
ON THE THEORY OF INTERPOLATION SPACES 

JAAK PEETRE 

INTRODUCTION. In recent yeaTs various interpolation methods (i. e. cons­
tructions of interpolation spaces) have been given by many authors (see the 
bibliography, in particular [11], [12], [13], [14], [2], [5], [6], [9], [10]). In 
this article, which is based on three lectures given at the Universidad de Bue­
nos Aires in May 1963, we consider two quite general interpolation methods 
called K-and J-methods, the introduction of w;hieh was suggested by the "equi­
valence theorem" of Lions-Peetre [16], [17], combined with some considera­
tions in Peetre [21]. The K-and J-methods thus generalize the methods studied 
there .. (It turns also out that K-methods are equivalent with the method of 
Gagliardo [6].) A preliminary account of the theory of K-and J-methods was 
given in [22]. In order to avoid unnecessary repetition we shall below concen­
trate on further developments not explicit ely included in [22] .. 

The are two parts. In Part I we establish several interpolation theorems 
for K- and J- spaces give also an extention of the above mentioned "equi­
valence theorem" to these spaces. Theorems 1-5 are essentially contained in 
[22] while theorems 6,8 are new. As an application we obtain the interpolation 
theorems of M. Riesz [26] and Marcinkiewicz [18] as well as an extention or 
these theorems to Orlicz space. In Part II we consider more general spaces 
called n - and·M - spaces. Some of the results of Part I can be easily carried over 
to the more general situation. The motivation for the introduction of N- and 
M-paces is that in this way we obtain a unified approach to K- and J-spaces on 
one hand and the "approximation spaces" of [21], [22] on the other hand. In 
particular we obtain general results (theorems 6-9) which cointain as a special 
case the "reiteration theorem" of [22] (which again generalizes the "reitera­
tion theorem" of Lions-Peetre [16], [17]), as well as its analogue for the 
"approximation spaces" in [21], [22]. The enumeration of formulas etc. in 
the two Parts is independent. 

We warn the reader that we are very negligant what concerns all ques­
tions of convergence, concentrating instead mainly on establishing the inequa­
lities involved. It is of course clear that this is no serious limitation of the 
value of the theory established; in most cases the reader should have no diffi­
culties in supplying missing details. 
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PART I 

Sonte interpolation theorems for K- and J- spaces 

Let A 0 and Al be two normed spaces both contained in one and 
the same complete normed space s/l, the injection of Ai into A being 
continuos, Ai C sf{, (i = 0, 1) . We can then form the sum Ao + At 
of Ao and At and the intersection Ao n Al of Ao and A 1 • Each of 
these spaces is linear. In Ao + .cl1 we consider the family of (equi­
valent) norms 

(1) K(t, a) = inf (liaoIIAo+ t IlaIIIA.) (0 < t < 00) 
a ~ "0+ al 

and in Ao n At the family of (equivalent) norms 

(2) Jet, a) = max (1IaIIA. , tllnllA1) (0 < t < 00) 

Fixing t(e.g. t = 1) they become normed spaces. 
Let moreover <I> = <1>[<1>] be a {unction norm, i.e. a positive (fi­

nite or infinite) functional defined in the set nt+ of all positive (fi­
dt 

nite or infinite) functions on (0, 00) measurable with respect to t 

such that the following axioms hold: 

a) <1>[<1>] = 0 ~ <I>(t) = 0 a.e.; <1>[<1>] < 00 ~ <I>(t) < 00 a.e. 

/3) <I>[a<l>] = <1>[<1>] (a> 0) 
~. 

y) <I>(t) s ~ <l>v (t) a.e. --)0 <1>[<1>] < ~ <I> [cp~] 

We say that <I> is of genus < f where f = f(t) IS a positive 
function if and only if the following inequality holds: 

(3) <I> [ <I> ( At)] < f ( A ) <I> [ cp ( t) ] . 

