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The spectral theorem for self-adjoint operators in a Hilbert space
(with real, complex, or quaternionic scalars) generalizes the clas
sical theorems on the canonical reduction of quadratic or hermi -
tian forms and their matrices. Usually two steps are needed, the
first passing from finite-dimensional spaces to bounded operators
in general spaces, the second from bounded operators to unbounded.
There has always been a certain <interest (see i, 21, 31, 41, I51)
in carrying out this generalization by '"pure" Hilbert space me -
‘thods - that is to say, by using only intrinsic algebraic and geo-
metric properties of abstract Hilbert space without recourse to
special theorems drawn from classical analysis. For bounded opera
tors the spectral theorem was treated in this spirit by F. Riesz
1] and by Lengyel and Stone [2], for unbounded operators by Y. Y.
Tseng [3]. The present paper, while closely related to Tseng's,
expounds a variant of his approach that may appear somewhat sim -
pler and may shed some additional light on the techniques required.

All methods for treating the case of an unbounded self-adjoint ope
rator A involve the discussion of certain related bounded opera -
tors. Most of them also use the spectral theorem for the bounded
case, either explicitly or implicitly. Here we shall assume the
bounded case, as treated in [2], and apply it to one of the opera-
tors appearing in the characteristic matrix of A (see [6]) in such
a way as to settle the unbounded case. We shall not assume any
knowledge of [6], but shall develop on the spot the essential pro-
perties of the elements of the characteristic matrix for A.

As commutativity of operators is contiﬁually stressed in our argu
ménts, we must recall that a bounded linear operator D commutes
with the self-adjoint operator A if and only if it maps the domain
of A into itself and AD is an extension of DA. The set of all ope
rators'D commuting with A is called the commutant of A, while the
set of all bounded linear operators commuting with every member of
the commutant is called the second commutant of A. Clearly, if D
is in the commutant of A, then so is its adjoint D*: for, if x and
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y are vectors in the domain of A, we have (Ax) (D*y) = (DAX)y =

= (ADX)y = x(D*Ay); and then, since A is self-adjoint, D*y must
be in the domain of A and satisfy the relation AD*y = D*Ay. Simi
larly, the second commutant contains both D and D* if it contains
either.

In order to state the spectral theorem and present its proof it
will be convenient to introduce the following

DEFINITION 1. A projection P.splite a self-adjoint operator A at
A, =®<SA<+m  if gnd only if

(1) P commutes with A.

(2) <if x is- ‘a veetor in the domazn of A and in the
range of P, then (Ax)x <alxi?

(3) Zf x is a vector in the domazn of A and in the
range of 1-P, then Axi’ < (Ax)Xx with equality
holding if and only if x = 0.

Here we note that the ranges of P and I-P are mutually orthogonal
subspaces and that esvery vector X is the sum of components Px and
(I-P)x in these twoc subspaces respectively, in just one way. The
commutativity required in (1) shows that x is in the domain of A
if and only if its two components are. Commutativity shows fur -
ther that A acts on each of these subspaces as a self-adjoint ope
rator therein and that the behavior of A is completely determined
by what it does there, in accordance with the equations Ax =

= APx + A(I-P)x = PAx + (I-P)Ax where APx = PAx and A(I-P)x =

= (I-P)Ax. The concept of splitting demands in addition a certain
quantitative behavior (semi-boundedness) in each of these subspa-
ces, as described by (2) and (3) respectively.

We shall now state the spectral theorem, in two parts.

THEOREM 1a. (Spectral Theorem, Analytic Part.) If A is a self-
adjoint operator, then there exists for each real A, -® <A < +e
a unique projection E, splitting A at X. The projections E, neces

sarily have the following properties:

(1) E, ig in the second commutant of A, as well as

in the commutant.
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(2) ElEu =E, where v = min(i,u).

(3) 1lim E,

= E,X strongly when e > 0.
€0

+Ex
(4) 1lim EAx = 0 strongly.
Ar-o

(5) 1lim E;x = x strongly.
A>+oo

We recall that a family of projections satisfying (2) to (5) above
is called a spectral family or a canonical resolution of the iden-
tity.With this terminology we state the second part of the spec -
tral theorem as follows.

THEOREM 1b. (Spectral Theorem, Synthetic Part). If E,,-=<A <+e,
is a spectral family of projections, then there exists a unique
self-adjoint operator A such that E, splits A at X.

Here we shall prove only Theorem ta. The proof of Theorem 1b, as
is well-known, depends on the construction of A as a limit of Rie

mann-Stieltjes sums
Zn-l 1 1 .
A (E - E ) A< A < A and the verification
k=0 k+1 }‘k+1 }‘k ’ k k+1 k+1 ’

of the splitting property for E,.

