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The spectral theorem for self-adjoint operators in a Hilbert space 

(with real, complex, or quat ern ionic scalars) generalizes the cla~ 
sical theorems on the canonical reduction of quadratic or hermi -

tian forms and their matrices. Usually two steps are needed, the 
first passing from finite-dimensional spaces to bounded operators 

in general spaces, the second from bounded operators to unbounded. 
There has always been a certain interest (see [1], [2], [3], [4], [5]) 

in carrying out this generalization by "pure" Hilbert space me -
thods - that is to say, by using only intrinsic algebraic and geo­

metric properties of abstract Hilbert space without recourse to 
special theorems drawn from classical analysis. For bounded oper~ 
tors the spectral theorem was treated in this spirit by F. Riesz 

[1] and by Lengyel and Stone [2], for unbounded operators by Y. Y. 

Tseng [3]. The present paper, while closely related to Tseng's, 

expounds a variant of his approach that may appear somewhat sim -
pIer and may shed some additional light on the techniques required. 

All methods for treating the case of an unbounded self-adjoint op~ 

rator A involve the discussion of certain related bounded opera -
tors. Most of them also use the spectral theorem for the bounded 

case, either explicitly or implicitly. Here we shall assume the 

bounded case, as treated in [2], and apply it to one of the opera­
tors appearing in the characteristic !\latrix of A (see [6]) in such 
a way as to settle the unbounded case. We shall not assume any 

knowledge of [6], but shall develop on the spot the essential pro­

perties of the elements of the characteristic matrix for A. 

As commutativity of operators is continually stressed in our arg~ 

ments, we must recall that a bounded linear operator D commutes 

with the self-adjoint operator A if and only if it maps the domain 

of A into itself and AD is an extension of DA. The set of all op~ 
rators\D commuting with A is called the commutant of A, while the 

set of all bounded linear operators commuting with every member of 
the commutant is called the second commutant of A. Clearly, if D 

is in the commutant of A, then so is its adjoint D*: for, if x and 
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y are vec~ors in the domain of A, we have (Ax)(D*y) = (DAx)y = 
= (ADX)y = x (D*Ay) ; and then, since A is self-adjoint, D*y must 
be in the domain of A and satisfy the relation AD*y = D*Ay. Simi 
larly, the second commutant contains both D and D* if it contains 
either. 

In order to state the spectral theorem and present its proof it 
will be convenient to introduce the following 

DEFINITION 1. A ppojection P splits a seZf-adjoint opepatop A at 

A, -""<X<+ .... if and only if 

(1) P commutes ~ith A. 

(2) if x is.·a vectop in the domain of A and in the 
pange of p. then (Ax)x";;;XUxIl 2 • 

(3) if x is a vectop in the domain of A and in the 
2 

pange of I-P. then xllxU "(Ax)x ~ith equaUty 

hoZding if and only if x = O. 

Here we note that the ranges of P and I-P are mutually orthogonal 
subspaces and that every vector x is the sum of components Px and 
(I-P)x in these two subspaces respectively, in just one way. The 
commutativity required in (1) shows that x is in the domain of A 
if and only if its two components are. Commutativity shows fur -
ther that A acts on each of these subspaces as a self-adjoint op~ 
rator therein and that the behavior of A is completely determined 
by what it does there, in accordance with the equations Ax = 
= APx + A(I-P)x = PAx + (I-P)Ax where APx = PAx and A(I-P)x ... 
= (I-P)Ax. The concept of splitting demands in addition a certain 
quantil:ative behavior (semi-boundedness) in each of these subspa­
ces, as described by (2) and (3) respectively. 

We shall now state the spectral theorem, in two parts. 

THEOREM la. (Spectral Theorem, Analytic Part.) If A is a self­
adjoint opepatop. then thepe exists fop each peal X. _00 < X < +00 • 

a unique ppojection Ex spUtting A at X. The ppojections E). nece!!, 

sapiZy have the folZo~ing ppopepties: 

(1) Ex is in the second commutant of A. as ~ell as 

in the commutant. 
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(2) EAElJ = E 
\I 

where \I = min(A,lJ). 

