ON THE THEORY OF INTERPOLATION SPACES

JAAK PEETRE

INTRODUCTION. In recent years various interpolation methods (i. e. cons-
tructions of interpolation spaces) have been given by many authors (see the
bibliography, in particular [11], [12], [138], [14], [2], [5], [61, [9], [10]). In
this article, which is based on three lectures given at the Universidad de Bue-
nos Aires in May 1963, we consider two quite general interpolation methods
called K-and J-methods, the introduction of which was suggested by the “equi-
valence theorem” of Lions-Peetre [16], [17], combined with some considera-
tions in Peetre [21]. The K-and J-methods thus generalize the methods studied
there. (It turns also out that K-methods are equivalent with the method of
Gagliardo [6].) A preliminary account of the theory of K-and J-methods was
given in [22]. In order to avoid unnecessary repetition we shall below concen-
trate on further developments not explicitely included in [22]..

The are two parts. In Part I we establish several interpolation theorems
for K- and J- spaces give also an extention of the above mentioned “equi-
valence theorem” to these spaces. Theorems 1-5 are essentially contained in
[22] while theorems 6-8 are new. As an application we obtain the interpolation
theorems of M. Riesz [26] and Marcinkiewicz [18] as well as an extention of
these theorems to Orlicz space. In Part II we consider more general spaces
called n - and-M - spaces. Some of the results of Part I can be easily carried over
to the more general situation. The motivation for the introduction of N- and
M-paces is that in this way we obtain a unified approach to K- and J-spaces on
one hand and the “approximation spaces” of [21], [22] on the other hand. In
particular we obtain general results (theorems 6-9) which cointain as a special
case the “reiteration theorem” of [22] (which again generalizes the “reitera-
tion theorem” of Lions-Peetre [16], [17]), as well as its analogue for the
“approximation spaces” in [21], [22]. The enumeration of formulas ete. in
the two Parts is independent.

We warn the reader that we are very negligant what concerns all ques-
tions of convergence, concentrating instead mainly on establishing the inequa-
lities involved. It is of course clear that this is no serious limitation of the
value of the theory established; in most cases the reader should have no diffi-
culties in supplying missing details.
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PART I
Some interpolation theorems for K- and J- spaces

Let A, and A, be two normed spaces bhoth contained in one and
the same complete normed space &, the injection of A; into A being
continuos, A; cgi(i:(), 1). We can then i’qrm the sum A4, + 4,
of 4, and A4, and the intersection Ay M A, of Ag and A4;. Each of
these spaces is linear. In 4, + A, we consider the family of (equi-
valent) norms

(1) K(t,a) =inf  (llaolla,+ ¢ lloslla,) (0 <¢ < w0)

a=ag+ @

and iﬁ AN A, the family of (equivalent) norms
0 n 1

(2) J(t,0) =max (llefls, » tlells) (0<E< )

Fixing #(e.g. t = 1) they become normed spaces.
Let moreover ® = ®[¢] be a function norm, ie. a positive (fi-
nite or infinite) funetional defined in the set m. of all positive (fi-

. . . . t
nite or infinite) functions on (0, ) measurable with respect to -

such that the following axioms hold:

a) ®[¢p] =0 ¢(t) =0 ae.;[¢p] < 0 > ¢(t) < = ae.
B) @lap] =@[¢] (a>0)

Y SH=3 ér (D) ac. - B[] =3 @ [$)]

V=1 Ve 1

We say that ® is of genus = f where f=/f(¢) is a positive
funetion if and only if the following inequality holds:

(3) ep(M)] =F(A) @[e(D)].

‘We denote by (A, 4,) g the set of elements a e Ao+ Ay such

that

(4) ®[K(t,a)] <
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and by (4o, 4;) g the set of elements @e Ay 4+ A; such that there

. . di . .
exists a measurable with respect to — function » = u(¢) with va-

t
wes in A N A, such that

o at .
(5) a:f 1L(t) T (Hl A0+A1): ‘I)[J(t:u(t))] < oo,

0
Each of these spaces is linear. They become normed spaces if we
introduce the norms

(6) llal} (4, Al)g =®[K(t,0a)]
and
(7 lall 4y 4pg = inf @[T (4, u(t)].

We may call these spaces K- and J-spaces.

Let us set
(8) ¢k = (@[min(1,£)])?
and
(9) c; = sup fﬂ min (l,i—) ¢>(t)ilE
o[ $1=1 0 t t

Then we have the following theorem.
Theorem 1. If cx < oo, then (A, Al)g (_',Ao_{_A1 and, +f
cx > 0, then AjN A, C (A, A,) g f ¢y < 0, then

(4o, Al); CAy+ Ay and , if ¢ >0, then AxN A C(Ay, A,) &I,.

