SPACES OF DIFFERENTIABLE FUNCTIONS AND
DISTRIBUTIONS, WITH MIXED NORM.

by ‘A. BENEDEK

INTRODUCTION. The aim of the present paper is to study certain
results about operators and distribution spaces related with the
spaces L? with mixed norm (*). These last spaces are treated in [2],
later we shall give their definition. It is our intention to translate
to the spaces L most of the results of [3]. Some theorems here
may be proved in the same way as in [3], and we shall not give the
proofs in these cases. In other theorems, which follow the same lines
as in [3], we emphasize only that parts of the proof which are not
obvious translations of similar results in [3].

This paper is divided into thrée parts. In the first, the spaces
L?, are introduced. which are spaces of tempered distributions.
There we are also dealing with Bessel potential operators and de-
rivation aeting on L?,. For this it is necessary to consider an ex-
tension of a theorem of Mihlin. The first part concludes with an
interpolation theorem between the spaces LF,.

In the second part we consider a similar result to a theorem
of Sobolev an Krylov (for the spaces LP, are related to the spaces
H?, of Sobolev).

In the third part we deal with Hélder continuity of the fune-
tions belonging to L¥,, 0 < uw << 1. The main result of this part is
stronger than its analogous and an alternative proof is given.

NoraTIONS. & = (%1, ..., n), ¥ = Y1, ..., Yn) denote points of
the n - dimensional euclidean space E™, P = (py, ..., Pn), @, R, stand
for = - tuples of generalized real numbers, (1< p; < o). We in-
troduce the mixed norm, || f|ls, for a measurable function f(x)
on E" as

e =1 1 f eI po/ee (el [2])

(*) This paper is part of the author’s thesis.
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and we denote with L?(E") — LP the class of measurable functions
f on E™ such that || f ||p < co.

a= (a1, ...,an), B, v, stand for = -tuples of non -negative
) ) ‘ . . dlal
integers and ' D% denotes the ‘derivative D% ————q—

on
oy .0,

where |a|=a1+ ... + an, while g;“:_—q;lm a;n“"_ We suppose

further that the reader is familiar with Schwartz’s spaces (8), (8),
(D), (D’) and (0¥). For f ¢ (§°), 7 (or (f)*) indicates the Fourier
transform of f (for fe (S), f(x) = fzn exp (—2=ix.y) f(y) dy).

~ C indicates absolute constants, dependant of the dimension n.
In different formulae it may take different values. Special cons-
tants which mantain their values throughout a proof we denote
with M.

If F(x,y,z2) is a relation between the real variables z, y and 2,
then F (P, @, R) stands for the n relations F(p;, ¢i, 73), 1 =1, ..., n.

1. Let J? be the Bessel transform defined by

(J2f)r=A+4n2|a)~2f

for f e (8’) and 2z an arbitrary complex number.
Each J? defines an isomorphism on (8’), since

(144722 [2)~*/2c (On)

for every 2, and the family {J‘} is an additive group. in: the
index z. Furthermore, if Re(z) > 0

1+4=|z|?)~*2= (G)" , where G.(x) e L1(E™)

and G¢(z) = (27) A—m/2 2*3;2. [F(—g“)l‘(ﬁ%ﬂ) ‘—1
r 12\ (r—z=Dly
fexp(—lx[(1+t)).(t+—2‘) L di

0

for 0 < Re(2) < n—+ 1.
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A consequence of this formula is \ .
Theorem 1. Let Re(z) >0 and 1< P < w. Then J* transforms
LE(E™) continuously into L, and if 2 is real, with norm less than one.

In what follows we need an extension of a theorem of Mihlin
(Theorem 3). This will be a consequence of the following Theorem 2
about singular integrals (proved in [1]).

Theorem 2. Let K (x) be a function on E™ which verifies

a) K(x) s locally integradble

b) J |K(z—y) —K(z) | de < M; < 0.
le|>2]y]

If for some q, 1< q < oo, | K*flly <M || fllq holds, for every f
which is bounded and has bondéd support, then for every P,
1< P < w0, the inequality || K * fllp < Cryg(My 4+ My) || f || » holds.
Theorem 3. Let K be the operator on (S) defined by ’

(Kf) * (z) = k() . f (),

where k(x) verifies

a) k(x) has continuous derivatives up to order x = [7%2]
b) I | Dk (z)|2de<M2. 01 for every real t,

2<|z|<2t
0<t< oo and |a| <k

Then || Kf llp < Cp.M || f|lp for 1< P < 0 and fe(S).
Proof. Let ¢ (x) e (D) be such that its support is contained in

1
{r; 5 <|z|<2}

and § ¢ (2mx) =1 for xz40.