(3) lim EHe:x EAx strong~y when e: > O. 
e: .... o 

(4) lim EAx 0 8trong~y. 
A-~_~ co 

(5) lim EXx x 8trong~y. 
A .... +'" 

We recall that a family of projections satisfying (2) to (5) above 
is called a speatra~ fami~y or a aanoniaa~ reso~ution of the iden­

tity.With this terminology we state the second part of the spec -
tral theorem as follows. 

THEOREM 1b. (Spectral Theorem, Synthetic Part). If EA' -'" < A < +"'. 
is a speatra~ fami~y of projeations. then there exists a unique 

se~f-adjoint operator A suah that EA spUts A at A. 

Here we shall prove only Theorem 1a. The proof of Theorem 1b, as 
is well-known, depends on the construction of A as a limit of Rie 
mann-Stieltjes sums 
n-l' 

r A~+I(EA - EA ) 
k .. O . k+l k 

, and the verification 

of the splitting property for EA, 

The proof of Theorem 1a depends in the last analysis on the follow 
ing specialization. 

THEOREM 2. (Splitting Theorem). If A is a seLf-adjoint operator. 

there exists a projeatio~ E that sp~its A at 0 and is in the se -

aond aommutant of A •• 

Indeed, we shall begin by proving 

THEOREM 3. The SpUtting Theorem impUes the Speatra~Theorem. 

Ana~ytia Part. 

The proof will be presented as a series of lemmas and theorems. 

LEMMA 1. A projeation P sp~its A at A if and onLy if it spLits 

A-AI at O. 

Proof. This proof will be left to the reader. 

COROLLARY 1. The SpUtting Theorem impUes that t'hel'e exists a 
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projection El in the second commutant of A such that El spLits A 
at l, _00 < l < +00 

LEMMA 2. If P~ and Ql are commuting projections that spLit A at 

~ and A respeotiveLy, then ~ ~ A impLies P Q, = P and l = ~ im-
~ 1\ ~ 

Proof. Since P and I-Q, are commuting projections, the intersec 
~ 1\ -

tion of their ranges is a subspace with R = Rl~ = P~ (I-Ql) as its 
projection. Thus for arbitrary x the vector y = Rx is in the ra£ 

ges of P and I-Q,. Since P and Q, split A at ~ and at l respec 
~ 1\ ~ 1\ -

tively, we have AUyU 2 ~ (Ay)y ~ ~UyU2 with equality on the left 

if and only if y = O. Thus ~ ~ A implies AU yll2 = (Ay)y and hence 

y = O. It follows that Rx = 0 or P Q, = Q, P = P. When A = W , 
~ 1\ 1\ ~ ~ 

we can interchange P ~ and QA' obtaining QA = P ~ QA = QA P ~ = P ~ 

COROLLARY 2.1. The SpUtting Theorem impUes that, if PA spUts 

A at A, then P is unique and is in the second commutant of A. 

Proof. Let EA be the projection of which the existence is assert 
ed by the Splitting Theorem; and let PA split A at A. We verify 

that PA and EA commute. In ract, PA commutes with A and El is in 
the second commutant of A, so that this is obvious. In Lemma 2 

we can now take A = ~ , QA = El and conclude .that PA = EA' 

COROLLARY 2.2. The splitting Theorem impLies aLL statements com­

bined in the SpectraL Theorem, AnaLytic Part, except those concern 

ing properties (3) , (4) , (5). 

Proof. The existence of a splitting family is given by Corollary 
1. Its uniqueness and its inclusion in the second commutant of A 

are guaranteed by Corollaries 1 and 2.1. Property (2) is then e­

vident from Lemma 2. 

THEOREM 4. If A ~ ~ , the projection F = FA~ = E~- EA = E~(I-El) 
commutes with A and has range Lying in the dC'main of A. For aLl 

. 2 2 
Y 1-n the range of F A lIyll ~ (Ay)y .;;; ~ UyU with equaUty on the 

Zeft if and onZy if y = o. 