K ,\Ve denote by (Ao, A l ) (J) the set of elements a € Ao + Al such 

that 

<I> [K(t, a)] < 00 
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and by (Ao, A 1 ) : the set of elements a" Ao + Al such that there 

exists a measurable with respect to d: function u = u(t) with va­

HieS in Ao; n A1 such that 

(5) 
'" dt 

a=f u(t) - (in Ao+A1 ), <I>[J(t,u(t»] < 00. 
u t 

Bach of these spaces is linear. They become normed spaces if we 
introduce the norms 

(6) 

and 

(7) 

(8) 

and 

(9) 

"Ve may call these spaces K- and J-spaces. 
Let us set 

CK . (<I> [min(l, t)])-1 

'" 
CJ = sup f 

<ll[ <P] ~ 1 0 

. (J 1 ) rl.(t)~ mm ·'t 'f' t 

Then we have the following theorem. 

CK > 0, then Ao n A1 L (Ao, A1) ~ . If CJ < 00, then 

(Ao, A l ) ~ CAo+ A1 and, if CJ > 0, then Ao n Al C (Ao, Al)~. 
All injections are continuous. 

The proof may be found in [22]. 
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We now turn to the following important interpolation theorem. 
Let <I> be of genus <: f. 
Let, besides Ao and AI, Bo and BI be another two normed spa­

ces contained in one and the same normed space CJ3, the injection 
of Bi into CJ3 being continuous: Bi C CJ3 (i=O, 1). , 

Theorem 2. Let II be a linear contimwtls mapping from Ao + Al 
into Bo + BI s1tch that 

(10) IIII all Bi <: Mi Iiall Ai' a € Ai (i=O,l) 

where 1v1o and MI are constants. Then 

(11) IIIIallB <: y Mo f ( ~~:) IlalIA' a £ A, 

or 

c.o 1 d>.. 
y = f min ( 1, -) f (>..) -. 

I) >.. >.. 

Proof: vVe note the following inequalities, which follow at once 
from (10) : 

(12) ( Mlt 
K(t II a) <: MoK --, - Mo' 

( lIiIt ) (13) J(t, II a) <: MoJ Mo' a , 

(14) Ket, II a) <: min ( 1, +) MoJ (~~S, a).' 

Case lQ: Using (12) we get, in view of (3) : 

( MIt ). IIII all(Bo, Bl)~ = <I> [K(t, II a)] <: .Mo <I> [K -M-;;' a J< 

<: Mof (!:) <I> [K(t, a)] = 1110 f ( !:) II a II (Ao, AI): . 
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'. MIt dt ; 
Case 29 : We note that II a = J II tl ( Mo )T. Usmg (13) 

we get, in view of (3) : 

and the last term tends to 

M f ( MI) II II J o \ Mo a (An. A,) of> 

if tl is chosen conveniently. 

. .. • If> ]Jilt dt 
Case 39 : We note agam that II a = f II 1t (~M ) -t·-. 

o ~ 0 " 

Using (14) we get: 

K(t, II a) <! K(t, II 1t (~~~S) d: < 

<fao . (l.!\M J(MIS (MIS))~= = mIn , '0 11',1"' U M 
OS, "1.0 . 0 S 

so that, in view of (3) : 

II IT a II(Bo• B l ): = <I>[K(t ,II a)] < 

00 • ( 1) (MltA (.MltA) \ dA < f n1111 1 -- Mo <I>[J -- u -- .] - < 
- 0 ' A lifo' Mo J A-

< T min ( 1,~) f ( A) dA M 0 f (1I11~ I '; <I> [ J ( t, tl ( t) ) ] 
o . A A 1J.0 

and the last term tends to 

00 ( 1 ) dA ( Mo ) K f min 1, -. f(A) -lifo f -M- II a II (Ao. AI) of> 
II A ,\ 1 

if u is chosen conveniently. 



- 54-

The proof is complete. 
Taking Ao = Eo, Al = B I , II = identity mapping we get as a 

concequence. 

Theorem 3. We have (Ao, Al)~ C(Ao. At): ,with continuous 

injection, provided 

(15) 
~ 1 dA 

f min (1,-. ) f(A) - < 00. 
o A . A 

Indeed we have then the inequality 

(16) II a II(Ao, AI): < {min ( 1,+) f(A) d: II a 11(040, AI)'~ 

a ~ (Ao, AI)'~ . 

