**INDUCED SHEAVES AND GROTHENDIECK TOPOLOGIES**

by Juan José Martínez

**INTRODUCTION.** The theory of sheaves, as it is exposed in the classical book of R. Godement (2), has been generalized in successive stops. Ending this process, M. Artin introduced the notion of Grothendieck topology and developed the fundamental part of the theory in a functorial way (cf. (1)). Although, the concept of Grothendieck topology seems to be insufficient to relate certain aspects of the theory of sheaves; for example, the notion of subspace (not necessarily open!) is omitted and so, induced sheaves and relative cohomology must be ignored.

The purpose of this paper is to obtain the essential results about induced sheaves (the concept of topological category enable us to work in this direction; cf. §1). Topological methods play an important role in the problems in question, as Godement shows (cf. (2), Ch. II, §2.9). Therefore, we are forced to introduce a various kind of axioms, valid -of course- in the classical situation of a topological space. We mention that the results of this paper are useful also in not conventional cases, namely, the "étale" Grothendieck topology for preschemes (cf. (1), Ch. III).

Results and notations of Artin's seminar ((1), Ch. I, II) are continuously used, frequently without specific reference. This results are stated in (1) for sheaves of abelian groups, but all of them could be generalized taking an arbitrary category of values and inserting axioms where necessary. Here, we have followed the abstract formulation (the basic facts about limit of functors, existence of injectives, adjoint situations, derived functors of a composition, etc. are stated in the usual literature; for example, cf. (3)). Of course, the reader could suppose that all sheaves in this paper are abelian sheaves.

1. **TOPOLOGICAL CATEGORIES AND INDUCED SHEAVES.** This section is of introductory character. Its aim is to lay down the terminology used throughout this paper and to collect the basic facts. We begin with the following:

**DEFINITION 1.1.** A topological category is a triple $(\mathcal{M}, T, \mathbf{t})$ such that $\mathcal{M}$ is a category, $T$ is a family of Grothendieck topologies $(T_M)_{M \in \text{Ob} \mathcal{M}}$ and the following axioms are satisfied:
tc1) For all object $M$ in $\mathcal{M}$ $\text{Cat} T_M$ is a full subcategory of $\mathcal{M}$. $X$ is an object of $\text{Cat} T_X$ and $\Phi_M$ is the identity morphism $\Phi_X$ of $X$.

tc2) The diagram

$$
\begin{array}{ccc}
U & \longrightarrow & V \\
\downarrow \Phi_U & & \downarrow \Phi_V \\
X & \longrightarrow & X
\end{array}
$$

is commutative, for all morphism $f: U \rightarrow V$ in $\text{Cat} T_X$.

tc3) $\mathcal{M}$ has fibered products of the form $X \times_X M$ (briefly noted $U \times_X M$), where $U$ is an object of $\text{Cat} T_X$ and $M$ is an object of $\mathcal{M}$, such that

$$
U \in \text{Ob}(\text{Cat} T_X) \longrightarrow U \times_X M \in \text{Ob}(\text{Cat} T_M)
$$

$(f_i: U_i \rightarrow U)_{i \in I} \in \text{Cov} T_X \longrightarrow (f_i \times_X e_M: U_i \times_X M \rightarrow U \times_X M)_{i \in I} \in \text{Cov} T_M$

for all object $M$ of $\mathcal{M}$.

REMARKS 1.2. i) Axioms tc1 and tc2 tell us that $M$ is an object of $\text{Cat} T_M$, because $X \times_X M = M$ and $X$ is an object of $\text{Cat} T_X$.

ii) Recall that if $X$ is an object in a category $\mathcal{M}$, then is called prefinal (resp. final) iff $\text{Hom}_M(M,X) \neq \emptyset$ (resp. $\text{Hom}_M(X,M)$ is a set of one element), for all $M \in \text{Ob} \mathcal{M}$. If $< X >$ is the discret subcategory of $\mathcal{M}$ associated to $X$, one easily checks that the following statements are equivalent (cf. (1) Ch. I, §0):

a) $\mathcal{M}$ satisfies axiom L1 and $< X >$ is a final subcategory of $\mathcal{M}$.

b) $X$ is a final object of $\mathcal{M}$.

c) $\mathcal{M}$ satisfies axiom L2 and $X$ is a prefinal object of $\mathcal{M}$ such that $\text{Hom}_M(X,X) = \{e_X\}$.

Clearly, if $(\mathcal{M}, T, \Phi)$ is a tc (topological category) then $X$ is a prefinal object of $\mathcal{M}$.

Let $\mathcal{M}$ be a category with final object $X$ and let $\Phi$ be the family of morphisms canonically associated to $X$. If $T$ is a family of topologies satisfying tc1 and tc3, respect to $\mathcal{M}$ and $\Phi$, then $(\mathcal{M}, T, \Phi)$ is a tc of the following type:

DEFINITION 1.3. A topological category $(\mathcal{M}, T, \Phi)$ is called tc0 iff it satisfies:

tc8') For all morphism $f: M \rightarrow N$ in $\mathcal{M}$ the diagram

$$
\begin{array}{ccc}
M & \rightarrow & N \\
\downarrow \Phi_M & & \downarrow \Phi_N \\
X & \rightarrow & X
\end{array}
$$

is commutative.
is commutative.

Given a tc C = (M,T,\phi), we shall be using a naive nomenclature:

M is called the category of subspaces of C (consistently, an object M in M is called a subspace of C). The object X is referred to as the space of C and so, an object M of M is also called a subspace of X referring to \phi_M as the inclusion morphism of M in X.

If M is a subspace of N, T_M is called the relative topology of M and Cat T_M is called the category of relative open objects of M. Abusing language, T_X is called the topology of C and Cat T_X is called the category of open subspaces of C.

A morphism f: M \rightarrow N in M is called a \phi-morphism iff the diagram

\[
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\phi_M & \downarrow \phi_M & \phi_N \\
X & \xrightarrow{\phi_X} & X
\end{array}
\]

is commutative. We define a category M_\phi putting:

\[
\text{Ob} M_\phi = \text{Ob} M
\]

\[
\text{Hom} M_\phi : \phi\text{-morphisms of } M
\]

M_\phi is a subcategory of M and clearly is a full subcategory (equivalently, is equal to M) iff C is tc^0.

DEFINITION 1.4. A morphism of topological categories F: C \rightarrow C' is a functor F: M \rightarrow M' such that:

- \text{mtol)} For all object M of M F/Cat T_M is a morphism of topologies, of T_M to T'_F(M).
- \text{mtol2)} F(\phi) = \phi' (i.e. F(X) = X' and F(\phi_M) = \phi'_M, for all M \in \text{Ob} M).
- \text{mtol3)} F preserves fibered products of the form U \times_M, M \in \text{Ob}(\text{Cat} T_X), and M \in \text{Ob} M.

