→ F

(
1
τ

∫ τ

0
V (η, s) ds

)
,

which follows from the hypothesis that F ∈ C(R). So H2 holds.
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• For all k > 0 and any bounded set B in R, we have

|g(y, t, τ,X)| ≤ 2
(2
√
π)n

sup
X∈B

|F (X)|(t− τ)−n2
∫
Rn−1

e−
‖y−η‖2
4(t−τ) dη

≤ 2
(2
√
π)n

sup
X∈B

|F (X)|(t− τ)−n2 (2
√
π(t− τ))n−1

= 1√
π

sup
X∈B

|F (X)| 1√
(t− τ)

;

thus there exists a measurable function m given by

m(t, τ) = 1√
π

sup
X∈B

|F (X)| 1√
(t− τ)

such that
|g(y, t, τ,X)| ≤ m(t, τ), ∀ 0 ≤ τ ≤ t ≤ k, X ∈ B,

and

sup
t∈[0,k]

∫ t

0
m(t, τ) dτ = 1√

π
sup
X∈B

|F (X)| sup
t∈[0,k]

∫ t

0

1√
t− τ

dτ

= 1√
π

sup
X∈B

|F (X)| sup
t∈[0,k]

(
−2
√

(t− τ)|t0
)

= 1√
π

sup
X∈B

|F (X)| sup
t∈[0,k]

2
√
t ≤ 2

√
k√
π

sup
X∈B

|F (X)| <∞,

so H3 holds.
• Moreover, we also have

lim
t→0+

∫ t

0
m(t, τ) dτ = 1√

π
sup
X∈B

|F (X)| lim
t→0+

∫ t

0

dτ√
t− τ

= 1√
π

sup
X∈B

|F (X)| lim
t→0+

(2
√
t) = 0,

(2.9)

and

lim
t→0+

∫ −T+t

−T
m(t, τ) dτ = 1√

π
sup
X∈B

|F (X)| lim
t→0+

2
(√

t+ T −
√
T
)

= 0. (2.10)

• For each compact subinterval J of R+, each bounded set B in Rn−1, and each
t0 ∈ R+, we set

A(t, y, V (η)) = |g(t, τ ; y, V (η, τ))− g(t0, τ ; y, V (η, τ))| .

By the definition of g we get
A(t, y, V (η))

= 2
(2
√
π)n

∫
J

∣∣∣∣∣∣
∫
Rn−1

 e−
‖y−z‖2
4(t−τ)

(t− τ)n/2
− e

− ‖y−z‖
2

4(t0−τ)

(t0 − τ)n/2

F (1
τ

∫ τ

0
V (z, s) ds

)
dz

∣∣∣∣∣∣ dτ.
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As the function τ 7→ V (z, τ) is continuous, then

τ 7→ 1
τ

∫ τ

0
V (z, s) ds

is C1(R+) and is in the compact B ⊂ R for all z ∈ Rn−1, so by the continuity
of F we get F

( 1
τ

∫ τ
0 V (z, s) ds

)
⊂ F (B), that is, there exists M > 0 such that∣∣F ( 1

τ

∫ τ
0 V (z, s) ds

)∣∣ ≤M for all (z, τ) ∈ Rn−1 × R+. So

A(t, y, V (η)) ≤ 2M
(2
√
π)n

∣∣∣∣∣∣
∫
Rn−1

e−
‖y−z‖2
4(t−τ)√

(t− τ)n
dz −

∫
Rn−1

e
− ‖y−z‖

2
4(t0−τ)√

(t0 − τ)n
dz

∣∣∣∣∣∣
and by using ∫

Rn−1
exp

[
−‖y − z‖

2

4(t− τ)

]
dz =

(
2
√
π(t− τ)

)n−1

we obtain

A(t, y, V (η)) ≤ 2M
(2
√
π)n

∣∣∣∣∣ (2
√
π(t− τ))n−1

(
√
t− τ)n

−
(2
√
π(t0 − τ))n−1

(
√
t0 − τ)n

∣∣∣∣∣
≤ M√

π

∣∣∣∣∣
√
t0 − τ −

√
t− τ√

(t− τ)(t0 − τ)

∣∣∣∣∣ .
Thus we deduce that

lim
t→t0

∫
J

sup
V (η)∈C(J,B)

A(t, y, V (η)) dη = 0.

