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1. In this note we generalize some of the results of our note [1]. 
These generalizations are not difficult but seem to be of interest 
in applications. 

We shall consider complex - valued measurable functions 
f (x) = f (Xl, X2, •.. , xn) of n real variables defined for simplicity 
over the whole n-dimensional Euclidean space En, and we write 

where the integral is extended over En. By (j, g) we mean f f g dx, 

assuming that the integral converges absolutely, and by f * g the 
convolution of f and g. 

We shall also consider completely additive functions [J. (E) of 

Borel subsets E of En. By (j, [J.) we mean f f d [J. and by f * [J. the 

convolution f f (x - y) d [J. (y). By D we denote the class of 

infinitely differentiable functions in En with compact support. 
Finally, C win stand for a constant depending only on the dimension 
and the parameters displayed. 

A locally integrable function is said to have first derivatives 
hex), j = 1, 2, ... , n, in the sense of distributions if 

(cp, h) = - (~, f) 
a Xj 

for all cp e D. We shall also occasionally write ~ for f;(x). 
a Xj 

(*) Research resulting in this paper was partly supported by the National 
Science Foundation, contract NSF 0-8205 anet the Air Force, contract AF-49 
(638) - 451. 



- 103 -

Similarly we say that f has measures ~j for first derivatives if 

(cp, d ~j) = - (~ , f) , 
a x, 

for all cp eD. 
We recall now some notions introduced in [1]. We considered 

there classes T uP (xo) and t""P(xo) of functions. A function f belongs 
to T up(xo),· where 1:s; p:s; oo-and u;::: - nip, if there exists a 
polynomial P (x) of degree strictly less than u (in particular, 
P = 0 if u :s; 0) such that 

r 1 f }llP ~ - I rex) - P (x) Ip dx :s; M pOl , 0 < p < 00. 
l.P" 

I X-Xo I';;; p 

[1] 

The polynomial P is uniquely determined by f. In [1] we also in
troduced a norm in the space T up(xo). The norm of an f e T Olp(xo), 
which we denoted as T olp(xo, f), is defined as the sum of the norm 
of f in Lp, the absolute values of the coefficients of the Taylor 
expansion of P at Xo, and the greatest lower bound of the cons
tants M for which [1] holds. 

The space tup(xo) consists of those functions in T olp(xo) for which 
there exists a polynomial Q (x) such that 

(1 f ,lIp 
~ - I f (x) - Q (x) [p dx ~ :s; M pOl 
l p" ) 

Ix-xo';;; p 

and, in addition, the expression on the left is 0 (pu) as p tends to O. 
Here Q (x) is unique, and IS equal to the polynomial P (x) of [1] 
if u is distinct from 0, 1, 2, ... The degree of Q is equal to the 
integral part of u for u;::: O. 

In the present note we study an extension of the classes T olp(xo) 
and tup(xo) in the case p = 1. Let u ;::: - nip. We denote by Su(xo) 
the class of countably additive finite functions of Borel subsets 
of En for which there exists a polynomial P (x) of degree strictly 
less than u (in particularP "" 0 if u :s; 0) such that 

. pI.. f I d i ~ - P (x) )., r I :s; M pOl , 0 < p < 00. [2] 

I x-xol;;>p 

Here P (x) )., stands for the indefinite integral of P (x) with respect 
to the Lebesgue measure )." and the integral denotes the total 
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variation of the set f4nctiQn. [J. .,--- P ex) A in I x - XO I. :? ,~~ The 
norm of [J. in Su(xo) is analogously defined, namely, as the sum of 
the total variation of. [J., . the._ absolute values of the coefficients 
of the Taylor expansion of P (x) at Xo, and the greatest lower 
bound of the constants M for which [2] holdso 
, The subclass su(xo) of Su,(xo) is obtained in the same waY'i as 
t,l(xo) was singled out from T up(xo). 