REMARKS 1.5. i) Now we can talk about the category of small topological categories.

ii) If F: C \rightarrow C' is a mtc then we have

\[
\begin{align*}
U \in \text{Ob}(\text{Cat} T_X) \rightarrow F(U) \times_X F(M) \in \text{Ob}(\text{Cat} T'_F(M)) \\
(f_i: U_i \rightarrow U) \in \text{Cov} T_X \rightarrow (F(f_i) \times_X F(M) : F(U_i) \times_X F(M) \rightarrow F(U) \times_X F(M)) \\
(\text{for all subspace } M \text{ of } C).
\end{align*}
\]
iii) A mtc \( F: C \rightarrow C' \) induces for each subspace \( M \) of \( C \) a morphism of topologies \( F/\text{Cat} \) \( T_M: T_M \rightarrow T_{F(M)}' \) and so, induces the usual functors (direct and inverse image) between the corresponding categories of presheaves or of sheaves.

Let \( M \) be a subspace of a tc \( C \). If \( A \) is an arbitrary category, the category of presheaves \( P(T_M,A) \) is briefly denoted by \( P_M \), and a presheaf in \( P_M \) is called a presheaf over \( M \). Similarly, if \( A \) is a category with products, \( S_M \) denotes the category of sheaves \( S(T_M,A) \), and a sheaf in \( S_M \) is called a sheaf over \( M \).

\[ \rho_M: T_X \rightarrow T_M \] is the morphism of topologies defined by the assignment of objects \( U \rightarrow U \times_M X \).

A category \( A \) will be called:

0) \( A_0 \) iff it is a complete category (respect to functorial direct limits) with products and zero object.

i) \( A_1 \) iff it is \( A_0 \) and abelian.

ii) \( A_2 \) iff it is \( A_1 \) and satisfies the Grothendieck axiom A.B.S.

iii) \( A_3 \) iff it is \( A_2 \) and has a generator.

Let \( C \) be a tc and let \( A \) be an \( A_1 \) category (as category of values).

**DEFINITION 1.6.** If \( M \) is a subspace of \( C \) and \( F \) is a sheaf over \( X \), then we call \( e_{M,F} \) the sheaf induced by \( F \) over \( M \), and we denote it by \( F/M \).

**DEFINITION 1.7.** If \( M \) is a subspace of \( C \) and \( a:F \rightarrow G \) is a morphism of sheaves over \( X \), then we call \( e_{a,M} \) the morphism induced by \( a \) over \( M \), and we denote it by \( a/M \).

**REMARKS 1.8.** i) Since \( e_X = e_{T_X} \) it is clear that \( F/X = F \) and \( a/X = a \).

ii) Since \( e_{M,F} \) is a functor it is clear also that \( e_{F/M} = e_{M,F} \) and \( (\beta a)/M = (\beta/M)(a/M) \).

iii) Remark that expressions of the type \( (F/M)/N \) have no sense here, because the "absolute" topology \( T_X \) plays a special role in our developments.

Now we need to prove some previous results. In the next lemma, and only in the next, \( A \) may be an arbitrary category.

**LEMMA 1.9.** If \( f: K \rightarrow K' \) is a morphism of small categories, the following statements are true:
i) If \( f \) is a full and representative functor, then \( f^P: P' \rightarrow P \) is full.

ii) If \( f \) is representative and \( \alpha \in \text{Hom}_{P'}(P_1', P_2') \) is such that \( f^P(\alpha) \) is an isomorphism, then \( \alpha \) is also an isomorphism.

Proof

i) We want to show that the function \( \text{Hom}_{P'}(P_1', P_2') \rightarrow \text{Hom}_{P}(f^P(P_1), f^P(P_2)) \), \( \alpha \rightarrow f^P(\alpha) \), is surjective. Given \( \beta \in \text{Hom}_{P}(f^P(P_1), f^P(P_2)) \) we define a morphism \( \alpha \in \text{Hom}_{P'}(P_1', P_2') \) in the following way: since \( f \) is representative, given an object \( V \) in \( K' \) there exists an object \( U \) in \( K \) such that \( f(U) = V \); therefore, we take \( \alpha(V) = \beta(U) \). The good definition of \( \alpha \) is obtained by the following argument: if \( U' \) is an object of \( K \) such that \( f(U') = V \), since \( f \) is a full functor there exists a morphism \( m: U' \rightarrow U \) such that \( f(m) = \epsilon_V \). Now, since \( \beta \) is a morphism of presheaves, we have the commutative diagram

\[
\begin{array}{ccc}
\text{Hom}_{P'}(P_1', P_2') & \rightarrow & \text{Hom}_{P}(f^P(P_1), f^P(P_2)) \\
\beta(U) & \rightarrow & f^P(\alpha)
\end{array}
\]

\[\begin{array}{ccc}
f^P(P_1)(U) & \rightarrow & f^P(P_2)(U) \\
\beta(U) & \rightarrow & f^P(\alpha)
\end{array}\]

\[\begin{array}{ccc}
f^P(P_1)(m) & \rightarrow & f^P(P_2)(m) \\
\beta(U) & \rightarrow & f^P(\alpha)
\end{array}\]

i.e. we have the commutative diagram

\[
\begin{array}{ccc}
P_1(V) & \rightarrow & P_2(V) \\
\epsilon_{P_1}(V) & \rightarrow & \epsilon_{P_2}(V)
\end{array}\]

\[\begin{array}{ccc}
P_1(V) & \rightarrow & P_2(V) \\
\beta(U) & \rightarrow & \beta(U')
\end{array}\]

and so, \( \beta(U) = \beta(U') \). It is trivial that \( f^P(\alpha) = \beta \).

ii) Given \( \alpha \in \text{Hom}_{P'} \) and \( V \in \text{Ob}K' \), observe that \( V = f(U) \rightarrow \alpha(V) = f^P(\alpha)(U) \).

COROLLARY 1.10. If \( f: T \rightarrow T' \) is a morphism of topologies, the following statements are true:
i) If \( f \) is a full and representative functor, then \( f^*: S' \rightarrow S \) is full.

ii) If \( f \) is representative and \( \alpha \in \text{Hom} S' \) is such that \( f^*(\alpha) \) is an isomorphism, then \( \alpha \) is also an isomorphism.

**Proof:** Apply the lemma, taking in mind that \( f^* = fP^i' \), where \( i \) (resp. \( i' \)) is the inclusion functor of \( S \) (resp. \( S' \)) in \( P \) (resp. \( P' \))

**COROLLARY 1.11.** If \( f: T \rightarrow T' \) is a full and representative morphism of topologies, then \( f_*: S \rightarrow S' \) is a representative functor.

**Proof:** Since \( f_* \) is left adjoint to \( f^* \), there exists a canonical morphism of functors \( \Lambda: f_* \circ f^* \rightarrow e_S^* \). Now, since \( f^* \) is full by 1.10,i, we have that \( f^*(\Lambda_F): f^*(f_*(f^*(F'))) \rightarrow f^*(F') \) is an isomorphism, for all sheaf \( F' \) in \( S' \). Therefore, applying 1.10, ii, \( \Lambda_F: f_*(f^*(F')) \rightarrow F' \) is also an isomorphism; and so, given a sheaf \( F' \) in \( S' \) the sheaf \( f^*(F') \) is a preimage by \( f_* \) of \( F' \).

The situation above suggest us the following

**DEFINITION 1.12.** A to \( C \) is called to\(^1\) iff the morphism \( p_M \) is a full and representative functor, for all subspace \( M \) of \( C \).