So H4 holds.
• For all compact I ⊂ R+, all ψ ∈ C(I,Rn) and all t0 > 0, we have:

|g(t, τ ;ψ(τ))− g(t0, τ, ψ(τ))|

= 2
(2
√
π)n

∣∣∣∣∣∣
∫
Rn−1

F

(
1
τ

∫ τ

0
ψ(s) ds

) e−
‖y−η‖2
4(t−τ)

(t− τ)n/2
− e

− ‖y−η‖
2

4(t0−τ)

(t0 − τ)n/2

 dη

∣∣∣∣∣∣ .
As F ∈ C(R) and ψ ∈ C(I,Rn), then there exists a constant M > 0 such that∣∣∣∣F (1

τ

∫ τ

0
ψ(s) ds

)∣∣∣∣ ≤M, ∀τ ∈ I;

then we obtain, as for H4, that

lim
t→t0

∫
I

|g(t, τ ;ψ(τ))− g(t0, τ, ψ(τ))| dτ = 0.

So H5 holds.
• Now for each constant k > 0 and each bounded set B ⊂ Rn−1 there exists a
measurable function ϕ such that

|g(y, t, τ, x)− g(y, t, τ,X)| ≤ ϕ(t, τ)|x−X|
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whenever 0 ≤ τ ≤ t ≤ k and both x and X are in B. Indeed, as F is assumed to
be a locally Lipschitz function in R, there exists a constant L > 0 such that∣∣∣∣F (1

τ

∫ τ

0
x(s) ds

)
− F

(
1
τ

∫ τ

0
X(s) ds

)∣∣∣∣ ≤ L ∣∣∣∣1τ
∫ τ

0
x(s) ds− 1

τ

∫ τ

0
X(s) ds

∣∣∣∣
≤ L|x−X|, ∀ (x,X) ∈ B2;

then we have

|g(y, t, τ, x)− g(y, t, τ,X)| ≤ 2L
(2
√
π)n

(∫
Rn−1

e−
‖y−η‖2
4(t−τ) dη

)
(t− τ)−n/2|x−X|

≤ L√
π(t− τ)

|x−X|,

and thus ϕ(t, τ) = L√
π(t−τ)

. We have also that, for each t ∈ [0, k], the function ϕ

is in L1(0, t) as a function of τ , and we have also∫ t+l

t

ϕ(t+ l, τ) dτ = L√
π

∫ t+l

t

dτ√
t+ l − τ

= L√
π

(2
√
l)→ 0 with l→ 0.

So H6 holds.

All the conditions H1 to H6 are satisfied with (2.9) and (2.10).
Thus from [21, Theorems 1.1, 1.2 and 2.3] there exists a unique solution, local

in time, to the Volterra integral equation (2.3) which can be extended globally in
time. Then the proof of this theorem is complete. �

3. The one-dimensional case of Problem 1.1

Let us consider now the one-dimensional case of Problem 1.1 for the temperature
defined by

Problem 3.1. Find the temperature u at (x, t) such that it satisfies the following
conditions:

ut − uxx = −F
(

1
t

∫ t

0
ux(0, s) ds

)
, x > 0, t > 0,

u(0, t) = 0, t > 0,
u(x, 0) = h(x), x > 0.

Taking into account that∫ t

0
G(x, t, ξ, τ) dξ = erf

(
x

2
√
t− τ

)
,

the solution of Problem 3.1 is given by

u(x, t) = u0(x, t)−
∫ t

0
erf
(

x

2
√
t− τ

)
F

(
1
τ

∫ τ

0
V (σ) dσ

)
dτ,

with
u0(x, t) =

∫ t

0
G(x, t, ξ, 0)h(ξ) dξ
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and V (t) = ux(0, t) the solution of the following Volterra integral equation of the
second kind:

V (t) = V0(t)−
∫ t

0

F
( 1
τ

∫ τ
0 V (σ) dσ

)√
π(t− τ)

dτ, (3.1)

where

V0(t) = 1
2
√
πt3/2

∫ +∞

0
ξe−ξ

2/4th(ξ) dξ = 2√
πt

∫ +∞

0
ηe−η

2
h(2
√
t η) dη.

For the particular case

h(x) = h0 > 0, for x > 0 and F (V ) = λV , for λ ∈ R (3.2)

we have

u0(t, x) = h0 erf
(

x

2
√
t

)
and the integral equation (3.1) becomes

V (t) = h0√
πt
− λ

∫ t

0

1
τ

∫ τ
0 V (σ) dσ√
π(t− τ)

dτ. (3.3)

Then, we have

u(x, t) = h0 erf
(

x

2
√
t

)
− λ

∫ t

0
erf
(

x

2
√
t− τ

)
W (τ) dτ, (3.4)

where W (t) is defined by

W (t) = 1
t

∫ t

0
V (τ) dτ = 1

t

∫ t

0
ux(0, τ) dτ. (3.5)

By using the integral equation (3.3) for V (t) we obtain for W (t) the following
Volterra integral equation of the second kind:

W (t) = 1
t

∫ t

0

[
h0√
πτ
− λ

∫ τ

0

1
µ

∫ µ
0 V (σ) dσ√
π(τ − µ)

dµ

]
dτ

= 1
t

[
2h0

√
t

π
− λ

∫ t

0

[∫ τ

0

W (µ)√
π(τ − µ)

dµ

]
dτ

]

= 2h0√
πt
− λ

t

∫ t

0

[∫ t

µ

W (µ)√
π(τ − µ)

dτ

]
dµ

= 2h0√
πt
− 2λ√

π

1
t

∫ t

0
W (τ)

√
t− τ dτ, t > 0,

(3.6)

by using that ∫ t

µ

dτ√
τ − µ

= 2
√
t− µ.