The classical theorem about Lebesgue sets of integrable functions 
'S valid also for set functions 11. and asserts that for almost all Xo 
we have 

1 f 1 d ~ 11.- \L'(xo) A r 1 = 0 (1) , p -+ 0, 
~n 

Ix-xol:Sp 

where \L'(xo) is the derivative of 11. at Xoo In other words, 11. belongs 
to so(xo) for almost all Xoo 

It is well known (see [2]) that a locally integrable function whose 
first derivatives are set functions \Li of finite total variation coincides 
almost everywhere with a function of bounded variation in the 
sense of Tonelli, and converselyo The main result of this note con
cerns the differentiability of functions of bounded variation in 
Tonelli's senseo 

THEOREMo Let f (Xl, X2, 0 0 0, xn) be a function of bounded variation 
in the sense of Tonellio Then 

n 

(i) there is a constant a such that f - a belongs to L n-l; 

(ii) \Lj = ~ is a countably additive set function of finite total 
a Xj 

variation, and if \Li = belongs to Su(xo), u ~ - n, u ~ - 1, j = 1, 
n 

2, 000, n, then f - a E Tun;/ (xo) and 

(101010) 10f a fbi t () 1 0 1 \Li = -- e ongs 0 Su Xo , U ~ - n, u ~ - ,J = , 
a Xi 

n 

2, 000' n, then f - a E. tun~l (xo)o 
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If f is of bounded v~riation in Tonelli's'setise then, as wehav,e 
pointed out, its derivatives in the sense of distributions are' couhtab
ly additive s~~ functions. Therefore, as we also pointed out, these 
derivatives belong to so(xo) for almost all Xo. Therefore, after the 
subtraction of an appropriate, constan~, f will belong to Mxo) for 
almost all, Xo. ' ' , 

In other'- words, a function f (x) which is of bounded variation in 
the sense of TO'(l,elli hasa first differential almost everywherl?, provided 

n 

the remainder is estimated in the metric L n-l . 

2. In the case when th\:l [Lj = ~ are absolutely Cbntin~ous 
: a Xj , 

with respect to Lebesgue' measure, our theorem is contained in 
Theorem 11 of t1]: Our pr60fwill consist in reducing the present 
case to that one. 

In what follows we will regularize functions and measures by 
convoluting them with a kernel " 

<p.(x) = en <p ( : ) , 

where <p is a function in D, with support in I x I :s; 1, of integral 
equal to 1, with the additional property that for any polynomial 
P (x) of degree not exceding a fixed integer m the identity 

<P.* P = P 
, " 

holds. It is not difficult to construct such a function <p (se'e [1], 
Lemma 2.6). 

LEMMA 1. Let [L be a completely additive set function belonging to 

Su(xo), u ~ - n. Let f. = <Po * [L, wher~ <p is a function as 'described 
above with the property' that' tp. * P = P for all polynomials P' of 
degtee not exceeaing u. Then f. zTu'l (xo) and 

T,l (xo ,f.) :s; C~.u S (Xo , [L). 

Proof. For simplicity of notation. we will assume that Xo = 0 
and we will write Su(xo, [L) = Su([L), etc. Suppose first that u > 0 
and let r be the largest integer'strictly less than u. The function 
f. is infinitely differentiable and we denote by p. the Taylor 
polynomial of f of degree'r. We then have' 

f. (x) - p. (x) ,= f[ <P.(x-~) - ~, x'" <P.(",) (-y)] d [L (y). 
! '" I" r a! 
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Here II stands for the multiple index (Ill, 1l2, ... , lIn), where 
the IIi are non-negative integers, II! = Ill! 1l2! ..• lIn!, 

and 

IlI C,,) = III = -- -- -- III ( a)" (a)'" ( a)". (a )"" a x a Xl a X2 a Xn 

On account of the property Ill. * P = P the last integral can be 
written 

1[ 1lI.(X-- y)- ~ x~ IlI.C,,) (-y)] d[[J.(Y) -P(y) 'A (y)], 
1,,!S;r III 

where P is the Taylor polynomial associated with [J.. Integrating 
with respect to X we obtain 