Proof. Apart from the notation, all of this theorem except for 
the assertion that the range of F lies in the domain of A is 

proved in the discussion of Lemma 2: it is only necessary to take 
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P = E and Q, = E" there, Now if x is in the domain of A so is 
j.l j.l A 

Y - Fx. Since UyH2 = (Fx)x and (Ay)y - (AFx)x we have "(Fx)x < 

< (AFx)x < j.l (Fx)x or, equivalently, 0 < ((A-AI)Fx)x < (j.l-") (Fx)x < 

< (j.l-A) H xH 2. Thus the operator H - F (A-" 1) has the same domain 

as A and satisfies the relations (Hx)z - x(Hz) and 0 < (Hx)x < 

< (j.l-A)HXH 2 for all x and z in the domain of A. A standard use 

of polarization shows that HHxH < ~-")UxH for all x in the domain 

of A. If Y i~ an arbitrary vector in the range of F, there is a 

sequence zn in the domain of A converging strongly to y. Thus 

Yn - FZn and HZn are Cauchy sequences converging to Fy - Y and z* 

respectively, Hence for all x in the domain of A we have 

(Ax)y - lim (Ax)Yn - lim (FAx) zn 
n+ oo n+ oo 

lim ((H+" F)x) zn lim x(Hzn ) + lim x (AYn) 
n+ oo n+ oo n+ oo 

x(z* + " y) 

Since A is self-adjoint, we conclude that y is in the domain of A 

(and Ay z* + "y). 

LEMMA 3. E" has property (3). 

2 

Proof. If v < j.l we have UEj.lx-EVxll - ((Ej.l-Ev)x)x = (Ej.lx)x-(Evx)x, 

so that (Ej.lx)x is a monotone increasing function of j.l with real 

values between 0 and UxU 2 • As a function of x it is quadratic. 

When" < j.l the function q(x) - lim ((E - E,,)x)x exists and is also 
j.l->" j.l 

quadratic with real values between 0 and HxU 2 • Hence there exists 

a bounded self-adjoint operator F such that (Fx)y = lim((Ej.l-E,,)x)y. 
j.l+" 

Thus if " < v < j.l we have 

(FX)((Ej.l- E\)y) = lim ((E v - E,,)x)((Ej.l- E,,)Y) 
v+" 

lim ((E v - E,,)x)y - (Fx)y . 
v+" 

Hence (Ej.l- E,,)Fx - Fx , so that Fx is in the range of Ej.l- EA, Thus 
2 

by theorem 4 we see that Fx is in the domain of A with AUFxU < 

< (AFx)x < j.lHFxH 2 ,where the equality holds on the left if and 

only if Fx - o. 
we obtain "HFxU 2 

2 
lim U E x - EA xU 
j.l+A j.l 

If we let j.l tend to A in this double inequality 

(AFx)x an'd hence Fx - 0, It follows that 

lim ((Ej.l - E,,)x)x = (Fx)x = 0 . 
j.l+" 
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A+e: , e: > 0 , we conclude that lim IIEA+e:X - EAXII 
e:-+o 

LEMMA 4. EA ha$ property (4). 

o . 

Proof. Let x be an arbitrary vector and e: an arbitrary positive 
real number. We can then take y in the domain of A so that 

lIx-yll ~ t e: Let A <-Z.UAyll/e:. Then EAy is in the domain of A 

and (AEAy)y ~ dEAyU Z. Hence IA 1 UEAyllZ ~ (-AEAy)y = (EAy) (-Ay) ~ 

~ IIEAyUllAyl1 and REAyl1 ~IIAyU/IAI ~ t e:. Finally 

1 UEAxU ~ UEAyU + UEA(x-y)U ~ I E + Ux-yU ~ e: , as was to be proved. 

LEMMA 5. EA has property (5). 