All wnjections are continuous.

The proof may be found in [22].
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We now turn to the following 1mp0rtant interpolation theorem
Let @ be of genus = .

Let, besides 4o and A4,, By and By be another two normed spa-
ces contained in one and thé. same normed space 93, the injection
of B; into 9B being continuous: B; ¢ B (i=0, 1)

Theorem 2. Let TI be o linear continuous mapping from A, + Ay
into By -+ By such that
(10) ”H a” B; é M; ”a'” Ai:aGAi (i:O,l)

where My and My are constants. Then

(11) malls = 3 Mo f (57 Tl o,
where 19 A= (Ao, A,)g » B=(By, Big ,y=1

or 20 A= (Ao, A1)y, B=(BuBi)y, v=1

or 3 A=(AynA1)), B=(BoBig,
o 1y, . dx
v={min (1) )5
Proof: We note the following inequalities, which follow at once

from (10):

Mt

(12) K(tna)<MoK(M ,a),
(13) J(t, T a) =< MoJ (J;f;t a),
0
(14) K(t,ﬂa)émin(],%) MoJ (%—s a).
0

Case 1°: Using (12) we get, in view of (3):

: M4t
I alla, 2% =LK (L Ta)] SHo® (K (G-, o) IS

<ot (WY o (5t 0] =008 (57) N allcn, a0k
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Mlt)d

Case 2°: We note that e = f T u (
0 M,

Using (13)

we get, in view of (3):

Malls, 5% = ol mu (20 ) <
= o o7 (35 me(5)) 1= 307 (5 ) el o)

and the last term tends to

M, 7
Mof (\E) llell (a, ‘4‘)@

if u is chosen conveniently.

Mt~ di
Case 3°: We note again that ¢ = j oo (2 )

\o, )
Using (14) we get:

H/\

K(t,a) < f'K(t,nu(m))dT

<fm1n( \MOJ(%,M(]IJ[!};”M

1 Min iy dA
_({mln(l,*x)Mo.J(‘m‘,ukMo )

so that, in view of (3):

1T a sz, B;) P[K(t,Ma)] =
¢ 1 iy d
= fmin (3, 3) 00 000 (5% (570) ) 132
P 1 M .
ggmd,Twm*Mw(‘hw@MMJ

and the last term tends to

Fooin (1,50) £ S0 £ (4 ) Nalliay 4%

if u is chosen conveniently.



The proof is complete.
Taking Ao = Bo, A1 = By, II = identity mapping we get as a
concequence.

Theorem 3. We have (A, Al)';> C (A, A1)§ , With continuous
tnjection, provided
S 1 da
(15) { min (1,-}\-) f) == < o0

Indeed we have then the inequality

° 1 dr
K 1 _4 — J
(16)  flal, oF < f min (1,5) 70 lall, a0

J
ae (Ao, A1) P
The following theorem is a sort of converse.

Theorem 4. We have (Ao, A1) g C (4, Al)'; , with conti-

nuous injection, provided cx < o and
. 1
(17) min ( 1, A) fO) =0 as A =0 or o,

Indeed we have the tnequality

(18) 1o llcay ap? S 4110 flan o 5 ae (Ao dr) g

This follows easily from the proof of theorem 1 (ef. [22]) and
the following lemma.
Lemma 1. Let a e Ay 4+ A1 be such that

(19) min (1_;_) K(ta) >0 as A—>0 or o,

. . dt .
Then there exists a measurable with respect to 5 function v = w (1)

with values i A N A " such that

(20) 4= iju(t) i—t (in Ao+ Ay), J(tu(t)) <4K(ta).

For details we refer to [22].



Remark 1. Note that (15) and (17) are fulfilled in the im-
portant special case f(A) = A, 0 < 8 < 1. This leads in view of [21],
[23], to the “equivalence theorem” of Lions-Peetre [16], [17]
mentioned in the Introduction.

With the aid of theorem 4:we can give the following com-
plement to theorem 2.

Theorem 5. Assume that (17) holds true. Then the conclusion of

theorem 2 holds also in the following case: 4° A = A, A.l)f;,

B= (BO,BI)‘; ,y=4.

Let us now observe that, in view of the definition (1), K(%,a)
is concave considered as a function of #. Therefore K(f, ) can be
represented in the form

(21) K(ta) = f l(s,a) ds
V)

where k(t, @) is non-tncreasing considered as a function of ¢, provi-
ded we impose also some auxiliary condition which assures that
K (t,a) — 0 as t — 0. (This is always the case in example 1 below).