J If.(x) -p.(x) I dx::; I[ II Ill. (x -y)-

IxlS;p IxlS;p 

- ~ x" 1lI'<") (- y) I dX] I d [[J. (y) - 'A (y) P (y) I] = I 
1"IS;r II! 

say_ 
H p ~ E, then 

I ::; 11[1 Ill. (x -y) Idx]! d[[J.(Y) -P(y) 'A)] I + 

+ ~ f I llI.c,,)'(-y) I J Ix"ldxld[[J.(y}-P(y)'A(y)]I· ]3] 
I " I s; r 

lylS;' IxlS; p 

Since the support of <Po (x) is contained in I x I ::; E, we have 
1lI.(X - y) = 0 if I x I ;;;; p and I y I ~ 2 p ~ 2 E, and consequently 
the first integral above is dominated by 

I I d [[J. (y) - P (y) 'A] I I I 1lI.(X) I dx ::; 

III I s; 2 p 

On the other hand, I IlI.C,,) (- y) I ::; C~,,, E-n-I" I, and thus the 
terms of the sum in [3] are dominated by 

C~,u S,,(lL) pl"l+n E-n-I"I En+u ::; Cf," S,,([J.) pn+u 
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Consequently, 

If p < e, using Lagrange's remainder formula we obtain, with 
o < 6 = 6 (x, y) < 1, 

I = J(f ~ ··I~ cp~,,) (6 x -y) I dX] I d [lL(Y) -P(y) )..(y)] I ~ 
1"I=r+1 IX! . . 

",I;;; p 

Thus 

lor all p. 

~ C~.u "r+1+n e-n~r-l f ! d [lL - P(y»)..] I ~ 
lul::o 2. 

We now estimate the coefficients of p. in terms of Bu(lL). If 

P .ex) = ~ a~') X", then 

a~·) = -I-fcp~')(-Y) d lL(Y) = -I-fcp~") (.-y) d [lL(Y) -P(y) )..(y)] + 
IX ! IX ! 

+ IX\ f cp ~,,) (- y) P(y) d y. 

Thus 

~ ~C~.ue-n-I"IJld[lL-P(Y»)..ll + _1 1(~)"p(O)I~ 
IX ! ex! ax 

lui;;; • 

;;:; C~.u e-n- I .. I Bu(u) en+u + Bu(lL) ;;:; C~.u Bu(lL) . 

Finally, since 

collecting results we obtain 
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If u;:;> 0, we merely have to show that 

f I f.(x) I d x :s C "" S,,(\L)~n+ ... 
·1",1 ;S; p . 

We have 

Ili.ex ) Idx~ fII'PoCX-y)d\L(Y)!dx ~ 
1",1 :;; p 1",1 ,;;; p 

:s f I d [J.(Y) If I 'PI(X -y) I dx [4] 

1"'1 ;S; p 

If p > e the last integral is dominated by 

J I d [J. (y) 1/1 'P.(x) I d x ~ C,S,,(\L) ~n+u. 
Iyl ;s; 2p 

If, on the other hand, ~ ;<;; e then, since 1'P.(x)I ~ C, E-", the last 
integral in [4] is dominated by 

C, (~rII d\L (Y)'I ;<;; C9S'l\L)(~r (2' E)n+u ~ 
iyl :$2. 

This completes the proof of Lemma 1. 

3. LEMMA 2. Let 'P be a function in D such that J 'P (x). d x = 1 

and let 'P.(x) = e-;-n'P(:)' .E>O. 

(i) If \L is a countably additive set function such that T ,,1 (xo, \L * 'P.) 
=:;; M for all e, then \L E Su (xo} and Su(xo, \L) :s M. 

(ii) If f e Lp, 1 :s p:s co, and T "P (xo, f * 'P.) :S M for all E, then 
f E T uP (xo) and T uP (xo, f) :S M. 