Mm=——00

If %;(x) = ¢ (2iz) k(x), we define

v

K@) =( 3 (o))
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Hoé6rmander proved ([4], Theorem 2.5) that

| (BEy) ~(2) | <C.M (v
and '

| Ex(e—y) —Ey(2) | dz < C. M.
[z]=>2]y] '

Applying Theorem 2, taking into account that (1) implies
| By * flle < C.M | fll2, we obtain
By * flle < Co. M| fllp for every P, 1< P < o0 (2).

But from (1) it also follows that Ky * f — Kf in L? and there-
fore a subsequence Ky, * f — Kf a.e.

Applying Fatou’s lemma to (2) we obtain
IKfllp < Cp.M | fllp q.e.d.
Corollary. Theorem 3 remains true if condition b s replacedk by
D) Dk (x)|= M .|a| T for |a] <«
since b’) tmplies b).

The following theorems we state without proofs, since their
proofs in [3] only use the theorems of Young and Mihlin, and may
.be carried over without change on LZ.

Theorem 4. The operator D* J?, where | a| < Re(z), is conti-
nuous from LP to LF, 1 < P < . In the case 2 = v

N5 lle < Cp (X4 [v )™ NI Tl P

Definition 1. For w a real number, 1 < P < o, we define L,
as the image of L? under J*. That vs Lf, = {f; f:_—' Jg” with g ¢ LP} i
The norm in LP, we define as || || pou = || 7% || p.

Theorem 5. a) The spaces L, are isometric to Lp.

b) If 1<P< w, J* is an isomorphism from LP, onto
PPu+Re(z) . )
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¢) “If z is rea lthe precedmg isomorphism is an isometry, even
'zf 1< P w.

d) If u<w, then LP> LP and for feL?, we have
Hf 1l 2o <IN 2o '

e) If1<P< w,then D“ transforms L%, continuously into
LPu—|a|.

Definition 2. If .u is o non-negative integer, we call HPF,,
1< P < o0, the Banach space of all functions of LP, which edmit
derivatives in the semse of Schwartz up to order w, in LF. Trhe
norm i HE, defined by lﬂpu— Z ”D“f”P

Theorem 6. o) If1<P< (md u s a non-negative mteger,
then L*, = H*y and

CP:M- ” f ” Pru < ‘ f |vP,vu < CP)M || f ” Pyu

b) If uisa non-positivé integer, 1 < P < 0, then feL?, if
and only if f= = D* o Where g‘,,ELP.

lal<—u
Further, there exists @ choice of 9o such that

Cou ||l f 1l pou <|a|25—,,, l9alp < Conll £ 1l 2

Note. If u is a non-negative integer, ¢ a positive real number,
then [P, CHP CLP, _, for every P, 1 <P < =, the inclu-
sions being continuous. '

The proof runs the same way as that of Theorem 6,
but instead of Theorem 4, it uses the faect that, if 4 > |a| then
D“ G, () e Lt and therefore D% J* transforms continuously LP
‘into L? for 1 < P < .

Theorem 7. Let f and ge (8), 1< P < w. Then <f,g>=
= f f(®)g(x) dx verifies <f,g> < |[fllpullglles—u
where 1/P’=1— (1/P), and < f,g9 > admits a continuous exten-
ston to LP, ® L¥_,.

If 1< P < o, then every continuous linear functional on LF,
has the form 1(f) = < f,g > with certain geL? _,.

Next we give an interpolation theorem between the spaces L”..

Theorem 8. Let A be an operator defined on (S(E™)) with va-
lues in (S’(E™)), continuous from Lz_)iul, (E™) nto Lini (E™),
i=011<P;Q; < 0. 1

That is | Af |l g o, < Mi [l £l 2yr wg for f e (8).



~ Let P, Q, u and v be defined by 1/P =1t/Py + (1—1)/Py;
1/Q=1t/Q: + (1—1)/Qo, u = t.us + (1—1).uop, v="=2.v1 +
+ (1—1).ve, where 0T < 1.