The proof of Theorem 1a depends in the last analysis on the follow
ing specialization.

THEOREM 2. (Splitting Theorem). If A is a self-adjoint operator,
there exists a projection E that splite A at 0 and is in the se -
eond commutant of A. .

Indeed, we shall begin by proving

THEOREM 3. The Splitting Theorem implies the Spectral Theorem,
Analytie Part.

The proof will be presented as a series of lemmas and theorems.

LEMMA 1. A projection P splits A at A if and only if it splits
A-21I at 0.

Proof. This proof will be left to the reader.

COROLLARY 1. The Splitting Theorem implies that there exisdts a
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projection E, in the second commutant of A such that EX splits A
at A, -® <A<+

LEMMA 2. If Pu and QA are commuting projections that split A at
w and A respectively, then u < ) implies PuQA = Pu and A = u im-
plies Pu = Q, ‘

Proof. Since Pu and I-Qx are commuting projections, the intersec
tion of their ranges is a subspace with R = Rlu = Pu(I-QA) as its
projection. Thus for arbitrary x the vector y = Rx is in the ran
ges of Pu and I-qQ, . Since Pu and Q, split A at u and at A respec
tively, we have AMsz < (Ay)y < tuﬂz‘with equality on the left

if and only if y = 0. Thus u < ) implies Aﬂyﬂz = (Ay)y and hence
y = 0. It follows that Rx = 0 or Ppr =Q Pu = Pu' When » = p ,

A
we can interchange Pu and Q obtaining Q, = PuQA = Q)\Pu = Pu .

COROLLARY 2.1. The Splitting Theorem implies that, if Px splits

A at A, thenm P is unique and is in the secand commutant of A.

Proof. Let E, be the projection of which the existence is assert
ed by the Splitting Theorem; and let PA split A at A». We verify

that P, and E, commute. In fact, P, commutes with A and Ex is in

A
the second commutant of A, so that this is obvious. In Lemma 2
we can now take » =1 , Q = E, and conclude that P, = E, .
COROLLARY 2.2. The Splitting Theorem implies all statements com-

bined in the Spectral Theorem, Analytic Part, except those concern

ing properties (3) , (4) , (5).

Proof. The existence of a splitting family is given by Corollary
1. 1Its uniqueness and its inclusion in the second commutant of A
are guaranteed by Corollaries 1 and Z.1. Property (2) is then e-
vident from Lemma 2.

THEOREM 4. If A < u , the projection F = qu = Eu— E, = Eu(I-EA)

commutes with A and has range lying in the domain of A. For all
2 ) 2 . .

y in the range of F alyl”™ < (Ay)y < ulyl with equality on the

left if and only if y = 0.

Proof. Apart from the notation, all of this theorem except for
the assertion that the range of F lies in the domain of A is
proved in the discussion of Lemma 2: it is only necessary to take



71

Pu = Eu and Q = EX there. Now if x is in the domain of A so is
y = Fx. Slnce Hy“ = (Fx)x and (Ay)y = (AFx)x we have A (Fx)x <
< (AFx)x < u (Fx)x or, equivalently, 0 < ((A-AI)Fx)x < (u-2) (Fx)x <
< (u-X)“xﬂz. Thus the operator H = F(A-AI) has the same domain
as A and satisfies the relations (Hx)z = x(Hz) and 0 < (Hx)x <

< (u- >\)||x||2 for all x and z in the domain of A. A standard use
of polarization shows that IHx) < (u-A)x| for all x in the domain
of A. If y is an arbitrary vector in the range of F, there is a
sequence z, in the domain of A converging strongly to y. Thus
Yo = Fz, and Hz —are Cauchy sequences converging to Fy = y and z*
respectively. Hence for all x in the domain of A we have

(Ax)y = lim (Ax)y, = lim (FAx)z,
n->o n->
= lim ((H+XF)x)z, = lim x(Hz ) + 1lim x(ry,)
n->eo n->o n->o

= x(z* + Ay)

Since A is self-adjoint, we conclude that y is in the domain of A
(and Ay = z* + Ay).

LEMMA 3. E, has property (3).