Therefore, we deduce the following results.
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Theorem 3.1. Taking h and F as in (3.2), the solution of the non-classical heat
conduction Problem 3.1 is given by (3.4), where W (t) is the solution of the Volterra
integral equation (3.6). Moreover, its Laplace transform L is given by the following
expression:

Q(s) = L(W (t))(s) = h0

λ

(
1− e−

2λ√
s

)
, (3.7)

and W (t) is given by the following difference of two series with infinite radii of
convergence:

W (t) = 2h0√
πt

(
1 +

+∞∑
n=1

(4λ2t)n

(2n+ 1)n![(2n− 1)!!]2

)

− 2h0λ

(
1 +

+∞∑
n=1

(2λ2t)n

(n+ 1)(n!)2(2n+ 1)!!

)
.

(3.8)

Proof. By using the integral equation (3.6) for the real function W (t), the Laplace
transform Q(s) of W (t) satisfies the following first order ordinary differential prob-
lem:

Q′(s)− λ

s3/2Q(s) = − h0

s3/2 , <(s) > 0

Q(+∞) = 0,
whose solution is given by (3.7). From a series development of the exponential
function we obtain

Q(s) = h0

λ

+∞∑
n=1

(−1)n+1

n!
(2λ)n

sn/2

= h0

λ

(+∞∑
k=0

(2λ)2k+1

(2k + 1)! sk+ 1
2
−

+∞∑
k=1

(2λ)2k

(2k)! sk

)

= 2h0

(
1
s

1
2

+
+∞∑
k=1

(2λ)2k

(2k + 1)(2k)! sk+ 1
2
−

+∞∑
k=1

2k−1λ2k−1

k!(2k − 1)!! sk

)
,

and therefore we get

W (t) = L−1(Q(s))(t) = 2h0

(
1√
πt

+ 1√
πt

+∞∑
n=1

(2λ)2n 2n tn

(2n+ 1)(2n)!(2n− 1)!!

)

− 2h0

(
λ+

+∞∑
n=1

2nλ2n+1 tn

(n+ 1)!n!(2n+ 1)!!

)
,

that is, the expression (3.8) for W (t) holds by using that

L−1
(

1
s

1
2

)
(t) = 1√

πt
, L−1

(
1
sn

)
(t) = tn−1

(n− 1)! ,

L−1
(

1
sn+ 1

2

)
(t) = 2n tn− 1

2

(2n− 1)!!
√
π
, n ≥ 1
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(2n)! = 2nn!(2n− 1)!!
and the definition

(2n− 1)!! = (2n− 1)(2n− 3) · · · 5 · 3 · 1. �

Corollary 3.2. The heat flux at the boundary x = 0 of the solution of Problem 3.1
is given by

ux(0, t) = h0√
πt
− λ√

π

∫ t

0

W (τ)√
t− τ

dτ, (3.9)

where W (t) is given by (3.8).

Corollary 3.3. The first terms of the development of the series (3.8) of the average
of the total heat flux at x = 0 are given by

2h0

(
1√
πt
− λ+ 4λ2

3
√
π

√
t− λ3

3 t+ 8λ4

45
√
π
t3/2 − λ5

45 t
2
)
,

which give us a singularity of W of the type t−1/2 at t = 0.
Moreover, the first terms of the development of the heat flux at x = 0 of the

expression (3.9) are given by

h0

(
1√
πt
− λ

4 + 4λ2
√
π

√
t− 4λ3

3 t+ 8λ4

9
√
π
t3/2 − 2λ5

15 t2 + 32λ6

675
√
π
t5/2

)
,

which also give us a singularity of ux(0, t) of the type t−1/2 at t = 0.

Proof. It follows from the following results:∫ t

0

dτ√
τ(t− τ)

= π

8 ,
∫ t

0

dτ√
t− τ

= 2
√
t,∫ t

0

√
τ√

t− τ
dτ = π

2 t,
∫ t

0

τ√
t− τ

dτ = 4
3 t

3/2,∫ t

0

τ3/2
√
t− τ

dτ = 3π
8 t2,

∫ t

0

τ2
√
t− τ

dτ = 16
15 t

5/2,

which can be generalized to∫ t

0

τn√
t− τ

dτ = (2n)!
[(2n− 1)!!]2

tn+ 1
2

n+ 1
2
, n ≥ 1,∫ t

0

τn−
1
2

√
t− τ

dτ = π[(2n− 1)!!]2

(2n)! tn, n ≥ 1.

