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We consider a linear partial differential operator on an open 
U C RP of the form 

(1.1) a"~ 
Acp = I a "---"-

1"I:;:k" au" 
(cp E COO (U)) 

o 

where the a 
" 

a" 
are complex-valued functions defined on U an the 

aU" 
are the usual partial derivatives of order a ,where" ("I'···'''p) 

and 1,,1 = Ii"~. In this paper we make two observations: 

1) The symbol of A~ nowadays usually considered as a function on 

the cotangent bundle, can be considered, instead, as a function 

on a subset of G (RP+2), where G (RP+2) is the bundle of p-planes 
P P 

at points of RP+2. The symbol can be defined naturally here, by 

geometric considerations, without using coordinates (tho it does 

use the decomposition of RP+2 as RP x R2). If one then puts a 

coordinate system on G (RP+2), the coordinate expression of this 
P 

function becomes the usual expression for the symbol. 

2) The most general definition of a partial differential equa­

tion (equation , as distinct from operator) seems to be as a sub­
set of a higher order Grassman bundle. We indicate, again geome­

trically, how an operator of the form (1.1) gives rise to a par­

tial differential equation in this sense. Furthermore, it gives 
rise to a sequence of such equations, of orders 1 to k; the j'th 

equation being of order j. The equation of order k is (1.1) con­
sidered as a differential equation; the equation of order 1 is 

the characteristic equation (the zeros of the symbol). 

We wish to consider the A of (1.1) as a k-th order vector field 
on U, i.e. as a map which assigns to each XEU a k-th order 

complex tangent vector to RP at x. Then we wish to show how such 
a k-th order vector field gives rise to functions on certain sub-

sets of G1 ,c(UxR1), ... ,G k ,c(UxR1), where Gl,cCUxR1 ) is the set of 
P P P 



complex i-th order p-planes at points of UXRl. This is to be done 

separately at each point of U so what we wish to show is that a 

k-th order complex tangent vector at x E RP gives rise to some com­
plex valued functions defined on certain i-th order p-spaces in 

RP+l. 

Since RP is a real manifold and we are referring to complex tan -

gent vectors and p-spaces we briefly discuss complex tangent vec­
tors to a real manifold. Let M be a p-dimensional COO real mani­

fold and mE M. We now define M~, the complex tangent space to M 

at m. We could define MC to be just the complexification M ~ C m m 
of the usual real tangent space Mm. However we prefer to define 

~ directly, as follows. Let Rm be the complex local ring of M 
at m, i.e. the elements of Rm are the germs of complex valued COO 

functions at m. Let 1m be the maximal ideal of Rm' so 1m con­
sists of the germs that vanish at m. For each non-negative inte­
ger k we define the complex linear space M;'c to be the dual space 

of R /Ik+1 . We call elements of Mmk,c k-th order tangent vectors 
m m 

at m and call M~'c the k-th order tangent space at m. Alternati­

vely a k-th order tangent vector may be considered as a linear 
k+l function on Rm that vanishes on 1m . Because every f E ~ can be 

uniquely expressed as f = fa + f1 where fa is constant and f1 Elm 

it is easily seen 

t = to + tl where 

that every 

t f = cf a a 

tEM;'C can be uniquely expressed as 

(c E C, independent of f) and tl is 

zero on constants. It is clear that Mk,c C Mk+1,c and that the 
m m 

Mk. k c usual real k - th order tangent space m cons lStS of those t E Mm' 

such that t is real whenever f is real valued. And Mk,c = 
m 

= Mk e iMk. Also, a linear partial differential operator defined 
m m 

on U ~ RP is essentially the same thing as a map which assigns to 

each xEU an element of (RP)k,c. For this reason we call it a 
x 

k-th order complex vector field on U. 

Now we define the Grassman manifold k,cG (M) of complex k-th order 
P 

p-spaces over the real d-dimensional manifold M. This is done es-

sentially as for the real case but since we need below the expli­
cit relation with the real case we give some details here. We 
shall write RO , 10 for the local ring and maximal ideal formed 

m m 00 

from the real valued C functions at m. We define a p-ideal in 
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~ to be an ideal I in Rm for which there exists a set of genera­

tors fn+l, ... ,fd such that dfp+l, ... ,dfd at m are linearly inde-

pendent over C. Then we define a z-th order p-ideal at m to be 

any ideal in Rm of the form I + I~+l , where I is any p-ideal in 

Rm' We define a z-th order complex p-spaoe at m 

space of an I 1(1 + rz+l) where I is any p-ideal m m 

define k,cG (M) to be the ~et of all z-th order 
p '" made into a real C manifold, and a bundle ~ver 

as any 

at m. 