The following theorem is a sort of converse. 

Theorem 4. We have (Ao, AI) ~ C(Ao, Al)~ , with conti­

nnous injection, provided CK < 00 and 

( 17 ) min ( 1, ~) f( A) -+ 0 as A -+ 0 or 00 • 

Indeed we have the ineqnality 

(18) 

This follows easily from the proof of theorem 1 (cf. [22]) and 
the following lemma. 

Lemma 1. Let a € Ao + Al be s1/.ch that 

(19) min ( I,!) K(t, a) -+ 0 as A -+ 0 or 00. 

Then there exists a measumble with respect to ~~ function u = 1£ (t) 

with valtles in Ao n At sttch that 

(20) 
00 dt. 

a = f u(t) -t (m Ao + AI), J(t, u(t)) < 4 K(t, a). 
o 

For details we refer to [22]. 
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Remark 1. Note that (15) and (17) are fulfilled in the im­
portant special case teA) = An, U < 8 < 1. This leads in view of [21], 
[23], to the "equivalence theorem" of Lions-Peetre [16], [17] 
mentioned in the Introduction. 

With the aid of theorem 4 we can give the following com­
plement to theorem 2. 

Theorem 5. Ass~t1}w that (17) holds tnw. '['hen the conclusion of 

them·ern 2 holds also in the following case: 4Q 11 = .-1 0 , A 1 ) ! ' 
B = (Ro, B1)~ ,y = 4. 

Let us now observe that, in view of the definition (1), K (;t,a) 
is concave considered as a function of t. 'fherefore K (t, a) can be 
represented in the form 

(21) 
t 

K(t, a) = f lees, a) d s 
(J 

where k (t., a) is non-increasing considered as a function of t, provi­
ded we impose also some auxiliary condition which assures that 
K(t,a) ~ 0 as t ~ O. (This is always the case in example 1 below). 

Theorem 6. We have a f (Ao, A 1)! 1:[ and only if q) 

[t k(t, a)] < 00, p1'Ovided 

(22) } I ( A) dA < 00. 
o A 

Proof: i) Since X(t, a) > t le(t, a) we get 

II a II(A", Al)K = <1> [K(t, a)] > <1>[t k(t, a)] 
If. 

and the "only if" part follows. 
ii) Let us make a change of variable in the integral (21) : 

1 dA 
K(t, a) = f t A k(tA, a) - . 

o A 
(23) 

Therefore 

I i~< 
11 a IlcA", AI): = <1> [K(t, a)] ::; f <1> [tAk(tA, a) 1 \ = 

,... 0 "-

1 dA 
< {, I(A) T <1>[t k(t, a) 1 

and the "if" part follows. 
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"\Ve illustrate the above results in a concrete case. 
Example 1. Let Ao = Lh Ai = Loo (with respect to some po­

sitive measure on some locally compact space). Then one can prove 
(cf. [22]) that k(t,a) = a*(t) where a*(t), as customary, denotes 
the non-increasing rearrangement of a on (0, 00) with the measure 
dt, i.e. a* and a are equimeasurable (cf. e.g. [7]). 

a) (Lebesgue spaces) Let us take 

1 
One sees easily that 1> is of genus < A 1- P . Then 

1>[t k(t, a)] = II a* IILp = II a IILp 

so that by theorem 6 (Lh Loo)~ = Lp provided p > 1. Applying 

theorem 2 one gets as a special case the interpolation theorem of 
M. Riesz [26]. 

b) (Orlicz spaces). Let 1I1(A) be a positive, non-decreasing 
convex function and letHA) be a positive increasing function 
such that 1I1(Ap..) < ~ (A) 1I1(p..). Let us take 

<YO 

1>[1>] = :~~ r max (J 111(1);:)) dt, !) = II ~ IILM 
() 

(which is Luxemburg's definition of the norm in Orlicz space, cf. 

e.g. [8]). One sees easily that 1> is of genus <-~-~A) . Then 

1>[t k(t, a) 1 = II a* IIL j1! = II a tIL]}! 