�

Now, we will give a new proof of the series (3.8) for the average of the total flux
W (t). We use the Adomian decomposition method [1, 2, 3, 7, 25, 26] through a
series expansion of the type

W (t) =
+∞∑
n=0

Wn(t)
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in the Volterra integral equation (3.6). Taking

W0(t) = 2h0√
πt

(3.10)

we obtain the recurrence formula

Wn(t) = − 2λ
t
√
π

∫ t

0
Wn−1(τ)

√
t− τ dτ, n ≥ 1. (3.11)

Then by (3.10) and (3.11) we get

W1(t) = − 2λ
t
√
π

∫ t

0
W0(τ)

√
t− τ dτ

= −4λh0

tπ

∫ t

0

√
t− τ√
τ

dτ = −2λh0.

(3.12)

Theorem 3.4. By using a double induction principle we have

W2n(t) = 2h0√
πt

(4λ2t)n

(2n+ 1)n![(2n− 1)!!]2 , n ≥ 1, (3.13)

and

W2n+1(t) = −2λh0
(2λ2t)n

(n+ 1)(n!)2(2n+ 1)!! , n ≥ 1, (3.14)

with W0 and W1 given respectively by (3.10) and (3.12).

Proof. Using (3.10) and (3.11) we get

W2(t) = − 2λ
t
√
π

∫ t

0
W1(τ)

√
t− τ dτ

= 4λ2h0

t
√
π

∫ t

0

√
t− τ dτ = 8λ2h0

3
√
π

√
t,

W3(t) = − 2λ
t
√
π

∫ t

0
W2(τ)

√
t− τ dτ

= −16λ3h0

3tπ

∫ t

0

√
τ
√
t− τ dτ = −2λ3h0

3 t,

W4(t) = − 2λ
t
√
π

∫ t

0
W3(τ)

√
t− τ dτ

= 4λ4h0

3t
√
π

∫ t

0
τ
√
t− τ dτ = 16λ4h0

45
√
π
t3/2,

taking into account that∫ t

0

√
t− τ√
τ

dτ = π

2 t,
∫ t

0

√
t− τ dτ = 2

3 t
3/2,∫ t

0

√
τ
√
t− τ dτ = π

8 t
2,

∫ t

0
τ
√
t− τ dτ = 4

15 t
5/2,
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and their generalizations by∫ t

0
τn
√
t− τ dτ = 2n+1n!tn+ 3

2

(2n+ 3)!! , n ≥ 1, (3.15)∫ t

0
τn−

1
2
√
t− τ dτ = π(2n− 1)!!tn+1

2n+1(n+ 1)! , n ≥ 1. (3.16)

The first step of the double induction principle is verified taking into account
the above computations. For the second step, we suppose by induction hypothesis
that we have (3.13) and (3.14). Therefore, we obtain

W2n+2(t) = −2λ
t
√
π

∫ t

0
W2n+1(τ)

√
t− τ dτ

= 4λ2h0

t
√
π

(2λ2)n

(n+ 1)(n!)2(2n+ 1)!!

∫ t

0
τn
√
t− τ dτ

= 2h0√
πt

(4λ2t)n+1

(2n+ 3)(n+ 1)![(2n+ 1)!!]2 ,

and

W2n+3(t) = −2λ
t
√
π

∫ t

0
W2n+2(τ)

√
t− τ dτ

= −4λh0

tπ

(4λ2)n+1

(2n+ 3)(n+ 1)![(2n+ 1)!!]2

∫ t

0
τn+ 1

2
√
t− τ dτ

= −2λh0
(2λ2t)n+1

(n+ 2)[(n+ 1)!]2(2n+ 3)!! ,

by using (3.15) and (3.16). Then, the proof by the induction principle holds. �

Conclusion. We have obtained the global solution of a non-classical heat conduc-
tion problem in a semi-n-dimensional space, in which the source depends on the
average of the total heat flux on the face x = 0. Moreover, for the one-dimensional
case we have obtained the explicit solution by using the Laplace transform and also
the Adomian decomposition method.
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Departamento de Matemática - CONICET, FCE, Universidad Austral, Paraguay 1950,
S2000FZF Rosario, Argentina
DTarzia@austral.edu.ar

Received: December 24, 2018
Accepted: April 29, 2019

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)

http://www.ams.org/mathscinet-getitem?mr=3024569
http://www.ams.org/mathscinet-getitem?mr=3009461

	1. Introduction
	2. Existence results
	3. The one-dimensional case of Problem 1.1
	References