Proof. The discussion is similar to that of Lemma 4. For given 

x and e: we choose y as before and A so that A > 2UAyU/e: We 

observe that (I-EA)y is in the domain of A and that 

1 1 Since Ux-yU ~ I e: and U(I-EA)yU ~ UAyU/A ~ Ie:, we conclude that 

Ux-EAxil ~ e: 

We have thus established Theorem 3 and reduced the proof of Theo­

rem 1a to the proof of Theorem 2, the Splitting Theorem. For the 
latter we need to introduce the bounded self-adjoint operators B 

and C that occur in the characteristic matrix 

of the sel£-adj oint operator A (see [6]). It is then easily shown 
that the projection E supplied for C by the Splitting Theorem ser­

ves also as the desired splitting projection for A. Thus the 
Splitting Theorem for bounded self-adjoint operators is seen to 

imply the theorem for all self-adjoint operators. With this moti­
vation we turn to the discussion of the operators Band C. 

Following von Neumann [7], we study the graphs of the relations 

y = Ax , -Ay = x in the Hilbert space of ordered vector-pairs 

(x,y) with the scalar product (xl 'Yl) (xz,Yz) = x1x Z + YlYZ. The 
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graph of A or the graph of the equation y = Ax is the set 

MA = {(x,y) ; y = Ax}. Similarly the inverse graph of the oper~ 

tor -A or the graph of the equation -Aw = z is the set 

NA = {(z,w) ; -Aw z} The orthogonality of elements (x,y) and 

(z,w) chosen from these sets is expressed by the equation 

xz + yw = x(-Aw) + (Ax)w = 0 or (Ax)w = x (Aw) . The fact that 

(z,w) is orthogonal to every element of MA is expressed by the 

statement that xz + yw =xz + (Ax)w = 0 for all x in the domain 

of A; and the latter statement is valid for self-adjoint A if and 

only if w is in the domain of A and Aw = -z, that is, if and only 

if (z,w) is in NA. Thus when A is self-adjoint, NA is the ortho­

gonal complement Mr of MA. Similarly, MA is the orthogonal com­

plement of NA. Thus MA aHd NA are both closed linear subsets, or 

subspaces, of the Hilbert space of vector pairs. We denote by 

P = PA the projection of the latter on MA , t·he graph of A. Now 

the operators Band C are defined as the composite mappings x + z 

and x + w , respectively, read off from the diagram 

z 
p t 

x + (x,O) + (z,w) \, 
w 

Since each arrow in the diagram represents a bounded linear map -

ing from source to target, Band C are bounded linear mappings or 

operators with the original Hilbert space as source and target. 

Since P is the projection on MA ' the projection on NA is I-P 

The equation (x,O) = P(x,O) + (I-P)(x,O) shows that P(x,O) = 

= (Bx,Cx) is in MA and that (I-P) (x,O) = (x-Bx,-Cx) is in IJ A 

Thus Bx is in the domain of A and Cx = ABx, while -Cx is in the 

domain of -A and (-A)(-Cx) = x - Bx or Bx + ACx = x. It follows 

that Bx is in the domain of A2 (which is the same as that of I+A2) 

and A2(Bx) = A(AB)x = ACx , (I+A2)Bx = Bx + ACx = x. We have 

thus proved 

LEMMA 6. Band C have ranges contained in the domains of I + A2 

and A respectively. The operators A. B. C satisfy the identities 

(1) C AB (2) B + AC = I 

LEMMA 7. B is a self-adjoint operator with self-adjoint inverse 

1+ A2. 