Then for f ¢ (S(E™)),

I Af Il Q; v <‘0M,~7 Piy Qy upy vi ” f ” Py ue

Proof. We suppose without loss of generality that vy = v.
Let K be a mollifier in E", K =" ¢ (—?)*, where ¢ e (D), ¢ =0,
/ gn ¢ de = 1. Further, let J,* and J,* be the Bessel transforms in
E" and E™ respectively, and 1 (2) = (41— o) .2 + 1o, L(2) =
= (Vo— 1) 2— 0. Finally let B, = J,t® A.K J1® f for f be-
longing to the class H of simple functions; constant on rectangles
(see [2], p. 313), and 0 < Re(2) < 1.

K J'®f = J)'OKf ¢(S) C L, therefore A K J2® ¢ Lo,
and since Re(L(z)) = —w;, it follows from Theorem 4 that
JEBDA K J A f ¢ LO1(E™).

We shall prove now that the operator B, verifies the hypo-
tesis of the interpolation theorem in [2], p. 313.

Lemma. The operator B, verifies

a) | Buf 1l gi < Crjs qis ujs wjp vi (1 + l2] )n+m Il flle; for

r=j+w, j=0,1

b) For feH (E") and g bounded with bounded support, mea-
surable on E™, we have.

1) [ (B.f).g dy is analytic in 0 < Re(z) < 1, and continuous
m 0K Re(z) < 1.

@) [ly|=N|Bzf|dy < Cyyy (14 [2])mt"

Proof of the lemma. Let 2 = j + 1y where j =0,1.

Then Re (I(2)) = uj, Re(L(2)) = —vj, and

Im(1(2)) =y(u1—uo), Im(L(2)) =y.(vo—wv1). Applying
. Theorem 4, we obtain:

| Bof 1] g < C (1 + | 2] )mt™ . M; || Kf || pj, and since
1Kf |l ps < |1 f |l sy 1) follows.

In the case 2=ax -+, 0K o << 1, we have Re (1(2)) =
= Uy + | ur—uo |, Re (L(2)) =2 — v1. Using again Theorem 4,

I]Bzf|I91\C(1+|ZI "+m||KfI.P,—|u—u| ) 3)

and iii) follows.



To prove ii), we observe that for f, g e (S),
I(f,9,2) = [am(da= "L AJ1® f).(J2®17%%g) dx is an entire
function of z. In analogy to Theorem 7 we also have

§ (Bf) g dw = I(KFf, g, 2) for feH(E"),geL?, (4)

Now if gre(S) and g — ¢ in L9, then (3) implies that
I(Kf, gx,2) converges quasi-uniformly to I(Kf,g,2) on the closed
strip 0 << Re(2) <1 (i. e. it converges uniformly on compact sub-
sets). ii) follows.

We proceed now with the proof of Theorem 8.

From the interpolation theorem of [2], using the precedlnfr
lemma, we obtain

IBif llq=1lJo=" AJ1"Ef || ¢ < Cllflle, (6).

t, u, v, P and Q being the numbers and be n- and m tuples defined in
the statement of this theorem.

Taking ¢ < €(f) in the definition of K, me have || f ||»r <
< 2 || Kf || », and we get from (5), || Ag lgw < C || ¢ || pu, Where
g=dJ“Kf.

Since the set {g = J,"Kf; feH, e<ey(f)} is dense in (8)
with respect to the norm of LP% the theorem is established.

2. We shall establish now results which correspond to theorems
of Sobolev and Krylov (see Theorem 2 below). To do this we need a
stronger form of Sobolev’s theorem for mixed norm (cfr. [2]).

Theorem 1. Let L= (ly,...,l,) a n-tulpe or real numbers,
0,y <1 0Ly If P and Q werify 1/P — 1/Q = L,
1< p SKYU, 1< pa <1/, then

[f*la|i=" llg S ceg |l f Il p for every feLF, where

Proof. We must prove that

I=|[  f@ oW |la—y|* dedy|<CUflr-lglle
E'XE"
where 1/Q’ = 1 — (1/Q).