**REMARK 1.13.** If \( C \) is to\(^1\) we can apply both corollaries to the morphism \( p_M: T_X \rightarrow T_M \). In particular, 1.11 tell us that the restriction functor \( /M: S_X \rightarrow S_M \) is representative, for all subspace \( M \) of a to\(^1\) \( C \).

In order to obtain the classical theorems about "characteristic" sheaves (cf. \{2\}, Ch. II §2.9) our first result is

**LEMMA 1.14.** Let \( M \) be a subspace of a to\(^1\) \( C \) and let \( F \) be a sheaf over \( X \). If we define the sheaf \( F^M \) by \( F^M = f^*f_*(F) \) then \( F^M/M = F/M \).

(\( f \) is \( p_M \)).

**Proof:** Adjointness gives us a canonical morphism of functors \( \Delta : e_S \rightarrow f^*f_* \); since \( f \) is a full functor (cf. 1.10,i) \( f_*(\Delta_F): f_*(F) \rightarrow f_* (F') \) is an isomorphism. Hence, \( F/M = F^M/M \).
The technique concerning to open subspaces will be obtained using the following type of categories

DEFINITION 1.15. A to C is called to the open subspaces of C the following conditions are satisfied:

1) $T_A$ is a subtopology of $T_X$.

2) If $V$ is open in $A$, then $V \times_X A = V$ (i.e., $e_V x_A : V \times_X A \to V$ is an isomorphism).

LEMMA 1.16. If $A$ is an open subspace of a $\alpha^2$ and $V$ is open in $A$, then $(V, h_V)$ is initial in $I_V^f$, where $f: T_X \to T_A$ is the morphism $\phi_A$ and $h_V: V \to f(V)$ is the inverse morphism of $e_V x_A$.

Proof: Let $(U, n)$ be any object in $I_V^f$. If $p_U: f(U) \to U$ denotes the first projection, we define a morphism $m: V \to U$ by $m = p_U n$. We claim that $(V, h_V) \to (U, n)$ is a morphism in $I_V^f$; to prove this we are reduced to check that the diagram

$$
\begin{array}{ccc}
 f(V) & \xrightarrow{f(m)} & f(U) \\
 h_V & \downarrow & n \\
 V & \xrightarrow{f} & U
\end{array}
$$

is commutative. In fact, if $g_V: f(V) \to V$ is the morphism $e_V x_A$, we have the commutative diagram

$$
\begin{array}{ccc}
 f(V) & \xrightarrow{n g_V} & f(U) \\
 g_V & \downarrow & p_U \\
 V & \xrightarrow{m} & U
\end{array}
$$

Therefore, recalling that $g_V$ is the first projection of $f(V)$, an uniqueness result on fibered products yields $f(m) = n g_V$. Hence, $f(m) h_V = n$.

The last thing to check is that $\text{End}((V, h_V))$ is a set of one element. In fact, if $r: (V, h_V) \to (V, h_V)$ is a morphism in $I_V^f$, then the diagram

$$
\begin{array}{ccc}
 f(V) & \xrightarrow{f(r)} & f(V) \\
 h_V & \downarrow & h_V \\
 V & \xrightarrow{f} & V
\end{array}
$$
is commutative, i.e. \( f(r) = e_f(v) \). Therefore, since the diagram

\[
\begin{array}{ccc}
\text{f(V)} & \xrightarrow{f(r)} & \text{f(V)} \\
\downarrow & & \downarrow \\
V & \xrightarrow{r} & V
\end{array}
\]

is also commutative, results \( r = e_v \).

**Corollary 1.17.** If \( A \) is a complete category, \( \text{Cat}_{T_X} \) has fibered products and \( V \) is open in \( A \), then the following statements are true:

i) If \( P \) is a presheaf over \( X \), then \( f_p(P)(V) = P(V) \).

ii) If in addition \( A \) has products and \( F \) is a sheaf over \( X \), then \( f_p(F) \) is a sheaf over \( A(i: S_X \rightarrow P_X \text{ is the inclusion functor}) \).

iii) If \( A \) is abelian too and \( F \) is a sheaf over \( X \), then \( F/A(V) = F(V) \).

**Proof:**

i) Since \( \text{Cat}_{T_X} \) has fibered products and \( f \) preserves fibered products (because \( f \) is a morphism of type \( P_M \)), the category \( T^f_V \) satisfies axiom \( L^{1*} \) (cf. (1) II, Th. 4.14). Therefore, applying the lemma, we see that \( (V, h_v) \) is an initial object in \( T^f_V \), and so \( f_p(P)(V) = \lim P_v = P_v((V, h_v)) = P(V) \).

ii) Applying i, check the definition of sheaf.

iii) It is clear by ii that \( F/A = f_p(F) \). Hence, i yields the desired result.

2. COMPLEMENTED TOPOLOGICAL CATEGORIES AND CLOSED SUBSPACES.

At this point, we need the notion of closed object in a topological category. Since we have the concept of open object, thinking in the closed sets of a topological space it is enough to find a notion replacing the set-theoretic operation of complement. Thus, we give the following

**Definition 2.1.** A complemented topological category is a to \( C \), together with a functor \( c: M^* \rightarrow M \) such that, if \( \theta = cX \) and \( U^*_{X}\text{Cat}_{T_X} \), the following axioms are satisfied:

\( \text{cto1)} \) \( c \) is an involution functor (i.e. \( c^* \circ c = \text{id}_M^* \)).

\( \text{cto2)} \) \( \theta \in \text{Ob} U^*_{X} \) and there exists \( (U_i \rightarrow \theta )_i \in \text{Cov } T_X \) such that \( I^* \theta \)}
REMARKS 2.2. i) $F_X = \mathcal{U}_X$ is called the category of closed subspaces of $C$, and $c$ is called the complement operator of $C$.

ii) Axiom ctc3 says that the diagrams

$$
\begin{array}{ccc}
\emptyset & \xrightarrow{c(\phi_M)} & M \\
\downarrow \phi_M & & \downarrow \phi_M \\
\emptyset & \xrightarrow{c(\phi_M)} & X
\end{array}
\quad
\begin{array}{ccc}
\emptyset & \xrightarrow{c(\phi_M)} & M \\
\downarrow \phi_M & & \downarrow \phi_M \\
\emptyset & \xrightarrow{c(\phi_M)} & X
\end{array}
$$

are fibered products. We recall that (in the following proofs) we only need the first condition of ctc3 for closed subspaces, and the second for open subspaces.

iii) ctc1 tells us:

a) the complement of a closed object is open. (The dual proposition is trivially true). From the definition of $\emptyset$ and ctc2 we obtain:

b) $\emptyset$ is open and closed.

Therefore:

c) $X$ is open and closed.

Using ctc2 and the second condition of ctc3, we see:

d) If $M$ is a subspace of $C$, then $\emptyset \in \text{Ob}_M$ and there exists a covering $(V_i \rightarrow \emptyset)_{i \in I}$ in $T_M$ such that $I = \emptyset$.