Proof. Let P .(x) be the Taylor polynomial of f. = f * 'P I, or 
f = \L * 'P., of degree r, where r us the largest integer strictly less 
than u if u > 0, or P(x) "" 0 if u:S o. Then our assumptions imply 
that the coefficients of p. are bo~nded, and we can select a se
quence e = Ek such that P.Jx) converges to a polynomial P (x) 
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uniformly on bounded sets. Let now (:l and 0 'be positive. Then, 
assuming Xo = 0, in case (i) we have 

/
1 d [[J. -P(x) A] I ~ lim / I[([J. -PA) * <!Iek] (x) I d'x 

/c~'" 
Ix! :.:;; P Ixl ::; P + a 

+ ~ f I P'k -- (P * <Pe,,) I dx , 
k+"" 

I x I ;f; P + a 

and similarly in case (ii) we have 

Now P * <P'k and P elo conV'"erge to P uniformly on bounded setE? and 

[ file -Pe[p'dx Y'P ~ M «(:l +0): +U, E < 0 

xl OS; P 

Thus, passing to the limit we get 

/ I d ([J. ~ P A) I ~ M «(:l + o)n+u 

I xl os; P 

and 

[/ ] 
lip n 

If-Plpdx ~M(p+orp+u, 

Ixl s: P 

in the cases (i) and (ii) respectively. Making 0 -+ 0 in the preceding 
inequalities we conclude that [J. ESu(XO) and f E T~ (xo). 

To prove that Su(xo, IL) ~ M and T~ (xo, f) ~ M we denote by 
a~k) the coefficients of P ,,,(x) and by aa those of P. Then, given 
o > 0 we can find (lo > 0 and l) > 0 such that 

Su (xo, [J.) ~ f I dILl + ~ I aal + 1. J'I d (IL - PA) I + 0 
(po + l))n+u 

Ixol :$ Po 
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III case (i), or 

T~ (xo, f) ::> [f I f Ip d x rp + ~ ! u .. I + 

1 [/ ] IIp + . It-Plpdx +0 
p'ou+n/P 

Ixl :$ po 

III case (ii). Since lim Ia~k) I = lOa I, and, in case (i), 

lim f I f Ok I d x ~ / I d lJ. I, lim / I f Ok - P ok I d x ~ 
Ixl:$p.+~ . ~ f I d (lJ. - P 'A) I ' 

Ix I ;;; po 

passing to the limit we find that Su(xo,lJ.) :::::; M + o. Since Il is 
arbitrary it follows that Su(xo, lJ.) :::::; M.· Similarly we find that 
T ,}'(xo, f) :::::; M in the case (ii). 

4. The lemma that follows is essentially a result of Gagliardo and 
Nirenberg (see [3]), but we give a proof which is slightly different 
from theirs. 

LEMMA 3. Let lJ.j, j = 1, 2, ... , n, be countably additive set func
tions such that, in the sense of distributions, 

a lJ.j a lJ.i 
a Xi a Xj 

for all i and j. Let 
1 X· k j (x) = ____ 3_, 

Wn I x I" 

where w" is the surface area of the unit sphere I x I = 1. Let 

n 

F = ~ kj * tJ-j. 
j= 1 

Th a F F 0 L n:'l d en -a- = tJ-j, ~ , an 
Xj 

II F 11 n :'1 :::::; [): 1 f I d lJ.j I rn . 
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Proof. Let ql be a non-negative and eve:o. (i.e. ql (- x) = ql (x)) 

function in D. Then, if ql. (x) = en ql ( : ) we set 

We will show that 

a F. 
-- = [J.j * ql. , 
a Xi 

n 

~ ([J.j * ql.) * k j 

;= 1 

II F.II_n ::;; (iT II ~ II )l/n, 
n-l J = 1 a X J 1 

and a passage to the limit will yield the desired ,result, as we shall 
see. 