complex 
M, with 

dual 

We now 

p-spaces, 
the follow 

ing differentiable structure. Let xl, ... ,xd be any coordinate 
system of M with a cubic domain Q. Let N be the submanifold of M 
defined by 

N = [m E Q I xp+l (m) = ••• Xd (m) = 0] 

and let p be the associated projection of N into Q. L~~ zQ all 
%-~h order complex p-spaces (m,P) such that mEQ and P 

= (Im/(I + I~+l))*, where P is any p-ideal having a set of gener~ 
tors o£ the form 

where the hp+l, ..• ,hd are C'" functions on N. We then define the 

collection of functions w~ , 'w; , "w; for a = ("'1"" ,,,,p) , 

1",1 ~ z , p+1 ~ r ~d , by 

w~ (m,P) 

'wa(m,P) = Re w"'(m,P) , 
r r 

w'" (m,P) 
r 

aah 
r 

ax'" 
(m) 

'rhe set of all such (w~ 'w 
l' r 

"w } make k,cC; (M) into a real COO 
r p 

!!lI~lit'.1! i. and a bundle ave!" >f. 

We note that the usual kG (M) is a submanifold of k,,:(. (M) Lon,ist 
p p' 

ing of all the (m,P) such that the c~responding p-ideal has a 
set of real-valued generators. These are the elements (in the 
domain of such a coordinate system) for which all "w'" = O. We 

r 
call elements of kG (M) real z-th order p-spaces. 

p 
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We now define, for each ye R, an applicatien t , of a ,Subset of 
y 

k,cG (RP+l) ~ kG (RP+2). This is the application that carries 
P P 

each xe RP+l ~ (x,y) e RP+2 and carries the complex p-plane whose 

coordinates (relative to the w~, '",rJ. 1 ' "wrJ. 1 ' - obtained from 
1 P+ p+ 

the usual coordinate system of RP+l) to the element of G (RP+2) 
p , 

whose coordinates are these same numbers, i.e. 

o w. 
1 

w~ 
1 

The geometric construction in going from a linear partial 
differential op'erator to a partial differential equation, or to 
the symbol of the operator, is just the projection of a k-th 
oraer vector into a plane P, skew to both factors, followed by a 
projection into the second factor. Then in case the second 
factor is Rl the resulting vector, which is a function of P, can 
be described by its coefficients of orders 0 to k (there is one 
coefficient for each of these orders when the second factor is 
R1). so we have k+1 functions of P (depending on the initial 
vector field), and these include the symbol and the partial dif­
ferential equation. In the case where the second factor is of 
dimension greater than 1, we obtain vector-valued functions of P. 
We now describe this geometric process more precisely. 

Let M and N be real C· manifolds of dimensions p and q, and let 
d = p+q. Let m be a point of M and n a point of N. We shall 
speak of vectors tangent to M or to N at (m,n), meaning vectors 
tangent to the submanifolds M x (n) or (m) x N ~ by tangent 
vector we shall always mean complex tangent vectors. Let 

k,CGp(m,n) be the set of k-th order complex p-spaces of M x N at 

(m n)' let k,cM be the space of k-th order tangent vectors , , (m, n) 

to M (really to M x (n) at (m,n), and define k,c N( ) similarly. m,n 
We have natural projections, that we denote by p and cr of 

k,C(MxN)(m,n) into k,CM(m,n) and of k,C(MxN)(m,n) into k,CN(m,n) 

p and cr are the k-th order differentials of the natural 

projections of M x N into M x (n) and (m) x N (and we could 

generalize to the case where M and N are only "k-th order factors" 

of some manifold Q). From p we define a subset E of k,CGp(m,n) 

by: E consists of all elements of k,cG (m n) on which p is non-p , 
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singular. We then define a map V of E x k·~(m.n) into k,CN(m.n) 

by:ifPEE and tEk,cM( ') and if t' is the unique element of P m.n 

such that Pt' = t then 

V(p.t) at' 

We now write a formula for this V. in terms of coordinate systems. 
or equivalently. we wish coordinate expressions for V. in case 
M = RP and N = Rq • in terms of the usual coordinates of Eucli-

I 

dean space. We hence assume now that M = RP • N = Rq and let 
u1 ••.•• us De the usual coordinate system of RS . Then. as usual. 
V(P.t) can be expressed as 

V (P. t) 

where the vS-are complex valued functions which we wish to find 
explici t Iy in terms of the coordinates of P and of t. Since 
V(P.t) is clearly linear in t the main thing will be to compute 
the functions vSa defined by 

aa 
(P • -) 

aua 

and lal.;;; k • 

lsi.;;; k. And we now wish to. express these vSa in terms of the 

above coordinates {we:' • 'wa '''wa } of p. we shall write 
1. r' r ' 

w~= 'w; + i"w~ and express the vSa in terms of the w~ . 