Theorem 6. We have ae (Ao, Al);f if and only if q
[Tk(t,a)] < oo, provided
(22) o 2 <o,

Proof: i) Sinee K(t,e¢) = t k(f,a) we get

H a’”(Au, AI)I; = ¢[K(t: a‘)] = CI)[tk(t’ a)]

and the “only if” part follows.
ii) Let us make a change of variable in the integral (21):

! dax
(23) K(t,a) = [tAk(h ) S
0
Therefore
1
ol wf = oK 0] = [ olkin o] S =
0

g{"f(x) D oLt kit )

and the “if” part follows.
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We illustrate the above results in a concrete case.

. Example 1. Let Ay = Ly, A; = Lo (with respect to some po-
sitive measure on some. locally compact space). Then one can prove
(ef. [22]) that k(t,0) = a*(t) where a*(f), as customary, denotes
the non-increasing rearrangement of @ on (0, o) with the measure
dt, i.e. ¢* and o are equimeasurable (cf. e.g. [7]).

a) (Lebesgue spaces) Let us take

w » 1
ols1 = (f (47) a7 =141,

1
One sees easily that @ is of genus = A*~» . Then

B[th(t,a)] =l a*llz, = ol

so that by theorem 6 (L, L“); = L, provided p > 1. Applying

theorem 2 one gets as a special case the interpolation theorem of
M. Riesz [26]. .

b) (Orlicz spaces). Let M(\) be a positive, non-decreasing
convex function and let £(A) be a positive increasing function
such that M (Ap) = & (M) M(p). Let us take

o0

_ s ¢ (%)
@[] _rlgg r max (JM( 7
0

Jas 1) =12 s,

(which is Luxemburg’s definition of the norm in Orliez space, cf.

e.g. [8]). One sees easily that ® is of genus = FA(T . Then

o[tk(t,a)l =lla* Ly =al|lL,

R K . 1 da
so that by théorem 6 (L1, Ly) s = Ly provided Uf F=1sy) < 0.

Applying theorem 2 one gets as a special case a sort of generaliza-
tion to Orliez space of the interpolation theorem of M.. Riesz [26].
Remark 2. A quite different approach to such interpolation
theorems can be based on an idea in Cotlar [3], p. 197.
We discuss next some extentions of theorem 2 in the case 3°.
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Theorem 7. Let TI be a continuous linear mapping from Ay 4 A,
wmto Bg -+ By such that

¢ Mos v

< 2\ M 200

(24) K(t,a) < Q(S )MOJ( i ,2)

where Q (M) is a positive function eand Mo and M,y are constants.
Then (11) holds with

w0 1
A=(od)] , B=BuB)§ o= 0 (F) 0

Proof : Identic_zil with the proof of theorem 2 (case 3°).
Theorem 8. Assume, instead of (24), that II satisfies

Mys ) _

(25) th(t,Ma) <q (i) M, J(—Mo-,a

8

where q(A) 1s a positive function and My and My are constants.
Then (24) holds with

(26) Q) = f g 2.
¢ p

Therefore hold also the conclusions of theorem 1.
Proof: Using (23) we get at once

tAy dr - M;s

E(ta) = f q
0
and (24), with @ defined by (26), follows. ‘

Ezxample 2. An important special case is g(A) = min (1,A).
Then Q(A) = Aif A =1, =1+ logrif A > 1.

Ezample 3. Let Ay, A1,¢ be as in example 1 and ¢g(A) as in
example 2. Applying theorem 8 we can now get as a special case,
the interpolation theorem of Marcinkiewicz [18] as well as a gene-
ralization of it to Orlicz space. ‘ ,

Remark 3. We conclude Part I with a few observations of
heuristic nature intended to facilate the proper understanding of
the above results. First we wish to point out that theorem 2 in the
case 3° and theorem 7 are related to each other roughly as the
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theorems of M. Riesz and Mareinkiewiez. We also wish to point
out that the special case f(A) = A® (thus essentially the case con-
sidered in Lions-Peetre [16], [17] is related to the general case
roughly in a similar way as Lebesgue spaces L, to Orlicz spaces Ly.

PART II

A general reiteration theorem.