First, let us observe that [J.j * ql. tends to 0 at infinity. Further, 

a F. 

a Xi 

i; [_a_ .. ([J.i * qle)] * [k j ] (x). 
j=l a X J 

Integrating by parts the integrals that give the external convolu
tions over the region between the spheres of radii 0 and 1/0 with 
center at the singularity of kj, and observing that 

and letting 0 tend to 0, we easily see that 

Let now kjN(x) = kj(x) if I X I ;;:; N, kJN(x) = 0 otherwise, and 
write 

S· a Fe * d . f·· h f· d Ince -- = [J.j ql. ten s to 0 at In Inlty, t e lrst sum ten s 
a Xj 

to 0 at infinity; since the ~ are integrable, the second sum 
a Xj 

tends to 0 as N -+ 00. Consequently Fe tends to 0 at infinity. 
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Now we will show that if Gjx) is any continuously differe~tiable 
funcfion tending to Oat' infinity and ha~in'g integ~able deri~atives, 
then . 

IIGII n :;; -II -r n ]1 a G II ] l/n 
-- ,I ax" , , ,n:-:--1 . L 1. , . .1 

This we will do by induction on the number of variab~es, Fo,!" 
n = 1 the statement is obvious. Assuming the inequ~lity toh~ld 
for functions of n - 1 v3;,riables we il,ave, on the one hand, 

,I :' , '" ' " , 
n-2 

[!liO (Xl, ,X2, ... 'Xn)I:~!.d,X2" ... dXlIr-1:;;, 

where 

and 

I G(XI, X2; .. . ,Xn) I :;;fl~ (XI,X2, .. " Xn) !dXI= ~(X2, "~ :,Xn) 
. . aXI . 

on the other. From the last inequality we obtain 

" 1 
I G (Xl, X2, ... , Xn) In=! :;; '.Ji (X2, . , ., Xn)'~-l I G (Xl, X2, ... , Xn) I 

Integrating with respect to X2, .. .'; X~ arid u'sing Holdei'siriequaJity 
with the pair of conjugate exponents n -'-1 and (n -l)/(n - 2) 
we get 

1 

:;; [! HX2, ... , xn) d X2 .•. dxnJ-;;=l 

n-2 

[J G (Xl, ... , Xn):'= ~d X2 ... d x n] ~ - 1 :;; 

:;; jj ~ II n ... \ '[fi<I>j (Xl)] n -=- 1 

, a Xl 1 3=2" 
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Integrating this inequality. .with reElpect to ,Xl and applying to ,the 
integral of the product on the right Holder's inequality with 
exponents (n - 1) we obtain,' 

II iJ G lr~ 1 n [/' ] n -=- I (n II a G II ):2T :S -- -,I -I «Pj (Xl) d Xl -! 1 --, 
aXIl, 1=2 . 1=1 oX, 1 

which is the desired. result. 
ReturnIng to our function F. we thus have 

I! Fe II n 
n-1 

that is, liFe I! _n_is bounded. ~y restricting e to ,an appropriate 
, n-l ", 

sequence tending to zero F ~ will converge weakly toa limit Fin 
n 

Ln - 1 , (we exclude here the ease n =" 1 wliere, to begin with~' the 
theorem is obvious), for which also 

IIIf II n 
n=T 

Let now \jJ be an arbitrary f'unction fTom D., Then, since tp. 

is even, , 

fF':x~dX ~ ~I': :j" ~ d~= 
- j(fl.1 ~'CP.)\jJ dx = -f(~'. * \jJ) d fl.;, 

and letting e tend to 0 we obtain 

fF~di=-J' \jJdfl.;, 
a Xi '.' 

aF 
which shows that -- = fl.i. Furthermore, 

a Xj 

f F. \jJ d X = f \jJ' [cp. * ~ Cfl.i* k~)'] d X = I( ~ * CP.) :(~ fI.·i' * kj ) d x , 
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and passing to the limit again we find that 

J F IjI d x = J IjI (1: [J.; * le;) d x , 

whence F = ~ [J.j * k i • This completes the proof of the lemma. 

5. We can now prove parts (i) and (ii) of the theorem. 

Let f be locally integrablel and let : !j = [J.; in the sense of 

distributions, where the [J.i are countably additive set functions. 

Then a [J.. = ~ and according to Lemma 3 the function a x;· a Xi 

F = ~ [J.j * k j 

aF n 
has the property that -,,-- = [J.j and F E L n-1. Consequently 

v Xi 

_a_. (f - F) = 0 for j = 1, 2, ... , n, and f - F is (essentially) a Xi 

a constant. This establishes part (i) of the theorem. 
Suppose now that [J.; E S .. (xo) and let cp be the function of. 