2

Proof. If v < u we have “E x-E, xl = ((E -E,)x)x = (Eux)x-(va)x,
so that (E x)x is a monotone increasing Eunct1on of ¥ with real
values between 0 and Hx“ As a function of x it is quadratic

When » < u the function q(x) = 11m ((E - Ey )x)x exists and is also
>\

quadratic with real values between 0 and Ixh? Hence there exists
a bounded self-adjoint operator F such that (Fx)y = 11m((Eu—EA)x)y.
u->A

Thus if » < v < u we have

((E,- E)FX)y

(Fx) (- By)y) = lim ((B,- B (B~ B)Y)

lim ((E,- Ex)y = (Fx)y

\)—)

Hence (E - E,)Fx = Fx , so that Fx is in the range of E - E, . Thus
by theorem 4 we see that Fx is in the domain of A with XHFx“

< (AFx)x < < ulExl?
only if Fx = 0. If we let ¥ tend to A in this double inequality
we obtain A Exh? = (AFx)x and hence Fx = 0. It follows that

, where the equality holds on the left if and

lim “E x - Exx“ = lim ((E, - E\)x)x = (Fx)x = 0
TR u>A
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Putting u = A+e , €¢>0 , we conclude that lim IE

X - EAxu =0
€0

A+

LEMMA 4. E, has property (4).

Proof. Let x be an arbitrafy vector and € an arbitrary positive
real number. We can then take y in the domain of A so that

Ix-yll < % e . Let A<-2lAyl/e . Then E,y is in the domain of A
and (AE,y)y < ME,yl®. Hence |A|VE,y1® < (-AE,y)y = (E,y) (-Ay) <

< IE,yllAyl ana Mgyl <layl/|r] < % e . Finally

FE,xI < IE,yl + IE, (x-y)I <z e + Ix-yl <e , as was to be proved.

1
2
LEMMA 5. E, has property (5).

Proof. The discussion is similar to that of Lemma 4. For given
x and ¢ we choose y as before and A so that A > 2lAyll/e . We
observe that (I-E,)y is in the domain of A and that

AM(I-E))yl® < (A(I-E,)y)y < I(I-E,)yllAyl

Since lIx-yl < % e and | (I-E\)yl < Ayl /) < % € , we conclude that

“x—EAxﬂ < ¢

We have thus established Theorem 3 and reduced the proof of Theo-
rem la to the proof of Theorem 2, the Splitting Theorem. For the
latter we need to introduce the bounded self-adjoint operators B
and C that occur in the characteristic matrix

B C

C I-B

of the self-adjoint operator A (see [6]). It is then easily shown
that the projection E supplied for C by the Splitting Theorem ser-
ves also as the desired splitting projection for A. Thus the
Splitting Theorem for bounded self-adjoint operators is seen to
imply the theorem for all self-adjoint operators. With this moti-
vation we turn to the discussion of the operators B and C.

Following von Neumann [7], we study the graphs of the relations
y = Ax , -Ay = x in the Hilbert space of ordered vector-pairs

(x,y) with the scalar product (xl,yl)(xz,yz) = X)X, * YV, The
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graph of A or the graph of the equation y = Ax is the set
MA = ((x,y) ; y = Ax} . Similarly the inverse graph of the opera

tor -A or the graph of the equation -Aw = Z is the set
N, = {(z,w) ; -Aw = z} . The orthogonality of elements (x,y) and

(z,w) chosen from these sets is expressed by the equation

xz + yw = x(-Aw) + (Ax)w = 0 or (Ax)w'= x(Aw). The fact that
(z,w) is orthogonal to every element of MA is expressed by the
statement that xz + yw = xz + (Ax)w = 0 for all x in the domain
of A; and the latter statement is valid for self-adjoint A if and
only if w is in the domain of A and Aw = -z, that is, if and only
if (z,w) is in N,. Thus when A is self-adjoint, N, is the ortho-
gonal complement MZ of MA. Similarly, MA is the orthogonal com-
plement of NA. Thus MA and NA are both closed linear subsets, OT
subspaces, of the Hilbert space of vector pairs. We denote by

P =P, the projection of the latter on MA’ the graph of A. Now
the operators B and C are defined as the composite mappings X > Z
and x » w , respectively, read off from the diagram

Z
P
x > (x,0) > (z,w) C
w

Since each arrow in the diagram represents a bounded linear map -
ing from source to target, B and C are bounded linear mappings or
operators with the original Hilbert space as source and target.
Since P is the projection on MA , the projection on NA is I-P

The equation (x,0) = P(x,0) + (I-P)(x,0) shows that P(x,0) =

= (Bx,Cx) is in MA and that (I-P)(x,0) = (x-Bx,-Cx) is in VA

Thus Bx is in the domain of A and Cx = ABXx, while -Cx is in the
domain of -A and (-A)(-Cx) = x - Bx or Bx + ACx = x. It follows
that Bx is in the domain of A% (which is the same as that of I+A?)
and AZ(BX) = A(AB)x = ACx , (I+A2)Bx = Bx + ACx = x. We have
thus proved