First. for each a = (al •...• ap ) and S = (Sp+I •...• Sd) with 

lal> lsi we define PSa to be the unique polynomial such that. 

for all functions gp+I •...• gd in C· at m • 

aa S+l Sd 
(m) [(gp+l - gp+l (m)) p ... (gd - gd (m)) 

aUa 

P Sa ( ...• 
a l1g 

r (m) •••. ) . 
au ll 



82 

Hence if N = the number of n = (n1, ... ,n p) such that 0 ~ n ~ a 
then Plla is a polynomial in (d-p)N variables. It is clear that 
this defines unique polynomials Plla . It will be important that 
the variables here are labellea with the subscripts (n,r) as ahov 

The formula we desire to prove for ~he vSa is: 

(1 .2) 

and we nQW make the calculations. to prove (1.2). We first seek 

aa 
the coordinates of that t! E P such that pt I = -- That t~ 

will have the form 

(a) t' a 

~ a aua ~ 

aY 
Lyaya -y-\.m) 

au 

~. ~ thru all y 

we have 

(b) V Sa (II) a(O, S),a 

Hence we are interested in the 8ya for which Yl = •••• 

But for the moment we consider general y. We write 

From (a) we have the usual formula: 

t' (U - U(m,n))Y 
a 

(g* ~(m))(u - U(m,n))Y 
Ua 

a 
_d_(m) (eU - U (m,n)) y • g) 
aua 

o . 
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We write y = y' + y" where y' = (Yl' ... ,yp'O, ... ) and 

y" (O, ... ,O,Y p+1 ' ..• 'Yd). So the above becomes 

a a '_tf 

-a(m) [ (U-U(m))Y (g-g(m))Y 1 
au 

(c) = L 

We recall the fact, easily proved by induction, 

(d) 

(where a 

(e) 

n! 0 an if 

a.! a 0:,- y t II 

---'::.!-- ---, (m) ((g- g (m)) Y ) 
(a-y')! aua- y 

If we take y = (D,S), so y' 0, y" y, this gives (1.2). 

Now we specialize to the case where q= 1 (d=p+1). so the 

vSa ' PSa ' aSa becomes vo.a,···.vk •a • po,a.···.Pk.a. ao.a.···,ak.a· 

In this case we give the explicit expression for-the P_ by 
J .a 

iterating the Leibnitz product rule. We have 

j -2 j -1 j-l 
a! a a- n h an - n han 

1, j-2 j-l), j-l, ---1··· j-2 j-l---y::T 
(a-n ) .... (n -n ·n . aua- n aUn -n aUn 

1 j -1 . 
where this sum is taken over all choices of n , ... ,n such that 

Applied at m to h = g-g (m), all 
undifferentiated terms vanish so 



(1 .3) P. ( ... ,w n, ••• ) 
J,'" 

84 

where this sum is taken over all n1, •.. ,n j - 1 such that, 

'" > n1 > n2 > ••• > nj - 1 > O. We note, in particular, that all 

non-zero terms of Pj,'" are products of at least j w's, and 

contain no wn with Inl > k-j+1. Hence 

j-l n 
wp + 1 

where this sum is taken over all n1, ... ,n j - 1 such that 

'" > n1 > ••• > nj - 1 > O. If j=k and this is oJ 0 then we must 

have 1",1 = k, and all these products of wp+1's are the same, all 

being equal to 

Furthermore, when j = k 1",1, k!/"'! is the number of such 
1 k-l sequences n , ... , n (as is shown by an easy induction) so 

Hence 

(1 .4) 

6 '" 
(w p ) P 

p+l if I", I k 

which is the usual formula for the symbol of (1.1). 

As given by (1.2) and (1.3) the v j ,'" are functions on k,CGp(M) but 

since all non-zero terms in (1.3) contain only wn with 
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Inl < k-j+1 we see that v. is the lift of a function defined on 
J ,ct 

k-j+l,CGp(M) , hence the same is true of v(P ~ a a ) 'Llctl<k ct --ct 
- aU 

and this function defines the j-th partial differential equation 

associated with A, to which we referred in the introduction. In 

particular, the k-th equation, given by (1.4), is defined on 

1, c G (M). 
p 
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