Recalling that, in a category with zero object, the product of an empty family of objects is the zero object, we obtain:

e) If $A$ is a category with products and zero object and $P$ is a presheaf over a subspace $M$ of $C$, then

$$
P \text{ monopresheaf} \rightarrow P(\emptyset) = 0
$$

In particular,

$$
P \text{ sheaf} \rightarrow P(\emptyset) = 0
$$

(In the sense of (1), a monopresheaf is a presheaf satisfying ($+$)).

Now, we have the necessary technique in order to prove one of the crucial results of this paper.

**Theorem 2.3.** If $A$ is an $A_1$ category and $M$ is a subspace of a to $C$, then for any sheaf $F$ over $X$ we have:
i) The sheaf $F^M$ defined by $F^M = f^*_s F(F)$, where $f: T_X \rightarrow T_M$ is the morphism $\varphi_M$, satisfies $F^M/M = F/M$.

If $A$ is an $A_2$ category, $C$ is, in addition, to and has a complement operator $c$, then for any sheaf $F$ over $X$ we have:

ii) If $M$ is a closed subspace of $C$, then $F^M/cM = 0$; if the sheaf $F^M$ is defined by the exactness of the sequence $0 \rightarrow F^M \rightarrow F^M/F^M (i.e. F^M = Ker \Delta_F)$, then $F^M/cM = F/cM$ and $F^M/M = 0$.

Proof: i) it is 1.14, exactly.

ii) We begin with the first statement. Since $cM$ is an open subspace of $C$, applying 1.17, iii it is enough to show that $F^M(V) = 0$, for any $V$ open in $cM$. Recalling that $f^P$ preserves sheaves, because $f$ is a morphism of topologies, we see that $F^M = f^P f_\varphi F(F)$. Therefore, we have $F^M(V) = f_\varphi(F(f(V))); but f(V) = \varphi$, because $V$ is an object of $T^M$ and $\varphi$ is a representative functor (see axiom ctc3), and $f_\varphi(F(\varphi)) = 0$, because $f_\varphi(F)$ is a sheaf (cf. 2.2, iii, e). Hence, $F^M/cM = 0$.

Now, we prove the second statement. Since $cM$ is a final object in $Cat T_X$, $A$ is an $A_2$ category, and $\rho_A: T_X \rightarrow T_A$, where $A$ is any subspace of $C$, preserves the "spaces" of the topologies and fibered products, then $\rho_A: S_X \rightarrow S_A$ is an exact functor (cf. (1) II, th. 4.14). Hence, $f_\varphi$ and $g_\varphi$ are exact functors ($f = \varphi_M$ and $g = \varphi_cM$).

In $S_X$ we have the exact sequence

$$0 \rightarrow F^M \rightarrow F \rightarrow F^M$$

Thus, the sequence

$$0 \rightarrow g_\varphi(F^M) \rightarrow g_\varphi(F) \rightarrow g_\varphi(F^M)$$

is exact, or equivalently, is exact the sequence

$$0 \rightarrow F^M/cM \rightarrow F/cM \rightarrow F^M/cM = 0$$

Hence, $F^M/cM = F/cM$.

In a similar way, we obtain the exact sequence

$$0 \rightarrow F^M/M \rightarrow F/M \rightarrow F^M/M$$
Since $\Delta_p/M$ is an isomorphism, the exactness of this sequence yields $F_{cM/M} = 0$.

The main purpose of the latter part of this section is to prove that, under certain restrictive conditions, $\Delta_p: F \rightarrow F^M$ is an epimorphism. Until this moment, $(C, c)$ will denote a fixed ctc.

If $A$ is a category with products and zero object, we give the following

**Definition 2.4.** If $M$ is a subspace of $C$ and $F$ is a sheaf over $X$, we say that $F$ is null outside $M$ iff for all open subspace $U$ of $C$ we have:

$$U \times_X M = \emptyset \implies F(U) = 0$$

If $M$ is any subspace of $C$, $S(M)$ will denote the full subcategory of $S_X$ defined by the sheaves null outside $M$. If $f: T_X \rightarrow T_M$ is a morphism of topologies and $A$ is an $A_1$ category, $f_0: S(M) \rightarrow S_M$ will denote the functor $f_S/S(M)$.

**Theorem 2.5.** (A of type $A_1$). If $M$ is a subspace of $C$ and $f: T_X \rightarrow T_M$ is the morphism $\sigma_M$, then the functor $f_0: S(M) \rightarrow S_M$ has a right adjoint $f^\circ: S_M \rightarrow S(M)$.

**Proof:** Since $f^\circ$ is right adjoint to $f_0$, it is enough to show that the image of $f^\circ$ is a subcategory of $S(M)$. (Then, $f^\circ$ is $f_S$ with $S(M)$ as codomain).

Given a sheaf $G$ over $M$, notice that $f^\circ(G) = f^{P_1}_M(G)$, where $i_M$ is the inclusion functor of $S_M$ in $P_M$, and so, we only need to show that

$$U \times_X M = \emptyset \implies f^{P_1}_M(G)(U) = 0$$

for any open subspace $U$ of $C$. In fact, we have

$$f^{P_1}_M(G)(U) = i_M(G)(f(U)) = i_M(G)(\emptyset) = G(\emptyset) = 0$$

(the last equality is true because $G$ is a sheaf).

Now, we wish to obtain a theorem of equivalence between the categories $S(M)$ and $S_M$. A similar result of Artin concerning to closed subschemes (cf. (1) III, Th. 2.2), guide us in the generalization process.

**Lemma 2.6.** Let $f: K \rightarrow K'$ be a functor and let $V$ be an object of $K'$ such that for any $A \in \text{Ob}K$ and any $\eta \in \text{Hom}_K(V, f(A))$ there exist
U ∈ ObK and m ∈ HomK(U,A) satisfying V \xrightarrow{m} f(U) and f(m) \circ h = n.

Then, the full subcategory \( I^f(V) \) of \( I^f \) defined by the class \{(U,h); U ∈ ObK, h ∈ Iso_K(V,f(U))\} is initial in \( I^f \).

**Proof:** Let \((A,n)\) be any object in \( I^f \); applying the hypothesis on \( V \) to the morphism \( n: V \to f(A) \), we can find a morphism in \( K \) \( m: U \to A \) and an isomorphism in \( K' \) \( V \xrightarrow{h} f(U) \) such that \( f(m) \circ h = n \).

Therefore, the diagram

\[
\begin{array}{ccc}
f(U) & \xrightarrow{f(m)} & f(A) \\
| & \downarrow{h} & | \\
V & \xrightarrow{n} & f(A)
\end{array}
\]

is commutative and so, \( m: (U,h) \to (A,n) \) is a morphism in \( I^f \).

**COROLLARY 2.7.** If \( f: K \to K' \) is a full and representative functor, then \( I^f(V) \) in \( I^f \), for all object \( V \) of \( K' \).

**COROLLARY 2.8.** (A is a complete category). Let \( f: K \to K' \) be a morphism of small categories such that \( K \) has fibered products and \( f \) is a full and representative functor which preserves fibered products. Then, any presheaf \( P \) in \( P(K,A) \) satisfies \( f_p(P)(V) = \lim \ p \circ f^p(V) \), \( V \in \text{Ob}K' \).

**Proof:** It is enough to notice that \( I^f \) satisfies the axiom L1*, because \( K \) has fibered products and \( f \) preserves fibered products.