Let us consider the (n—1)-tuples
@ = (q1, + -+ qn-1), L= (Liyevny lna1) and

= (pl, ) pn—l),

P
E: (7'1, ey 7‘"_1),



the latter defined by 1/R =1 + (1/Q) — (1/P) =1 *—L— L
The funetion h(2y,...,2%n_s0) = h(z,0) = (|22 +

_ n—1 —_
+ 0?) =M/ 2gatisfies || h(x,a) |[z=|a |  (¥/r:) || (h(ax, a)|lig=
. i=1 -

n—1
—n 1/p, -
S E O @ e

Now, || h(x,1) || & is finite as it is easy to see, SO

=|a]

Ik(z,0) | & = ||t . CF ey
Fixing x, and y, we obtain from Young’s theorem and (1)
[fg(y) f(&) |[z—y |t "day, ..., dBu—1 dyy ... Y=y | < (2)

Slgllgt @)l fllF G (@ 8a—ya) | F
:C-|xn—ynlln_1 ”gl|67||f||7’

Calling F(x,) = | f | 7, G(xa) = || ¢ llg, from (2) we obtain
IO fF(xn) GYn) | Zn—Yu | ™1 day dy, < (by Sobo-
lev’s theorem) S C | F || pu | Gl = Clfllr.llglle¢ qed

To establish Theorem 2 we still need three auxiliary- lemmas.
There Anf(z) = f(x +h) — f(x). _

Lemma 1. If feLP(E™) and || A% f ||p < c.|R]|® with
0< s <2 then ,

|h|s it os<1
Fler<C 17 +'(1)' :
A e < Co foIR] . (logt (7)) +1)  its=1
| it s>1.

Proof. From formula

Aif@) =— (1/2) 3 2% Atykn f(2) + 2V Aaa f(2)

k=0

we obtain by using the hypothesis,

N—1
NAnElle <O R|® S 266D 4 2-N( (3)
k==0



In the case s < 1, the series 'S 2%(¢=1) converges, so for N — o
we get our result.

If s = 1, from (3) we obtain
I Af 1 < CCI 1| N 4-2-7),
and ifs} 1
| I Aafllp <O (|h]*276=D 4 9-7),

Taking in these cases N such that

log + (l—l—l) < N<Llogt (%‘) + 1  we obtain the thesis.

)

1
Lemma 2. Let Fu(p) = I‘(n_u—H) fexp (—p (1+ t))
2 o

( t + t_;) (n—u—1)/2 Jt

for real u, u < m + 1, p being a real positive variable.
Then, '

ARG e
a) —dp— = "?Fu—2(f7)

pr " eﬁp(_%) if u<n

b) Fu(p) <C. (10g+—1— +1) exp(—p) fu=mn
P

exp (—p) if w>n

Proof. a) can be obtained by dlfferentlatlng under the integral
sign and integrating by parts.

b) FOPP 1Fu(p) CfeXp(—t—p)

(t + 2—) (w=n=17/2dt L C. exp(—p).
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Now if p < 1, we separate. three cases.

w<n: Fu(p) <C p“—”df exp(—1t) .

(pt +_§_) (n—u=1)/2 gt L C pt—".

u=mn: F,(p) = (1/2) f r.-Fu—2(r) dr < (by the pfeceding
p

caée) Cf—-.—I—C C(log( ),1_1)

2
u>n: F(p) Cexp(—p)f( t)(nul)/Zdt_

=C. exp (—p),q.e.d.

Lemma 3. If Gu(z) = [(1+4=*|2|?)~2] 7, we have for
I<KB < o0 andu>0, '

a) Gu(@) eLFif 3 (1/r5) >n—u
b) | AwGull e <O . | R|Z2A/mD=ntuf
1>3 (1/r) —n4u>0

e) For2>3 (1/r)) —n+u>0we have
“ AzuGh ” R < C_| h |z @/ry) —ntu

Proof. a) If 0<u<n+1, Gu(z) =CFy(|z]|) and from
Lemma 2, b), follows a) in case u <n + 1.

If w > n + 1, there exists v < n + 1, such that 3 (1/r;) >n—uv,
and we have || Gullz = || Go * Gu—v |l < || Goll |l Gu—v | 1=
=116vllrq-e.d

b) and ¢). We shall show that
i) b) with u < n implies ¢) with v <n-+41
ii) e) with w<n+ 1 implies b)
iii) b) ﬁmplies c).

In fact, suppose b) is true for u < n, and let u < n —{— 1,

2 >3 (1/ry)) —n+u>0. Now we definePby%:—lz——l- QER—
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Then P verifies

1 1 -1 : w .
and we have

A%Gu = A%(Gu * Gu) = (MiGu) * (MG ).
Co 2 2

2 2
Applying Young’s inequality

1A% Gulle I AkGa 1% < (because u ) <
2 2

u
S O|n |2EWPimr+3) — o p| ZUrd=m+ % This proves i)

i) is consequence of Lemma 1, since the hypotesis of b) imply
U< n-+1. . )
iii) may be proved in the same way as i).