Lemma 1. Set F. = F * CP.. Then aa F • = [J.i * CP. and, according 
Xi 

to Lemma 1, 

" Xo,--T l( aFe) 
a Xi 

N ow ~heorem 11 of [1] asserts that 

T-n:::T (xo, F.) :;:; C 1: T"l Xo, --"- :;:; CIp,,, 1: S" (xo, [J.j), 
n n ( aF) n 

.. +1 ;=·1 ax; ;=1· 

and from Lemma 2 it follows that 

n n 

Tn-1 (xo, F) :;:; CIp,,, 1: s .. (xo, [J.;), 
.. + 1 ;= 1 

which proves part (ii) of the theorem. 

6. For the proof of part (iii) we need two more lemmas. 

LEMMA 4. Let 

( aa X r f = [J. ES .. (Xo) , (aa X r f = \I E 8. (Xo) , 

/ 
/ 



where the derivatives are taken in the sense of distributions, [L and v 

are countably additive functions and I IX I + [u] = I ~ I + [v]. Let P 
and Q be the Taylor polynomials associated with [L and v respecti
vely. Then 

Proof. Let <p be a function from D with support in Ix I ~ 1 and 
with integral equal to 1, and assume for simplicity that Xo = O. 
Then 

f ( a )"+~+Y J( a )~+Y f(x) a; <P.(-x) dx = (-I)'''' a-; <P.(-x) d[L = 

j( a )~ + Y = (-I)'''' --;;-; <p.(-x)d[[L-P(x)A] + 

+ (-l)''''jP(X) (aaxr~:(-X)dX= 

= (-l)!"'j( aax r~:(-X)d[[L -P(X)A] + 

+ (-l)'"H+Y'!<p.(-x) (aaxr+pYdX = 

= (-1),,,1 f( aax r ~:(-x) d [[L - P (x) A] + 

+ (- 1)'" + ~ + Y' ( aax r +[1 (0) + 0 (1) 

as c ~O. Since <Po (- x) is supported by I x I :::;; c and 

I ( aa x r ~ > - x) I :::;; C I:: - n - , ~ , - , Y , , 

integral in the hst expression is dominated by 

CI::-n-'~'-'Y'f !d[[L-P(x)A] 1= 
, x, :;;. 

= C I::-n-'~'-'y' 0 (I::"+u) = 0 (1), 

provided I ~ I + [y I :::;; [u], or jy I :::;; [u] - I ~ I. Thus 

f ( a)" +~ + y ( a )~ + y (- I)' d ~ + y, f (x) --;;-; <Po (-x) dx = ax P (0) + 0 (1) , 
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and similarly' . , '. ,. f (. a·)" + ~ +'y '. (a)" +y.' .. , ... 
(-l)ld~+Jl ,f(x). -. . -.<p.(---T-x}dx= -'-. Q(O) +0(1), , ax ax, 

, , 

provided l"f! ~ [v] - Icc I. Consequently we, have 

- - P - - Q (0) = 0 ( a )y [( a)~ ( a )" ] 
'a x .,' ..a x' ' a x' ., ; . 

for l"frnot exceeding the number [u] - !~I = [v] -Iccl, which 
is not less than the degree of both 

and the lemma follows, 

7. LEMMA. Let f be a continuously d1fferentiable function and let 

A (p) = f [,i I ~·I]. d x 
3=1 a x] 

x Is p 

(i) If f (0)= 0, then 

f I f (x) I d x :s; p A (p) + p" t A (t) d t. 
, n 10 tn 

Ixl ~ p 

(ii) If f (x) = 0 for Ix I ;;;; 1, then for 0 ::;;; p ~ 1 we have 

j !f(X) I dx ~ n-1 pnf1 A(t) dt+ A(1) pn. 
, n p P n 

I xl ::;;; p 

x 
Proof. Let x' = -I-I' Then, if f (0) = 0, ,x, 

Ifex) I:;; (IXI~ 1~letx') dt, 10. a Xj 
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where ,dx' is the s\lrface area,. element) ,of, I x,1 =, t., Changing, the 
order of integration we obtain 