**DEFINITION 2.9.** \((C,c)\) is called

1) \( c^1 \) iff \( C \) is \( c^1 \) and for any closed subspace \( M \) the following conditions are satisfied:

a) Any covering in \( T_X \) is induced by \( p^M \) from a covering in \( T_X \).

b) If \( U \) and \( U' \) are open subspaces of \( C \) such that \( U \times_X M = U' \times_X M \) and \( F \) is a sheaf null outside \( M \), then \( F(U) = F(U') \).

ii) \( c^2 \) iff \( C \) is \( c^2 \) and any closed subspace \( M \) satisfies:

\[
U \times_X M = \emptyset \implies U \times_X cM = U
\]

for all open subspace \( U \) of \( C \).

iii) \( c^3 \) iff \( (C,c) \) is \( c^1 \) and \( c^2 \).

**LEMMA 2.10.** (A of type A). If \( (C,c) \) is \( c^1 \), \( \text{Cat} T_X \) has fibered
products, \( F \) is a sheaf null outside a closed subspace \( M \) of \( C \), and \( f: T_x \to T_M \) is the morphism \( p_M \), then the following statements are true, for any open subspace \( U \) of \( C \):

i) \( f \circ i(F)(U \times M) = F(U) \).

ii) \( F \) is a sheaf over \( M \).

iii) \( \frac{F}{M}(U \times M) = F(U) \).

Proof: i) Since \( \text{Cat } T_X \) has fibered products, applying 2.9 we see that \( f \circ i(F)(U \times M) = \lim_{\Delta} i(F)_{U \times M} / f(U \times M)^* \). Now, since \((C,c)\) satisfies 2.9, it is obvious that the values of the functor \( i(F)_{U \times M} \) are all isomorphic, because any one is isomorphic to \( F(U) \).

Hence, \( \lim_{\Delta} i(F)_{U \times M} / f(U \times M)^* = F(U) \).

ii) Since \((C,c)\) satisfies 2.9, it is obvious that \( f \circ i(F) \) is a sheaf (one only needs to check the definition of sheaf).

iii) Because of ii we have \( f \circ i(F) = f \circ i(F) \). Therefore, i yields the desired result.

Now, it is almost obvious how to prove:

**Theorem 2.11.** (A of type A1). If \((C,c)\) is cto\(^1\), \( \text{Cat } T_X \) has fibered products, \( M \) is a closed subspace of \( C \), and \( f: T_x \to T_M \) is the morphism \( p_M \), then the functor \( f: S(M) \to S_M \) is an equivalence of categories, which inverse is \( \bar{f}: S_M \to S(M) \).

Proof: By adjointness (see 2.5), there are natural transformations \( \phi: e_{S(M)} \to f^* f_* \) and \( \psi: f_* f^* \to e_{S_M} \). It is a straightforward matter, which we leave to the reader, to check that \( \phi \) and \( \psi \) are functorial isomorphisms.

**Corollary 2.12.** If \( F \) and \( F' \) are sheaves null outside \( M \), then

\[ \frac{F}{M} = \frac{F'}{M} \to F = F' \]

**Theorem 2.13.** (A of type A1). If \((C,c)\) is cto\(^2\), \( \text{Cat } T_X \) has fibered products and \( M \) is a closed subspace of \( C \), then

\[ \frac{F}{C M} = 0 \to F \text{ is null outside } M \]

for any sheaf \( F \) over \( X \).
Proof: Let $U$ be an open subspace of $C$ such that $U \times X M = \emptyset$; taking in mind that $(C, c)$ is ctc$^3$ and applying 1.17,iii we see that $F(U) = F(U \times X M) = F/cM(U \times X M) = 0$.

COROLLARY 2.14. If $(C, c)$ is ctc$^3$ and $F$ and $F'$ are sheaves over $X$, then

$$F/M = F'/M, \quad F/cM = 0 \quad F'/cM \quad F = F'$$

Now, we can obtain the desired result:

THEOREM 2.15. (A of type A2). If $(C, c)$ is ctc$^3$, Cat $T_X$ has fibered products, $X$ is final in Cat $T_X$ and $M$ is a closed subspace of $C$, then the following statements are true, for any sheaf $F$ over $X$:

i) $\Delta_F: F \rightarrow F^M$ is an epimorphism.

ii) $F^M$ is uniquely determined by $F$.

Proof: i) Recall that $f_s$ and $g_b$ are exact functors (see the proof of 2.3). Let $C$ be the sheaf over $X$ defined by the exactness of the sequence

$$F \xrightarrow{\Delta_F} F^M \rightarrow C \rightarrow 0$$

Then, we have the exact sequence

$$g_b(F) \rightarrow g_b(F^M) \rightarrow g_b(C) \rightarrow 0$$

or equivalently

$$F/M \rightarrow F^M/cM \rightarrow C/cM \rightarrow 0$$

and so, $C/cM = 0$.

In a similar way we obtain the exact sequence

$$F/M \rightarrow F^M/cM \rightarrow C/cM \rightarrow 0$$

Therefore, since $\Delta_F/M$ is an isomorphism, we conclude that $C/M = 0$. Now, 2.14 yields that $C = 0$.

ii) If $F'$ is a sheaf over $X$ satisfying $F'/M = F/M$ and $F'/cM = 0$, then $F'/M = F^M/M$ and $F'/cM = 0 = F^M/cM$. Hence, 2.14 yields that $F' = F^M$.

We end this section with a well known result on "characteristic" sheaves.
THEOREM 2.16. (A of type A2). If \((C,c)\) is \(t_1\) and \(t_2\), \(\text{Cat} \, T_X\) has fibered products, \(X\) is final in \(\text{Cat} \, T_X\) and \(M\) is a closed subspace of \(C\), then for any sheaf \(G\) over \(M\) there exists a sheaf \(F\) over \(X\) such that \(F/M = G\) and \(F/cM = 0\). If \((C,c)\) is \(t_0\), then \(F\) is uniquely determined by \(G\).

**Proof:** Since \(C\) is \(t_1\), \(\/.M: S_X \rightarrow S_M\) is a representative functor (see 1.13) and so, given a sheaf \(G\) over \(M\) we can find a sheaf \(H\) over \(X\) such that \(H/M = G\). Then, taking \(F = H^M\), 2.3 enable us to conclude that \(F/M = G\) and \(F/cM = 0\).

3. RELATIVE COHOMOLOGIES.

This section is devoted to realize an analysis of the cohomological effects of induced sheaves. Of course, the well known results exposed in the book of Godement (cf. (2) Ch. II, §4.9, §4.10, Th. 5.11.1) are obtained here, employing functorial methods. The compact exposition of cohomological theory presented in the Artin's seminar ((1) Ch. II) is continuously used. Sheaves and presheaves are considered in this order.

I) COHOMOLOGY OF SHEAVES.

Let \(A\) be an \(A^3\) category and let \(C\) be a \(t_c\) such that \(\text{Cat} \, T_X\) has fibered products and \(X\) is final in \(\text{Cat} \, T_X\). (Notice that the hypothesis on \(\text{Cat} \, T_X\) yield the exactness of the restriction functors).

We begin introducing the "true" cohomology.