Let of be a complete normed space. We consider two arbitrary
families of norms (1) in o, N(¢,a) and M (t,e¢) (0 <t < o). Let &

‘ be a function norm (see Part I). We denote then by I 1; the set of
elements a e A such that

(1) P[N(t,a)] < oo

and by E Ti the set of elements @ e A such that there exists a measu-
rable with respect to %t~ funetion w = «(¢) with values in «{ such
that

@) o = ) G (in ), o u(t)] < o,

Each of these spaces is linear. They become normed spaces if we
introduce the norms

(3) lalls¥ = a[N(ta)]
and
(4) HaHElg = inf ®[M(t,u(t))].

We may call this spaces N- and M-spaces.

() We use the word norm in a very wide sense including in this concept
also what is usually called semi-norm (the value 0 is permited) and pseudo-
norm (the value co is permited).
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Let us discuss the two principal examples of N - and I -spaces.
Example 1. Let 4y and A, be two normed spaces bhoth contai-

ned in o, the injection of 4; into o being continuous (¢ =0,1).
We may take N(¢,a) = K(t,a), M(t,a) = J(t,a). Then wen have

F; = (do, A1)y E]; = (4o, 41)]

Example 2. Let W, (n=0, 1, 2,...) be a family of linear sub-
spaces of of such that 0=W, ,C W, C W, C... We may take

(5) N(te) = inf ||e—w |l g
wew,

and

(6) Mt,o)=|la|lgif aeWye " =t<e ™! orit>1

=0 if aeW,, e—" <t < e="1

We will start with some straight forward generalizations of
certains results of Part I.

Theorem 1. Let I be a continuous linear mapping from of into o
such that

(7N M(t,a) =¢Q (—ts—)MoN(lnl;: a)

where Q(\) s positive function and My and M, are constants.
Suppose ® is of genus = f. Then

(8)
s 1\ dr M
IMaleg = §Q ()T Mo f (G leling ach .

Proof: Identical with the proof of theorem I. 2 (Case 3°).
If II = identity mapping, we get as a consequence.
Theorem 2. Assume that

(9) M) =Q (L) Nisa
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where Q(\) 1s a positive function. Then we have. E’Z'If CF g , with

continuous injection, provided

o 1 aA
(10) fo(3) i <=
Indeed we have the inequality

2 ar oo o
A el = f @ () F0 T lals’ cack) .

Ezample 3. In the case of example 1 we may take Q(A) =
= min (1,A) and in the case of example 2 Q(A) =0 if A=1,
l1if A < 1.

0
Let us denote by «f the space of elements @ e of such that there

. . dt .
exists a constant R and a measurable with respect to ~ function

function u = w(#) with values in ¢ such that

(12) a= f u(f) d—tt s, M(t,u(t)) =RN(t,a).

0
Example 4. In the case of example 7 a e of with B = 4 provided
(see Lemma I.1)

(13) \ mM(lp%\KUJU—*mt—*Oorw
. /
0 ’

and in the case of example 2 @ e of with R = 2 provided (ef. [22])
(14) N(t,a) = Oast— 0.

We can now give a converse of theorem 2.

0
Theorem 3. If aeFZ mmplies ae A with B independent of a,

then F: C E,l: , with  continuwous tnjection. Indeed we have

the inequality
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(15) lal|EY = R|la||F} ,aely .

Ezample 5. In the case of example 1 it suffices that f satisfies
(see theorem I.4)

(16) min ( 1%) F(A) = 0 as A — 0 or .

In the case of example 2 it suffies that
1 f(A) = 0 asxA—0.

Let f = f(A) be any positive function. Let 4 be a normed space
contained in <. )

Definition 1. We say that A is of class (le_v if and ouly if
(18). N(t,a) = Df(t) [la|l4

where D-1s a constant, and that A s of class CI;,I if and only of

19) lalu = 07 (5) Mt a

where C is a constant.

Example 6. Assume that & is of genus = f. In the case of

e;cample 1, (Ao, Al)I; is of class (D’; provided cx <‘ oo and of class
e; provided cx > 0; (Ao, Al); is of class CZ)’; provided ¢; < o

and of class fD‘; provided ¢, > 0. (Here cx and ¢, are as in (I.8)

and (I.9)!) This follows easily from the proof of theorem I.1
(ef. [22]). ' -

Spaces of classes (DZ;,T and GIIZ are characterized by the following
theorems.

Theorem 4. A 1s of class @: if and only if
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) iy N 10))
- (20) ACFE,, ®l¢l=sw 5y -

Theorem 5. A 1is of class (21]1[ if and only if

M . P 1 dt
(21) ADEy, ®lsl=7(F)s® .
The proof of these theorems is obvious.
Let us from now on assume that f(A) is of the from \e. We
shall write CDéV and Gi’ instead of D ;\; and C {'é Let ap < a4

be given. If ® is any function norm we define Q by

(22) Q [4,] — ] [t““(p (tm—ao)].