LEMMA 6. B and C have ranges contained in the domains of 1 + A?

and A respectively. The operators A, B, C satisfy the identities
(1) C=AB ; (2) B+AC=1 ; (3) (I~ A2)B = I

" LEMMA 7. B is a self-adjoint operator with self-adjoint inverse
I+ A%,

Proof. By Lemma 6 (3) we see that Bx = 0 implies x = 0. Hence B
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has an inverse, of which I+A2 must be an extension. Now if y.is
an arbitrary vector in the domain of I+A? , we put z=y- B(I+A )Y,
noting that (I+AZ )z = 0. Thus lzl2 + JAzI 2 = ((I+A?)z)z =
z =0,y = B(I+A )y, and y is in the range of B.Hence the range
of B is the domain of 1+A2 and the two operators are inverses of
one another. Now (Bx)y = (Bx)((I+A )By) = ((I+A 2)Bx)By = x(By)
for all x and y because A is self-adjoint. To show that I+A2 is,
like B, self-adjoint, let y and y* be such that ((1I+A )x)y = xy#*
for all x in the domain of I+A . Here we can put x = Bz,obtain-
ing zy = (Bz)y* for all z. It follows that By* = y because B is
self-adjoint. Hence y is in the domain of 1+A% and (I+A )y = y*
Accordingly, 1+A%? is self-adjoint.

td

We turn now to some commutativity properties of A, B, C.

LEMMA 8. B and C commute with A and with each other. Consequent
1y C is self-adjoint, as are A and B.

Proof. 1If x is in the domain of A, the equation ACx = Bx - X
shows that ACx is also in the domain of A and that A%Cx = ABx-Ax =
= Cx-Ax. Thus Ax = (I+A2)Cx and BAx = Cx = ABx. Thus B commutes
with A. It now follows that Cx = BAx is in the domain of A and
that ACx = A%Bx = ABAx = CAx because B commutes with A. Hence C
commutes with A. Now for all z we have BCz = BABz = ABBz = CBz
because B commutes with A. Hence B and C commute. Finally we
observe that C = AB implies that C* is an extension of B¥A* =

= BACAB. Thus C and C* coincide on the domain of A and must be
identical by continuity, since the domain of A is everywhere
dense. Thus C is self-adjoint.

LEMMA 0. A bounded linear operator D commutes with A if and only
if it commutes with both B and C.

Proof. If D commutes with A we have DCz = DABz = ADBz , Dz =

= DBz + DACz = DBz + ADCz = DBz + A’DBz = (I+A2)DB2. Hence BDz =
= DBz ; and B and D commute. We then have from the first equation
DCz = ADBz = ABDz = CDz , so that C and D also commute. On the
other hand, if D commutes with B and C and x is in the domain of
A, we have CDx = DCx = DABx = DBAx = BDAx and hence Dx = B(Dx) +
+ (AC)(Dx) = BDx + ABDAx. Thus Dx is in the domain of A. We now
have BADx = CDx = DCx = BDAXx and hence ADx = DAx.

We are now ready to prove our principal result.
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THEOREM 5. The projection E supplied by the Splitting Theorem
for the bounded self-adjoint operator C serves as the operator re
quired in order to validate the Splitting Theorem for A.

Proof. We have to show that E splits A at 0 and is in the second
commutant of A. E is in the second commutant of C and therefore
commutes with B and C, both of which commute with C by Lemma 8.
Hence E commutes with A, by Lemma 9. If D commutes with A, it
also commutes with C, by Lemma 9. Hence it commutes with E, be-
cause E is in the second commutant of C. Thus E is seen to be in
the second commutant of A. To show that E splits A at 0, we take
x in the domain of A and note that Ax = (I+A2)BAx = (I+A2)ABx =

= (i+A2)Cx by Lemmas 7 and 8. Now if x is in the range of E so
is Ax because EAx = AEx = Ax. We therefore have (Ax)x =

= ((1+A%)Cx)x = (Cx)x + (ACx) (Ax) = (Cx)x + (CAx)(Ax) <0 , be-
cause E splits C at 0. Similarly, when x is in the range of I-E
we see that Ax is in the range of I-E. We then have (Ax)x =
(Cx)x + (CAx) (Ax) = 0 with equality if and only if (Cx)x = 0 and
hence if and only if x = 0.

The proof of the Spectral Theorem, Analytic Part, is thus complet
ed by reference to the paper of Lengyel and Stone [2], where it
is shown by "pure'" methods that the Splitting Theorem holds for
every bounded self-adjoint operator.
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