**DEFINITION 3.1.** If \(M\) is a subspace of \(C\), for each integer \(n \geq 0\) we define the functor \(H^M_n: (\text{Cat} \, T_X)^* \times S_X \rightarrow A\) by:

\[
H^M_n = H^M_n (\cdot \times_X M, ./M)
\]

**THEOREM 3.2.** The following statements are true:

i) \(U \times_X M = U' \times_X M\) , \(F/M = F'/M\) \(\rightarrow H^M_n (U,F) = H^M_n (U',F')\).

ii) \(H^M_X = H^M_T\).

iii) \(H^M_n (U, .)\) is an exact cohomological functor.

If the functor \(\.M: S_X \rightarrow S_M\) carries injective sheaves into flasq sheaves, then
iv) $H^p_M(U, \ ) = R^p H^s_M(U, \ )$.

If $C$ has a complement operator $c$ such that $(C, c)$ is $c$-sufficient and $M$ is a closed subspace of $C$, then for any sheaf $G$ over $M$ we have:

v) $H^n(U \times M, G) = H^n(U, \mathcal{F}_M(G))$.

and for any sheaf $F$ over $X$ we have:

vi) $H^n_M(U, F) = H^n(U, F^M)$.

If $C$ has a complement operator $c$ such that $(C, c)$ is $c$-sufficient and $M$ is a closed subspace of $C$, then for any sheaf $F$ over $X$ we have:

vii) If $F$ is null outside $M$, then $H^n_M(U, F) = H^n(U, F)$.

viii) There is a cohomological exact sequence of general term

$$H^n(U, F^M) \rightarrow H^n(U, F) \rightarrow H^n(U, F^M)$$

Proof: i) and ii) are trivial.

iii) Notice that $H^n_M(U \times M, \ )$ is an exact cohomological functor and $\mathcal{M}: S_X \rightarrow S_M$ is an exact functor.

iv) Since $R^n H^s_M(U \times M, \ ) = H^n_M(U \times M, \ )$ and $f^s$, where $f: T_X \rightarrow T_M$ is the morphism $\rho_M$, is an exact functor, which carries injectives into $H^n_M(U \times M, \ )$-acyclics, the proposition follows easily:

$$R^n H^s_M(U, \ ) = R^n (H^s_M(U \times M, \ ) \circ f_s) = (R^n H^s_M(U \times M, \ )) \circ f_s = H^n_M(U \times M, \ ) \circ f_s = H^n_M(U, \ )$$

v) We claim that $f^s$ is an exact functor; since the diagram

$$\begin{array}{ccc}
S_M & \xrightarrow{f^s} & S_X \\
\downarrow{f} & & \downarrow{j_M} \\
S(M) & \xrightarrow{j_M} & S_X
\end{array}$$

where $j_M: S(M) \rightarrow S_X$ is the inclusion functor, is commutative, it is enough to show that $f^s$ and $j_M$ are exact functors. The exactness of $f^s$ is clear by reasons of equivalence (see 2.11), and the exactness of $j_M$ follows from the fact that $S(M)$ is closed in $S_X$ under taking kernels and cokernels, as it is easily deduced from the definitions.

The spectral theorem of Artin-Leray, applied to the morphism $f: T_X \rightarrow T_M$, tells us that

$$H^p(U, R^q f^s(G)) \rightarrow H^n(U \times M, G)$$
for any sheaf $G$ over $M$. Therefore, recalling that

$$q > 0 \implies R^q f^g = 0$$

(because $f^g$ is exact), we obtain

$$H^n(U, f^g(G)) = H^n(U \times_M G).$$

vi) Applying the above result, we have

$$H^n(U, f^g(F)) = H^n(U \times_M f_g(F)) = H^n(U, F).$$

vii) If $(C, c)$ is ctc$^3$, then for any sheaf $F$ over $X$ we have

$$F \text{ null outside } M \implies F = F^M$$

In fact, from 2.13 follows that $F^M$ is null outside $M$ and so, since $F/M = F^M/M$, 2.12 yields that $F = F^M$.

Applying this result and i, we obtain

$$H^n(U, F) = H^n(U, F^M)$$

Hence, vi yields the desired result.

viii) By 2.3, ii and 2.15, i the sequence of sheaves over $X$

$$0 \longrightarrow F_{cM} \longrightarrow F \xrightarrow{\Delta_F} F^M \longrightarrow 0$$

is exact and so, iii yields the desired result.

REMARKS 3.3. i) Notice that the relative (read local) character of the cohomology just defined appears clearly in 3.2,i, 3.2,ii and 3.2,vii.

ii) Of course, the hypothesis on 3.2,iv can not be removed. Sufficient conditions in the classical case are well known (cf. (2), II §3.3).

iii) Observe that the statement (notations as in 3.2, vi)

$$H^n_{cM}(U, F) = H^n(U, F_{cM})$$

is not true, in general. Then, if we introduce the notation:

$$cM H^n(U, F) = H^n(U, F_{cM})$$

under the hypothesis on 3.2,viii, we obtain an exact cohomological sequence of general term

$$cM H^n(U, F) \longrightarrow H^n(U, F) \longrightarrow H^n_M(U, F)$$
Now, we focus our attention in the cohomology with presheaves values.

**Definition 3.4.** If \( M \) is a subspace of \( C \), for each integer \( n \geq 0 \) we define the functor \( H^n_M : S_X \to P_M \) by:

\[
H^n_M = H^n_{T/M}(\cdot/M)
\]

**Theorem 3.5.** The following statements are true:

i) \( F/M = F'/M \implies H^n_M(F) = H^n_M(F') \).

ii) \( H^n_X = H^n_{T_X} \).

iii) \( H^n_M \) is an exact cohomological functor.

If the functor \( ./M : S_X \to S_M \) carries injective sheaves into flasque sheaves, then

iv) \( H^n_M = P^nH^n_M \).

Without assumptions, we have for any sheaf \( F \) over \( X \):

v) \( H^n_M(F) \circ \phi_M = H^n_M(\cdot,F) \).

If \( C \) has a complement operator \( c \) such that \( (C,C) \) is coo\(^1 \) and \( M \) is a closed subspace of \( C \), then for any sheaf \( F \) over \( X \) we have:

vi) \( H^n_M(F) \circ \phi_M = H^n(M) \).

If \( (C,C) \) is coo\(^3 \), we also have:

vii) If \( F \) is null outside \( M \), then \( H^n_M(F) \circ \phi_M = H^n(F) \).

viii) There is an exact cohomological sequence of general term

\[
H^n(F\chi_M) \to H^n(F) \to H^n(F^M)
\]

**Proof:** i), ii), iii) and iv) can be obtained as in 3.2.

v) Knowing that \( H^n_{T/M}(G) = H^n_{T/M}(\cdot,G) \), for any sheaf \( G \) over \( M \), the proposition follows easily:

\[
H^n_{T/M}(F\chi_M) = H^n_{T/M}(F/M)(U \chi_M) = H^n_{T/M}(U \chi_M,F/M) = H^n_{T/M}(U,F).
\]

vi) Applying v and 3.2,vi, we obtain:

\[
H^n_{T/M}(F\chi_M) = H^n_{T/M}(U,F) = H^n(U,F^M) = H^n(F^M)(U).
\]
vii) The statement in question can be obtained as vi, applying now v and 3.2,vii. Also, it can be proved in the following way: since (C,c) is ctc\(^3\), for any sheaf F over X we have
\[ F \text{ null outside } M \implies F = F^M. \]
Hence, \(H^n(F) = H^n(F^M)\) and so, the proposition follows from vi.

viii) It can be obtained as 3.2,vii.