If ® is of genus = f then Q is of genus = r where r is given by

% 1
(23) r(A) = A Tq a F (X al—“o'\‘

We can now announce our main results.
N

Theorem 6. Let A; be of class CD;_ (1=0,1). Then
€

D
@4 lalled =Dor (FE) lolluay arg » ac(dodn) ]

so that (A, Al)g d FZ with contimuous injection.

Theorem 7. Let A; be of class G'Zi (1

=0,1). Then
1 Cy 2 a
) Nl ) S = Cor () llallrd, acE]

ol - P
sothat  EY¥ C(A, Ay -

Since the proof of theorem 7 is similar though slightly longer
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(ef. [22] for details) we shall only indicate the proof of theorem 6.
Proof of theorem 6: Let ¢ = a9 + «¢1. Then we have

N(ta) =N (t,a0) + N(t,a1) =Dy too || aoll gy + D1 tos [l a1 || 4, =
= Dy oo a ) — o =% ||y g ) -
o w0 (llaolls, + =0 1)

Making vary. ¢y and a; we get

N(t,a) =Dgy tno K (% foi—ao a)

0
from which the result easily follows by (22) and (23).
Theorem 8. Let A; be of class CZ):: and of class G;I (t=0,1).

Then E;[ C(Ao’ Al); C(Ao- Al)g CF; , with continuous

injections, provided

° 1 i ax
Proof: Apply theorem 2 (or theorem I.3).
Theorem 9. Let again A; be of class CDZ and of class G;{
(1 = 0,1). Suppose that the assumptions of theorem 3 are fulfilled.
Then Fg = Ef;f = (4o, Al)g = (A, Al)é , with continuous
mjections, provided (26) holds
Proof: Apply theorem 3.

Example 7. Consider the case of example 1. Let A; be of
class (DqK_i and of class @gl. (t=10,1). Then (A4,, Al)g = (Ao, Al);f, =

= (Ao, A1)g = (Ao A1)% provided (26) and (16) hold. This is

the “reiteration theorem” of [22]. (A “reiteration theorem” of so-
mewhat different nature connected with the “complex variable”
methods of [2], [9], ]14[ was recently found by Lions [15].)

Remark 1. With the aid of the reiteration theorem we can
also extend the results of example I.1 to the case Ao= L.,,h,
Ay =Ly, .
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Ezxample 8. Consider-the case of example 2. Let 4; be of class
DE and of class €7 (i = (0,1). Then F§ =E3 = (Ao, 41)g =

= (Ao, A1)g vrovided (26) and (17) hold. This is analogue of
the “reiteration theorem” for the “approximation spaces” (ef. [21],
[22]). . '
’ ‘We conclude by applying example 8 in a concrete case.
Example 9. Let o be L, with respect to the Haar measure dx
on the additive group of real numbers, i.e. the intervall (— o0, o).

Denote W) the space of functions ¢ whose generalized derivatives

up to order m are in Ly: (%)MteL,, if 0 = j = m. Let W, be

the space of functions a in L, such that the generalized Fourier
transform vanishes outside (— e®, ¢");i.e. a is entire of exponential

type e” Then (trivial) L, is of class (Dlg and of class Glg and
(using Fourier transforms) W’; is of class (sz and of class eﬁ .

Therefore Fg = E§ = (Ly w Yo = (L W Yo where Q is
given by (22) with ay = 0, oy = m provided “jn min (1,%) f(x)

d ‘ ‘ L .
T'\ < o and f(A) = 0 as A — 0. Let us specialize to @ [¢] =

= sup ¢t((.f),.0 < o < m. Then we may take f()\);_—)\“ S0

the above assumptions of f are fulfilled. On the order hand it is

known (ef. [12], [17], [25], [22]) that in this case (L, W;T) ’é =

= (Ly W;;Z)é is the space of functions a e L, satisfying the follo-

wing Holder type condition: sup A2 || (A (h))"a ||5,< o where A (h)
’ h

is the operation of taking differences of inerement h: A (h)a(z) =
= a(x+h) —a(xz). In this way we are lead to the classical
theorems of Jackson and Bernstein in the constructive theory of
funetions (cf. e g. [1]). One can also consider the case of v va-
riables (v >, 1), in which way we obtain various results found
in recent years by Nikolskij and his school (ef. e. g. [19]), as well
as other extentions. The full details will be published in a fortheo-
ming paper.

Stockholm, July 1963.
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