From i), ii), and iii) it follows that to prove b) and e) it is
enough to prove b) in the case u < n.
Applying the mean value theorem and Lemma 2,a), we obtain
| AnGu(z) | =C | AnFu(| 2] )| < C|h|Fu(r)=C | h|.7. Fu_s(r)
where r = |z 4 64 | with certain 6, 0 < § < 1.

From Lemma 2,Db), we then have

Clh|r=—1L Ch|. |a|*“ 1 if |z]|>2n

i 4
:AhGu($)|<{Clx+h]"—“+|x|”"“ if lx1<2|h}()
If we call

. a.|x|vn-1 it |z|>=2a>0

1(z;0) = 0 elsewhere

( lz|m»v  if  |2]|<3e
1
Ga2(250) = i 0 - elsewhere,

it follows from (4) that

| AnGu e <O [ Ga(zs] A1) [le+ 1| Gam; | B ]) || 2] =
=C|h|2UD [[|GL(|h]z;|h|) e+ 1G(|h|z;|h])lz] =
=C|h[ZUrp+n=v [ |Gy (z;1) [z + |Gz (2;1) ||&].
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Sinee || Gi (x;1) ||z < o we thus have proved b) in case
u<n,q.e.d.

Theorem 2. Let P and Q, 1 < P,Q < o be such that 1 /P =
>1/Q,1>1/pn > 1/q. > 0 and let u and v be real numbers which
satisfy 3 (1/pi —1/q:) = uw—.

Then LP, C L8, the inclusion being continuous.

If 1>u—3(1/p:i) >0, 1 <P < o, then every function

f e LP, coincides a.e. with a ocntinuous function 7, and

1
FIS Ol o » | F@E+r)—F@ < ORI 0F 12

Proof. Let us call L= (14, ..., 1) the n-tuple L = —Pl—-—cl)—;

then 0 < 31; = uw— v < n, and for f ¢ L?, we have by Lemma 2, b),
| (J*=f) (@) | =] (Gums * D) (@) [ SO ]*="* ]
Now applying Theorem 1, || J*~*f || ¢ < Chryq || f Il », or, What is the
-same, || J% || v < Crsg || J*f || psu. This proves the first part. For
the second part, sinece u > 3 (1/p;) = n— 3 (1/p’;), we have from
Lemma 3, a), that Gu(z) ¢ L*’.

Now if f e LP,, then f = Gy * g with g e L. Then Young’s theo-
rem implies the continuity of f and also that

1l <NGull# - llglle=C. [l pu

Finally f(x + h) ——‘f(ac) = A#Gy * g, and again by Lemma 3,b),
and Young’s theorem,

[f(@+h) —f(@) | < I aGull 2 Il e <

u—‘i
<O|n)"7Fw Nl ew . .e.d

Note 1. If in the first part of the preceding theorem we had
u—v > 3 (1/pi—1/q:), the same conclusion holds for
1<P, Q< »,1/P 21/0. "

1 1 1
|| Gueof |l g <O || f |l p follows from Young’s theorem.

Note 2. If in the second part we had w—3 (1/p;) =1, the

conclusion would change only in the fact that then

In fact then by Lemma 3,a), Gu—ve LF + 1, and

[T +h) — @) | < h] Gog* (77) + 111 1w
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Indeed, from Lemma 8, ¢); and Lemma 1, we obtain
. 1 . ’
1 AwGu 11 P < C R (log+ (m) + 1) in this case.

3. In this part we shall stu(iy Holder continuity properties
of functions beloging to a class L?,.

Defzmtwn Let u be a real number and r the greatest integer less

than w. We denote with NPy, the class of distributions f, f. e L%,
such that

I A% T e e | B | %

The norm in NP, we define as || f || 7, plus the least constant Cy
that satisfies the preceding inequality. We denote it with /f/pw .
Theorem 1. a) If w is not an integer, then || A%BI 7l <
C | h|"=ris equivalent to || AW =" f || p < C | B | v,
b) J?is an isomorphism from AP, onto NPyt for every pair of
real numbers u and v and 1 < P < oo.

e) Ifu < vand1<P< 0, then/\ Po P:/\ P the incu-
sions being continuous.

To prove Theorem 1 we need certain auxiliary results, which
we state next.