II) COHOMOLOGY OF PRESHEAVES.

Let \(A\) be an A\(1\) category and let \(C\) be an arbitrary tc. First, we consider the cohomology of a covering. In order to conserve a spectral result and to obtain a new one, we adopt the following

**DEFINITION 3.6.** If \(M\) is a subspace of \(C\) and \(K_U\) is the category of coverings of an open subspace \(U\) of \(C\), for each integer \(n \geq 0\) we define the functor \(H^n: K_U \rightarrow A\) by
\[ H^n = H^n_{M, \cdot}(\cdot \times M, \cdot) \]

**THEOREM 3.7.** The following statements are true:

i) \( (U \rightarrow U)_{i \in I} \times (U' \rightarrow U)_{j \in J} \rightarrow H^n_M((U \rightarrow U)_{i \in I} \times H^n_M((U' \rightarrow U)_{j \in J}) \)

ii) \( H^n_X = H^n_{I_X} \)

iii) \( H^n_M((U \rightarrow U)_{i \in I}) \) is an exact cohomological functor.

If \(A\) is an A\(3\) category, then we have:

iv) \( H^n_M((U \rightarrow U)_{i \in I}) = R^nH^n_M((U \rightarrow U)_{i \in I}) \).

v) \( H^n_M((U \rightarrow U)_{i \in I}, H^n(F)) \rightarrow H^n_M(U, F) \).

If \(A\) is an A\(1\) category, \(C\) has a complement operator \(c\) such that \((C,c)\) ctc\(^3\), \(Cat \_X\) has fibered products and \(M\) is a closed subspace of \(C\), then for any sheaf \(F\) over \(X\) we have:

vi) If \(F\) is null outside \(M\), then \(H^n_M((U \rightarrow U)_{i \in I}, F/M) = H^n_M((U \rightarrow U)_{i \in I}, F) \)

If \(A\) is an A\(3\) category and \(X\) is final in \(Cat \_X\), we also have:

vii) If \(F\) is null outside \(M\), then
\[ H^n_M((U \rightarrow U)_{i \in I}, H^n(F)) \rightarrow H^n(U, F) \]

Proof. i) and ii) are trivial.

iii) Notice that \(H^n_M((U \times X^M \rightarrow U \times X^M)_{i \in I})\) is an exact cohomolo-
iv) Since $A$ is an $A_3$ category, $\mathcal{H}^p_{TM}((U_i \times M \to U \times X)_{i \in I}, ) = \mathcal{R}^p\mathcal{H}_{TM}((U_i \times M \to U \times X)_{i \in I}, )$. 

v) Since $A$ is an $A_3$ category, the cohomologies of sheaves are defined and we have 

$$\mathcal{H}^p_{TM}((U_i \times M \to U \times X)_{i \in I}, , \mathcal{H}^q_{TM}(F/M)) \to \mathcal{H}^p_{TM}(U \times M, F/M)$$

vi) It follows easily from 2.10,iii, by a direct analysis of the complex which gives the cohomology.

vii) Observe that $S(M)$ has injectives, because it is equivalent to the category of sheaves over $M$ (see 2.11) (since $A$ is an $A_3$ category, $S_M$ has injectives). Also, observe that the functor $j_M$ carries injectives into flasks, because $f^* = j_M \circ f^*$, where $f: T_X \to T_M$ is the morphism $\rho_M$, and $f^*$ has this property.

Now, consider the (two) functors given by the commutative diagram

$$S(M) \xrightarrow{j_M} \mathcal{P}_M \xrightarrow{\mathcal{H}^\alpha((U_i \to U)_{i \in I}, )} A$$

Let us evaluate its derived functors. By iv, we have

$$\mathcal{R}^p\mathcal{H}^\alpha_{TM}((U_i \to U)_{i \in I}, ) = \mathcal{H}^p_{TM}((U_i \to U)_{i \in I}, )$$

Recalling that $f_p$ is an exact functor, by the hypothesis on Cat $T_X$, and that $j_M$ is an exact functor which carries injectives into $i$-acyclics, we obtain

$$\mathcal{R}^p(f_i j_M) = f_p \circ \mathcal{R}^q(i_M) = f_p \circ (\mathcal{R}^q i) \circ j_M = f_p \circ \mathcal{H}^q \circ j_M$$

Both results elucidate the first member of the spectral convergence in question. Concerning to the second member, 2.10,i implies

$$\mathcal{H}^\alpha_{TM}((U_i \to U)_{i \in I}, ) \circ (f_p j_M) = \mathcal{H}^\alpha((U_i \to U)_{i \in I}, ) \circ (i_M)$$

Therefore, recalling that $\mathcal{H}^\alpha((U_i \to U)_{i \in I}, ) \circ i = \mathcal{R}_U$, we obtain

$$\mathcal{H}^\alpha_{TM}((U_i \to U)_{i \in I}, ) \circ (f_p j_M) = \mathcal{R}_U \circ j_M$$

and so, since $j_M$ is an exact functor which carries injectives into $\mathcal{R}_U$-acyclics, we have

$$\mathcal{R}^n(\mathcal{H}^\alpha_{TM}((U_i \to U)_{i \in I}, ) \circ (f_p j_M)) = \mathcal{R}^n(\mathcal{R}_U j_M) = (\mathcal{R}^n \mathcal{R}_U) \circ j_M = \mathcal{H}^n(U, ) \circ j_M$$
We introduce the limit cohomology of presheaves by a more general procedure than the one used by Artin in (1). Of course, both definitions agree in the case that the category of values is $A_3$.

Let $A$ be an $A_1$ category and let $T$ be an arbitrary topology. If $U$ is an object of $\text{Cat} T$ and $K$ is a subcategory of $K_U$, for each integer $n \geq 0$ we define the functor $H^*_T(K, *)(P, A) \rightarrow A$ by:

$$H^*_T(K, *)(P) = \lim H^*_T(K, *) \circ k^*, P \in \text{Ob} P,$$

where $k: K \rightarrow K_U$ is the inclusion functor (notice that $H^*_T(K, *) : K_U \rightarrow A$).

It is straightforward to check the following propositions:

i) If $A$ is an $A_2$ category and $K$ is filtrant, then $H^*_T(K, *)$ is an exact cohomological functor.

ii) If $A$ is an $A_3$ category and $K$ is filtrant, then $H^*_T(K, * ) = R^nH^*_T(K, *)$.

(Concerning to i, the usual statement about the exactness of the limit is required; and for ii, the proposition i tells us that it is enough to show that $H^*_T(K, *)$ vanishes on injectives, if $n > 0$).

Notice that all the other results of (1), concerning to limit cohomology, are preserved by our definition.

The Čech cohomology of presheaves is introduced following (1).