Proof. By Lemma 6 (3) we see that Bx o implies x O. Hence B 
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has an inverse, of which I+A2 must be an extension. Now if y is 

an arbitrary vector in the domain of I+A2 , we put z=y-B(I+A 2)y, 

noting that (I+A2)z = O. Thus IIzll2 + IlAzl1 2 = ((I+A2)z)z = 0 , 

z = 0 , y = B(I+A2)y, and y is in the range of B.Hence the range 

of B is the dOmain of I+A2 and the two operators are inverses of 

one another. Now (Bx)y = (Bx) ((I+A2)By) = ((I+A 2)Bx)By = x(By) 

for all x and y because A is self-adjoint. To show that I+A2 is, 

like B, self-adjoint, Yet y and y* be such that ((I+A 2)x)y = xy* 

for all x in the domain of I+A2 Here we can put x = BZ,obtain­

ing zy = (Bz)y* for all z. It follows that By* = Y because B is 

self-adjoint. Hence y is in the domain of I+A2 and (I+A2)y = y*. 

Accordingly, I+A2 is self-adjoint. 

We turn now to some commutativity properties of A, B, C. 

LEMMA 8. Band C commute with A and with each other. Consequen~ 

ly C is self-adjoint, as are A and B. 

Proof. If x is in the domain of A, the equation ACx = Bx - x 

shows that ACx is also in the domain of A and that A2Cx = ABx-Ax = 

= Cx-Ax. Thus Ax = (I+A 2 )Cx and BAx = Cx = ABx. Thus B commutes 

with A. It now follows that Cx = BAx is in the domain of A and 

that ACx = A2Bx = ABAx = CAx because B commutes with A. Hence C 

commutes with A. Now for all z we have BCz = BABz ABBz = CBz 

because B commutes with A. Hence Band C commute. Finally we 

observe that C = AB implies that C* is an extension of B*A* 

= BA C AB. Thus C and C* coincide on the domain of A and must be 

identical by continuity, since the domain of A is everywhere 

dense. Thus C is self-adjoint. 

LEMMA 9. A bounded linear operator D commutes with A if and only 

if it commutes with both Band C. 

Proof. If D commutes with A we have DCz = DABz = ADBz , Dz 

DBz + DACz = DBz + ADCz = DBz + A2DBz = (I+A2)DBz. Hence BDz 

DBz and Band D commute. We .then have from the first equation 

DCz = ADBz = ABDz CDz, so that C and D also commute. On the 

other hand, if D commutes with Band C and x is in the domain of 

A, we have CDx = DCx = DABx = DB~x = BDAx and hence Dx = B(Dx) + 

+ CAC) (Dx) = BDx + ABDAx. Thus Dx is in the domain of A. We now 

have BADx = CDx = DCx = BDAx and hence ADx = DAx. 

We are now ready to prove our principal result. 
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THEOREM 5. The projeation E supplied by the Splitting Theorem 

for the bounded self-adjoint operator C serves as the operator re 

qui red in order to validate the Splitting Theorem for A. 

Proof; We have to show that E splits A at 0 and is in the second 
commutant of A. E is in the second commutant of C and therefore 
commutes with Band C, both of which commute with C by Lemma 8. 
Hence E commutes with A, by Lemma 9. If D commutes with A, it 
also commutes with C, by Lemma 9. Hence it commutes with E, be­
cause E is in the second commutant of C. Thus E is seen to be in 
the second commutant of A. To show that E splits A at 0, we take 
x in the domain of A and note that Ax = (I+A 2 )BAx = (I+A 2 )ABx = 

- 2 
= (I+A )Cx by Lemmas 7 and 8. Now if x is in the range of E so 
is Ax because EAx = AEx = Ax. We therefore have (Ax)x = 
= ((I+A 2)Cx)x = (Cx)x + (ACx)(Ax) = (Cx)x + (CAx)(Ax) ~ 0 , be-
cause E splits C at O. Similarly, when x is in the range of I -E 
we see that Ax is in the range of I-E. We then have (Ax)x 
(Cx)x + (CAx) (Ax) ~ 0 with equality if and only if (Cx)x = 0 and 
hence if and only ifx = O. 

The proof of the Spectral Theorem, Analytic Part, is thus comple! 
ed by reference to the paper of Lengyel and Stone [2], where it 
is shown by "pure" methods that the Splitting Theorem holds for 
every bounded self-adjoint operator. 
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