j lf(X) jdx:;; {P (In __ tn dtj'~I~I,(tX')dX' = 
Jo n a Xj 

Ixl :s; ~ 

= t pn_ tn d A (t) ~ ~ (p d A (t) ~ 
, Jo ',n t n - 1 nJo t n - 1 

If f(x) =; 0 for Ix! ~ 1 we have for'jxl ='" 1: 

j f (x) j ~ 11 ~ I..YL" I (t x') d t = 
Ixl a xi, 

=j!f(X) jdx ~jdxe ~'I~I(tal')dt= J Ixl a x, 
Ix! :s; P Ixl ,;; P 

and changing the order of integration. we get 

f j f (x) ! d x ~ t.!!:..- dt j~ I..YLJ (t x') d x' + Jo n a Xj 
Ix! ::;; P 

en fl f I a f I + -'- d t ~ '--, (t x') d x, = 
n p a x, 

[P _t d A (t) + ~ /1 d A (t) ~ 
Jo n n P t,,-l 

~ n - 1 "nJI A (t) d t + A (1) (l". 

np tn, n 

This completes the proof of the lemma. 

8. We will now prove part (iii}of the theorem, first considering 
the case u > -- 1. Since \Lj e 8u (xo) C Su(xo), part (i) of the the-

n 

orem asserts that f - acT ,,-I (xo) for a suitable a, and thus there 
., " ,,+1 ' " '" 
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exists a polynomial P of degree stricly less than u + 1 such that 

[If n In
-

1 -;.;-1 f: (x) -' a - P (x) In~ 1 d x --.. ~ Cpu+! 

Izi :;; p 

"Let Qj be the Taylor polynomial of (J.j. According to Lemma 4 we 
a Q. a Qi ' '. ' 

have --' (x) = -' - (x), and therefore there exists a polyno-
a x· ax' . , . 

mial Q, Q (0) = 0, such that Qj = a Q . We will prove that 
a x; 

[If n ]n-l .-;.;- I f (x) - a - P (0) - Q (x) 1n=T dx --:;;:- = 0 (pu+!) 

Izl:s; p (p ~ 0) 

n 

and this will show that f e tn - 1 (xo).For this purpose it will be 
u+l 

enough to show that 

_1 f If(x) -a -P (0) -Q (x) I dx = 0 (pHI) 
pn 

Izl ~ p 

for if IJi (x) is function in D such that IJi (x) = 1 for I x I ~ 1 and 
IJi (x) = 0 for Ixl ~ 2, and if we write 

1Ji.(x) = IJi ( --; ) , 

then, setting J (x) = f (x) - a - P (0) - Q (x) we have 

[If 71' ]n-l 1 [ f 71' ]n-l 
-;.;- II(x) In-1dx n-- ~ pn-I Il(x) lji/x}ln- 1 dx"-

Izl $ p • 

and, by Lemma 3, the right-hand side does not exceed 

s _1 ..!.. ~ IIUi aT II + _1 ..!.. ~ 117~ II 
'- ~n-I 'n .p ax; I pn-I n ax; l' 

where, of course, the derivatives are meant as measures. Since IJi p 

is bounded and vanishes for I xl ~ 2 p, the terms of the first sum 
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on the right are dominated by 

_C_ f I aj I dx = _C_ f I d [[Lj - QjA] I = o (p't+!) . 
pn-1 a Xj p"-l 

. Ixl:$2p Ixl;;;2p 

Similarly, since I ~a_ \j;p(x) I :s;; -.!!.... , we have 
a Xj p 

1 II - a \j; II C f --_- f --p ::; _. If(x) I dx. 
pn 1 a Xj 1 pn . 

Ixl '" 2 p 

It is therefore enough to show that 

1 f -- ! f (x) I d x = 0 (pu+!) . 
pn 

Ix I :$ p 

Let now 'P be a function like the one in Lemma 1 with the pro
perty that 'P.* P = P for all polynomials of degree not exceeding 

- -' C 
u + 1, and write f. = f * CP •• Then I 'P.(x) I ::; - and 

En 

If.(O) I = If J (X) 'P. (--X) d X I ~ ~ f I f (X) I d X . 