Lemma 1. Let g(x)e (D) have support contained in
{x; % <|x]<2} , and let t, v, be real numbers, 0 < t < 1. If the
function G () € (S) is defined by
(Gopt)™ () = g(tw) . (1 4+4=%|z|2)2

then 1 Got 1 < Cop T,

1 .
Proof. Gpi(x) = (—_‘_—m)—ojf exp (27, (2,v9))
EW/

D" [g(ty). (14 42|y |2) % |da

1 2
the integrand having support in {y; o <lyl< —t~}

and being bounded by C,,, $“™ there.
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Therefore | Goy(2) | < Cvy . 707" |x| =% for s=0]1,...
and in particular

| Gun(2) | < C {t—"—” for | x|t

v x| Tt for x| >t

Integrating these bounds we get our thesxs
In Lemma 2, x, ¥, 2 will denote one dimensional non - negatlve
variables. 7
Lemma 2. Let r, s and t be real numbers, r =0,0 <t <1,s < 1.

If g(x) e C= (0, o), being zero for © = 4, and M e L1(0, )
x
then |I|= fg(x) exp( 2 YY) a0t T s |

sngnl(é)s‘

+S>

Proof. We call F(x) = f exp - ( )z’ (t2+22)" dz.

where s; is a certain real number 0 < s <1,

Then I = fg(x) F(x) de =— f ¢’(z) .F(z) dx, and we have
0 0
[I|=1¢"ll1. sup |F(x)]|.
I<w<dm

‘We shall show that

t\9
S @< ()W

having this way proved the lemma.

For this we decompose F(z) into real and imaginary parts and
we shall find bounds for each part.

31rt
2y z
Re(F(x)) / /
1rt 2m—-—1)1rt

cos (z_) 27 (1% + z2) dz =co+c¢c1+ ... + Cm
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The sequence c¢; is of alternating sign, and if the function
. puud sl U . 2j—Dxt QLE+1) =t
r(42 2
2 (2 422) "2 is monptonous in ( 5y , 5y )
* then the sequence |c¢;|,...,|ck|, is also monotonous. There-
fore we can associate co-+ ...+ cn) in at most five terms
(co+ ... +¢iy)+ ...+ (cig+ ... +cm) such that in each

parenthesis the moduli of the summands are monotonous.

Then [eo + ... + cm|<10. max |[c;| (2)
v 0<i<m

Further we have

—(r+8)/2 1+4+2)—¢ if s<0
ot 4 22) o _ (_-!- ') <
2= if 0<<s<1
so that from (2) it follows

sup |Re(F(x))|<Cs. {[ /)t it 0<s<1

3
O<cao<dn v @/y) if s<0 (3)
Similar bounds may be obtained for | Im(F(z)) |.
Formula (3) implies the thesis for s >0 with s; = (1 —38).
If s <0, | F(z) | < 1 +2)~% dz = C;, and from (3) we obtain

sup | F(2) | < C min (1, ¢/y) < C, min (1, (#/y)*) =
I<e <dr
< O (t/y)st for any s1, 0 < 81 < 1, q.e.d.

Now we shall generalize in certain sense Lemma 1; x,y are
again points of E”.

Lemma 3. If v=0, then Lemma 1 holds for any ge (D)
support of g(__ z;|x|=2}.

Proof. Let v > 0.

. . o
ot (y) = (—2riyk>-ffexp (2wi(s,) 5
E" .
v
lg(tz) 1+ 47|z |2)2] do
= y;~) times a finite sum of terms T (4)

with
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Ti= fexp 2nmi(x,y)) gs(tx) (14 42| x|2)@—i=r+/ 27 s dyg,

E”

Here gs(x) are linear combinations of derivatives of g(z),

having thus the same support as g(z), g:(x) e(D); 08K,
0sr <.

‘We shall find bounds for 7'; in two cases.

i) j=0.
, . 7
| To(y) [ < Oy . |f < A+4a* 2|2 2de < Ogp . 777 (5)
x| <2/t
i) j=mn. Changing variables 2 = 2  tz,

Tn(y):t_v[ €xXp (llszlEOSt—@z) gs (2—2”)
B

(t2 + I z i 2) (v—n+s—r)/2 zkr dz.