Now, we focus our attention in the relative limit cohomology.

**DEFINITION 3.8.** If $M$ is a subspace of $C$ and $K$ is a subcategory of $K_U$ for each integer $n \geq 0$ we define the functor $H^*_T(K, *)(M, A) \rightarrow A$ by

$$H^*_M(K, *)(M) = H^*_M(K^M, )$$

(Notice that $K^M$ is a subcategory of $K_U^M$, which is a subcategory of $K^M$).

**THEOREM 3.9.** The following statements are true:

i) $K^M = K^{M'} \Rightarrow H^*_M(K, *)(M') = H^*_M(K, *)$.

ii) $H^*_M(K, *) = H^*_M(K, *)$.

If $k: K \rightarrow K_U$ is the inclusion functor, then for any presheaf $P$ over $M$ we have

iii) $H^*_M(K, P) = \lim H^*_M(K, P) \circ k^*$

If $K^M$ is filtrant, then:

iv) $H^*_M(K, *) \circ i_M = i^*_M \circ K^M$
If $A$ is an $A_2$ category and $K^*$ is filtrant, then:

v) $\mathcal{H}^*_M(K,\cdot) = \mathcal{H}^*_M(K,\cdot)$ is an exact cohomological functor.

If $A$ is an $A_3$ category and $K^*$ is filtrant, then:

vi) $\mathcal{H}^*_M(K^*,\mathcal{H}_M^q(F)) \Rightarrow \mathcal{H}^*_M(U,F)$

vii) $\mathcal{H}^*_M(K^*,\mathcal{H}_M^q(F)) \Rightarrow \mathcal{H}^*_M(U,F)$

If $A$ is an $A_1$ category, $K^*$ is filtrant, $C$ has a complement operator $c$ such that $(C, c)$ is oto, $\mathcal{T}_X$ has fibered products and $M$ is a closed subspace of $C$, then for any sheaf $F$ over $X$ we have:

viii) If $F$ is null outside $M$, then $\mathcal{H}^*_M(K,F/M) = \mathcal{H}^*_M(K,F)$.

If $A$ is an $A_3$ category and $X$ is final in $\mathcal{T}_X$, then we also have:

ix) If $F$ is null outside $M$, then $\mathcal{H}^*_M(K,\mathcal{P}_M\mathcal{H}_M^q(F)) \Rightarrow \mathcal{H}^*_M(U,F)$.

Proof: i) and ii) are trivial.

iii) If $k^*_M: \mathcal{K}^*_X M \hookrightarrow \mathcal{K}^*_U \times X^*_M$ is the inclusion functor, by definition we have for any presheaf $P$ over $M$

$$\mathcal{H}^*_M(k^*_M, P) = \lim_{\leftarrow} \mathcal{H}^*_M(\cdot, P) \circ k^*_M$$

and it is clear that

$$\lim_{\leftarrow} \mathcal{H}^*_M(\cdot, P) \circ k^*_M = \lim_{\leftarrow} \mathcal{H}^*_M(\cdot, X^*_M, P) \circ k^*_M$$

iv) Notice that

$K^*$ filtrant $\Rightarrow$ $K^*_X M^*$ filtrant

and so, we have

$$\mathcal{H}^*_M(K^*_X M, \cdot) \circ i^*_M = \mathcal{H}^*_M(K^*_X M, \cdot)$$

v) Since $K^*_X M^*$ is filtrant, then $\mathcal{H}^*_M(K^*_X M, \cdot)$ is an exact cohomological functor.

vi) Recalling that $K^*$ is filtrant, we have

$$\mathcal{H}^*_M(K^*_X M, \cdot) = \mathcal{H}^*_M(K^*_X M, \cdot)$$

vii) By the same reasons, we have the spectral convergence

$$\mathcal{H}^*_M(K^*_X M, H^*_M(F/M)) \Rightarrow \mathcal{H}^*_M(U^*_X M, F/M).$$

viii) Apply 3.7, vi and pass to the limit over $K^*_U$, using the proposition iii.

ix) It can be obtained as 3.7, vii.

We end this section introducing the relative Čech cohomology of pro
sheaves. The definition is not the expected one, because the natural definition do not preserves the relative character (see 3.11, i). However, in the special case 3.11, xi both procedures agree.

**DEFINITION 3.10.** If $M$ is a subspace of $C$ and $U$ is open, for each integer $n \geq 0$ we define the functor $\check{H}^n_M(U,\ ) : P_M \rightarrow A$ by:

$$\check{H}^n_M(U,\ ) = H^n_{1M}(U \times M,\ )$$

**THEOREM 3.11.** The following statements are true:

1) $U \times M = U' \times M \Rightarrow \check{H}^n_M(U,\ ) = H^n_{1M}(U',\ )$

2) $H^0_M(U,\ ) = H^0_{1X}(U,\ )$

3) $\check{H}^n_M(U,P) = \lim_{\rightarrow} H^n_M(\ ,P)$

4) $\check{i}_M(U,\ ) \circ i_M = i_{U \times M}$

If $A$ is an $A_2$ category, then:

5) $\check{i}_M(U,\ )$ is an exact cohomological functor.

If $A$ is an $A_3$ category, then:

6) $\check{i}_M(U,\ ) = R^n\check{i}_M(U,\ )$

7) $\check{i}_M(U,H^q_M(F)) \Rightarrow H^p_M(U,F)$

8) $H^n_M(U,F/M) = H^n_M(U,F)$, $H^2_M(U,F/M) \subseteq H^2_M(U,F)$

If $A$ is an $A_1$ category, $C$ has a complement operator $c$ such that $(C,c)$ is $ofo^I$, Cat $T_X$ has fibered products and $M$ is a closed subspace of $C$, then for any sheaf $F$ over $X$ we have:

9) If $F$ is null outside $M$, then $\check{i}_M(U,F/M) = H^0(U,F)$

If $A$ is an $A_2$ category and $X$ is final in Cat $T_X$, then we also have:

10) If $F$ is null outside $M$, then $\check{i}_M(U,\check{p}_M(H^q(F))) \Rightarrow H^0(U,F)$.

If $A$ is an $A_1$ category and $M$ is a subspace of $C$ such that any covering of $U \times M$ is induced by $\check{p}_M$ from a covering of $U$, then we have:

11) $\check{i}_M(U,\ ) = H^0_M(K_U,\ )$.

**Proof:** i), ii), iii), iv), v), vi) and vii) can be obtained as the homologous propositions of 3.9.

viii) It follows immediately from

$$\check{i}_M(U \times M,F/M) = H^1_M(U \times M,F/M) \ , \ \check{i}^2_M(U \times M,F/M) \subseteq H^2_M(U \times M,F/M).$$

It should be pointed out that viii could be obtained from vii just as in the absolute cohomology case.
ix) and x) can be obtained as 3.9, viii and 3.9, ix, resp.

xi) The hypothesis on M tell us that $K_{U \times X}^M = K_{U}^{X \times M}$ Hence, we have

\[
H^0_M(K_{U \times X}^M) = H^0_M(K_{U}^{X \times M})
\]

or equivalently

\[
H^0_M(U, ) = H^0_M(K_U, )
\]

REFERENCES


Universidad de Buenos Aires.