.. K fl dA 
so that by theorem 6 (Li' Loo) = L!J[ provided < 00. 

1> U ~-i (A) 

Applying theorem 2 one gets as a special case a sort of generaliza­
tion to Orlicz space of the interpolation theorem of M .. Riesz [26}. 

Remark 2. A quite different approach to such interpolation 
theorems can be based on an idea in eotlar [3], p. 197. 

We discuss next some extentions of theorem 2 in the case 3Q• 
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Theorem 7. Let II be a continuous linear mapping from Ao + A1 
into Bo + B1 such that 

(24) 

where Q(A) is a positive ftlnction and J![o and JIIl1 are constants. 
Then (11) holds with 

(25) 

Proof: Identical with the proof of theorem 2 (case 39 ). 

Theorem 8. Assume, instead of (24), that II satisfies 

where q (A) is a positive f1ulction and .1110 and 1111 are· constants. 
Then (24) holds with 

(26) Q(A) = l q(Ap..) dp. 
o p. 

Therefore hold also the conclusions of theorem 7. 
Proof: Using (23) we get at once 

K(t,a) < J q (~) dA J![oJ ("'11S, a) 
o S A J![o· 

and (24), with Q defined by (26), follows. 
Example 2. An important special case is q(A) = min (1, A). 

Then Q(A) = A if A < 1,= 1 + logA if A> 1. 
Example 3. Let Ao, A 1,c:f> be as in example 1 and q(A) as in 

example 2. Applying theorem 8 we can now get as a special case. 
the interpolation theorem of Marcinkiewicz [18] as well as a gene­
ralization of it to Orlicz space. 

Remark 3. We conclude Part I with a few observations of 
heuristic nature intended to facilate the proper understanding of 
the above results. First we wish to point out that theorem 2 in the 
case 39 and theorem 7 are related to each o~her roughly as the 
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theorems of lV1. Riesz and Marcinkiewicz. 'Ve. also wish to point 
ont that the special case J(A) = 1..0 (thus essentially the case con­
sidered in Lions-Peetre [16], [17] is related to the general case 
roughly in a similar way as Lebesgue spaces Lp to Orlicz spaces LM• 

PART II 

A geneml reiteration theorem. 

Let sIl be a complete normed space. We consider two arbitrary 

families of norms (l) insll, N(t, a) and M(t, a) (0 < t < 00). Let ~ 

be a function norm (see Part I). We denote then by F: the set of 

elements a € A snch that 

(1) <p[N(t, a) 1 < 00 

and by E ~ the set of elements a € A snch that there exist~ I'l measu­

dt 
rable with respect to t function u = 'll(t) with valnes in ,r:;il such 

that 

(2) 
= dt 

a = J u(t) -t- (insll), </>[111(t,11(t»)] < 00. 

Each of these spaces is linear. They become normed spaces if we 
introduce the norms 

(3) II a II F ~ = <P [N (t,a) ] 

and 

(4) IlalIE! =inf<p[lIJ(t,1l(t»]. 

We may call this spaces N- and M-spaces. 

(') vVe use the word norm in a very wide sense including in this concept 
also what is usually called semi-norm (the value 0 is permited) and pseudo­
norm (the value 00 is permited). 
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Let us discuss the tvYO principal examples of N - and 111-spaces. 
Example 1. I .. et . .:10 and .Li1 be two normed spaces both contai­

ned in .91, the injection of .Lii into .91 being continuous (i = 0,1). 
We may take N(t, a) = I1.(t, a), 1.11(t., a) = J(t, a). Then wen have 

Exa.mpZe 2. Let W n (n = 0, 1, 2, ... ) be a family of linear sub­
spaces of .<tl such that 0 = lV 0 C lV 1 C lV 2 C . .. We may take 

(5) N(t,a) = inf II a-w 1:_<tL 
'we:U"'-n 

and 

(6) 1I1(t, a) = II a 11.91 if a E W,,, e- n < t < e- n -- 1 or t> 1 

\Ve will start with some straight forward generalizations of 
<:ertains results of Part I. 