Writing this integral in polar coordinates we obtain

r = (g3) o2 fo (101652 0 (- 1)
. (t2 + p2)(v—n+s—r)/2 . pn+r—1 dp

an applying Lemma 2 to the integral in p, we get

(2a < 0ot (7)) [ 1eosy 1= “£93 (5= =)l

[y 27 ' |2]
>
_of T \®
A3 = Cyyy t (I_y—l) (6)

From (4), (5) and (6) it follows that

t—»=n  for ly | <t
[ Gyt @ | < Chyg - _ t \& _
= (—) . n for >t

and integrating these bounds we obtain the thesis for v > 0.
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" If v = 0, it is immediate that Gg,:(y) = t7" Go,1(y/t), so that
Il Gost Il 1 = 1| Gosr || 1 q.e.d.

Lemma 4. There exists a function g(x) e (D(E')) such that
support of gC{x;lg<x<2} and 3 g*2(27™x) = 1forx‘> 0.
Proof. There are standard constructions (e.g. see [4]) for a

g1(z) belonging to (D(E')), support of g, Clz; %<x<2},

ESY

such that 3 91(2;’”90) =1 forx > 0.

M= —

Now

2 912(27™x) = go(x)  verifies

9o € C® (0, ), 92(x) > 0 for z > 0, and g2(2"z) = ga(%).

Therefore we may take g(z) = g1(z). ga=1"%(x) q.e.d.

Proof of Theorem 1. a) follows from Lemma 1, section 2. -

b) Since for v an integer b) is true by the definition of A%,
one needs only to prove b) for 0 < v < 1 and consider the case
0<u<l Let fe/Zs

Case 1: u+ v <1 (therefore u < 1).

AT =1 AsGs * Daf lle S T AnGolloll Aaf Il e

Using a) and Lemma 3, b) of section 2, we get

I A% Tf 12 < Cow [ R[]0 /f/ b (7

Further | Jf [ p < | Goll2 I lle = 1111lp < /f/p (8
From (7) and (8) it follows

/J”f/Pm+v < Cu;v /f/P,u qed

Case 2: 1 <u+v <2
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Let {r}, t=1,...,N, be a family of open, circular cones,
with vertexes at the origin, such that they cover the surface 3 of
the unit sphere, and the angle between two generatrices of each { I}
is not greater than =/2. We call ¢; the unit vector direction coinci-
des with that of the axis of {r}.

Let gi(x), ¢=1,..., N, functions of (D), with support of
g; T, such that

v .
S gi%(x) =1 for xe3.
=1 ‘

Let g(x) be the function of Lemma 4. We define
x .
9:* (z) =g (m).g([ﬂ), 1=1,...,N. Then g;*¢ (D),

support of g * G]‘in { T; %‘<|w|<2 } , and they satisfy

N
3 3 g:*¥%2(2mx) =1 for x=£0.

m=—8 i=1

But 3 3 gi*(2-"a) = g** (1) ¢ (D) if we put g**(0) = 1

m=0 i=1
and it vanishes for |z | > 2

With these definitions we thus have

g**(x) 2 2 9:*2(2—mg) =1 for xeE™

m=1 i=1

Then for any ¢,0 < t < 1

(7 (@) = g** (k) (L4 da?|o]?) 002 F 4
+ 21 S [g*@mtz) (14 4a2|2]2) 0-02)
R
[9:*(27"tw) (1—exp(27 27" (3,0))) 2] . (A%p=mi; PN,

Using the notation of Lemmas 1 and 3, we may rewrite this as

S = Giv * f + 5 2 G*1_po—mg*® Giop —my* N%p—myz, f

m=1 i=1
(9)
and from the same Lemmas 1 and 3, taking ¢ = 1, we get
=1 [l e < Cuyg { HfHP+ 2 PR “)/f/P,u} ve /T/pou

(10)
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Analogously taking ¢ = |k | in (9), we obtain,

| AT 1e < Co (AR Lo+ 3 @R f/m) <
< ol b f/ow (A1)

(10) and (11) imply

/ Jvf/Pm—v< Cv/f/P,u q.e.d.

¢) From the very definition, A, _ P C LOP —LP, and
/f/pw—u < || f |lp. Applying J* to both spaces and using b), we
obtain LuP: A DP , which is the second inclusion we had to prove.

To prove the first inclusion, we call s =u —r.
Then || A% Jof [le= [ A% Gs*fllp < || A%Gs 1. || |l o, for f e L7
Using Lemma 3, ¢), of section 2,

I AT 11 p < Co| B |11 f 1l p. Since further || J% |2 <[ f 1l 2,
we have / J*f / pyu << C° || J%f || pous . €.
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