Ixl :$ • 

n 
n-1 

Now, according to part (ii) of the theorem, f - a 8 T u+ 1 (xo) and 

thus 

n-1 

~n f I](x) I dx ~ C [~ f If(x) In:1dx]--n = 

Ixl :$ • Ix\ :$ • 

_ 0 f min (I, U + 1) \ - (1) - \8 ,-0 

from which we conclude that 1.(0) ~ 0 with E. 

U sing now part (i) of Lemma 5 we find that 

_1 f If.(x) -1.(0) I d x;:; 1 A.(p) + (p A.(.t) d t, [5] 
pn n pn-l Je tn 

I x! :$ p 
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where, according to Lemma 1, 
, I \. .~ 

A.(t) = ,f" ~ 
;= 1 

I", I :0; t 

n i n 
~ tn~u ~ Tu1(;r;o, tiL; *'P~) ~C,.~ tn+u ~, S .. (Xq,\J>;). 

;= 1 j ; = '1' , 

If we now let here ~ tend to Q, since f'<O) ~'O we have 

f 11.(x) - [.(0) Id x ~ f 'I J (i) I d x . 

1"'1 ;s; plx,1 ';:;,P 

On the other hand, if we set 

A (t) = j ~ 1 I I d [IL; - Qj (x) A] I 
Ixi ;0; t 

we .have A .(t) ~ it (t) at all points, or' continultyof A (t), and 
since A.(t) !'; C t';+u we can p~ss to the limit in [5] getting , 

, , 

_1_j'lf(X) I dx ::;;" 1 ~ (p) + {P A (t) dt -
pn n p1l -1 } 0 in 

Ix,l ~ ~ 

Since ILj ~ 81'(xo) we have A (t) = 0 (tn +,,) as t ~ 0, and the preced
ing inequality implies that 

~f'l(X)' dx =' o(p"+1).' 
pn 

Ixi ,;:; p 

, 
This completes the proof of part (iii) of the theorem in the case 
u > -1. 

9. If - n ;:;;; u < - 1we D;lay assume without loss of generality 

that f (x) = 0 in I x I > ~ and argue ~s above setting rex) = 
. , ,2 ' " 

= f (x) andl. = J> 'P.,and using the secondjnequalityofLelPma 5 
instead of the first. In this way we get 

'2-. j' 17.(i) I'd x 
pn 

~ n~1 /1 A.(i) dt + A.(1) 
n p tn n 

Ix I :;; p 
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instead of [5], and "a passage to the limit gives 
< 

- I f (x) I dx 1 f - _1 f I f (x) I d x = 
pn pn 

Ixl ~ p 

n - 1, /,1 .A (t) 'dt + 0 (1) . 
; n. ,,~tn. . 

Since A (t) = 0 (tn+~) and u < - 1, this implies that 

-1-fl f (X) I dx = 0 (pu+!) + 0 (1) = O(pu+l) 
pn 

I x I ,; p 

as (:: ~ ° and completes the proof of part (iii) of the theorem. 

Remarks. a) Since the proof of part'(iii) of the theorem is rather 
long, it may be worth noting that in the case when u is a non
negative integer (and in particular when u = 0, which is the most 
interesting special case) part (iii) is almost everywhere a conse
quence of part (ii), on account of the known fact (see [1]) that 
if f c T"q(x), 1 :$ q~' "', u == 0,1,2, ... , for all x in a set E of 
positive measure, then f c t"q(x) for almost every x in E. 

b) The theorem of this paper admits of an extension to the case 
when all derivatives of a given order are measures while the deri
vatives of lower orders are functions. This extension is however 
an immediate consequence of our theorem and Theorem 11 of [1] 
and need not be stated here explicitly. 
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