Theorem 1. Let II be a continnons linear mapping f1'om Sit into _<tL 
snch that 

(7) 

where Q(A.) is positive fltnction and Mo and M1 moe constant.~. 

Suppose <I> is of genus < f. Then 

(8) 

Ill1allF : <1Q (:)f(A.) ~A.Mof(~~~)llaIIE:,a€E:: 

(9) 

Proof: Identical with the proof of theorem 1. 2 (Case 39 ). 

If II = identity mapping, ,ve get as a consequence. 
Theorem 2 . .LisSltme ,that 

M(t, a) < Q (+) N(s,a) 
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where Q(A) is a positive function. Then we have E: CF:, with 

continuous injection, provided 

(10) 

Indeed we have the inequality 

Example 3. In the case of example 1 we may take Q (A) = 
min (1,-A) and in the case of example 2 Q (A) = 0 if A < 1, 

lifA<:1. 
(l 

Let us denote by sf{ the space of elements a € .9'1. such that there 

exists a constant R and a measurable with respect to ~t function 

function 1l = 1l(t) with values in sit such that 

(12) 
oc> dt 

a= [n(t) t' 1f[(t,n(t)) <RN(t,a). 

o 
Example 4. In the case of example 7 a € sf{ with R = 4 provided 

(see Lemma 1.1) 

(13) min( 1, ~) K(t, a) -)- as.t -)- 0 or 00 

n 
and in the case of example 2 a € sf{ with R = 2 provided (cf. [22]) 

(14) N(t,a) -+ Oast-+O. 

VIf e can now give a converse of theorem 2. 

n 
Theorem 3. If a € pN implies a € sf{ with R independent of a. 

~ . . 

then F: CE: ,with continuous injection. Indeed we have 

the ineq~wlity 
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(15) II a liE! < R II a II F: ' a EF: 
Example 5. In the case of example 1 it suffices that f satisfies 

(see theorem 1.4) 

(16) min ( 1, ~) f(A) -j- 0 as A -)- 0 or 00. 

In the case of example 2 it suffies that 

(17) fCA) -r 0 as A -;. O. 

Let f = fCA) be any positive function. Let i:l be a normed space 
contained in s1. 

Dcft"nition 1. IV e saiy that i:l is of class ClJ r. if and ouly if 

(18) N(t, a) .L Df(t) II a II A 

whc'rc D is a constant, and that A, is oj' class C JJ[ if and only if r 

(19) II aliA < C f ( ~ ) JYI (t, a) 

whet"e C is a constant. 

Example 6. Assume that <I> is of genus < f. In the case of 

example 1, (A,o, ~1i)K is of class ClJK provided CK < 00 and of class 
ip r 

e J provided CK > 0; (Ao, Ai) J .is of class ClJK provided cJ' < 00 
f ip f 

and of class ClJ~ provided CJ > O. (Here CJ[ and CJ are as iIi (1.8) 

and C1. 9)!) This follows easily from the proof of theorem 1.1 
(cf. [22]). 

Spaces of classes ClJ~ and e~ are characterized by the following 

theorems. 

Theorem 4. A is of class ClJ ~ if and only if 
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(20) 

Theorem 5. A is of clas~ e~ if and only if 

The proof of these theorems is obvious. 

Let us from now on assume that f(A) is of the from Act. ,Vo 

h 11 't r7I N d eJ1 • d" r7I N d e M L t 3 a wrI e 'U a an a Instea or 'U i..a an A'a. e Uo < Ul 

be given. If <P is any function norm we define n by 

(22) 

If <P is of genus -< f then n is of genns -< r whore r is given by 

ao 1 
(23) rCA) = A - a, ad f (J\. ai-aO'-

,Ve can now announce onr main results. 

Theorem 6. Let Ai be of class CZJ N (i = 0,1). Then 
ai 

so that (Ao, A l ); OF: with continuous injection. 

Theorem 7. Let Ai be of class e ~. (i = 0,1). Then , 

(25) 

so that 

Since the proof of theorem 7 is similar though slightly longer 
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(cf. [22] for details) we shall only indicate the proof of theorem 6. 
Proof of theorem 6: 11et a = ao + Cll. '1'hen we have 

N(t,a) <N(t,Cln) +N(t,Cll) <Do tao IlaollAo+Dt ta11IalIIA,= 

= Do tao (II ao 11.,1, + ~: ta, -uo II al IIAl) . 

:;\Iaking vary ao and a1 we get 

N(t,a) <Do tao K (~: t Ul - ao , a) 

from which the result easily follows by (22) and (23). 

Theorem 8. Let A. i be of class CD; and of class e:~ (i = 0,1). 

injections, provided 

(26) 

Proof: Apply theorem 2 (or theorem 1.3). 

Theorem 9. Let again Ai be of class CZJ ~ and of class e~~ 
(i = 0,1). Suppose that the assumptions of theorem 3 w'e fulfiUed. 

Then FN 
<J? 

injections, provid,ed (26) holds 
Proof: Apply theorem 3. 

E:cwnple 7. Consider the case of example 1. Let Ai be of 

class CZJ~i andofclasse~ (i=O,l). Then (Ao,Ad! = (jto,A.1)~ = 
:--K --J = (.cio,Ad g = (Ao,A1)<J? provided (26) and (16) hold. This is 

the "reiteration theorem" of [22]. (A "reiteration theorem" of so­
mewhat different nature connected with the "complex variable" 
methods of [2], [9], ]H[ was recently found by [lions [15].) 

Remark 1. ~With the aid of the reiteration theorem we can 
also extend the results of example 1.1 to the case ;10 = Lv", 

A1 = Lv,' 



-64-

Example 8. Consider the ease of example 2. Let Ai be Df class 

CZl~i and Df class e~i (i = (0,1). Then.F~ =E: = (Ao,Al)~ = 
= (Ao, Al) ~ provided (26) and (17) hDld. This is an;:tlogue Df 
the "reiteration theorem" for the "approximation spaces" (cf. [21], 
[22.] ). 

"'rVe conclude by applying example 8 in a concrete case. 
Example 9. Let sfl be Lp with respect to' the Haar measure dx 

on the additive group of real numbers, i. e. the intervall (- 00, 00). 

Denote W;' the space of functions a whose generalized derivatives 

up to order m are in Lp: (!) j a € Lp if 0 < j .c:::. m. Let W n be 

the space of functions a in Lp such that the generalized Fourier 
transform vanishes outside (- en, en) ;i. e. a is entire of exponential 

type en. Then (trivial) Lp is of class CZl~ and of class e~ and 

(using Fourier transforms) W; is of class CZl! and of class e~. 

Therefore .F~ = E: = (Lp, W; ) ~ = (Lp, W;')~ where n is 

given by (22) with ao - 0, al m provided J min ( 1,~) teA) 
I) ",n 

dA . 
X < 00 and f (A) --* ° as A -+ o. Let us specialize to iP [<p] = 

<P (t) . = sup ·-tt- ,0 < a < m. Thon ,ye may take t (A) = A a so 
t 

the above assumptions Df tare fulfilled. On the order hand it is 

known (cf. [12], [17], [25], [22]) that in this case (L p, WlIl) ~ = . p 

= (Lp, W;') ~ is the space of functiDns a € Lp satisfying the fDllo­

wing Holder type condition: sup h -a, II (6. (h) ) rna IILp< 00 where 6. (h) 
. h 

is the operation of taking differences of increment h: 6. (h) a (x) = 
= a (x + h) - a (x). In this way ,ye are lead to the classical 
theDrems of Jackson and Bernstein in the constructive theory Df 
functions (cf. e g. [1]). One can also cDnsider the case Df v va­
riables (v >( 1), in which way we Dbtain various results fDund 
in recent years by Nikolskij and his school (cf. e. g. [19]), as well 
as other extentions. The full details will be published in a forthco­
ming paper. 

Stockholm, July 1963. 
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