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We consider a linear partial differential operator on an open
UCRP of the form

o -_—
a.1n Ab = AR (4 €C*(U))
¢ Zlalfka“ 2 Po

[+

where the a are complex-valued functions defined on U an the <
U
are the usual partial derivatives of order o ,where o = (al,...,ap)

and |a| = I;¢;+ 1In this paper we make two observations:

1) The symbol of A; nowadays usually considered as a function on
the cotangent bundle, can be considered, instead, as a function

on a subset of GP(RP+2), where GP(RP+2) is the bundle of p-planes

at points of RP*2,  The symbol can be defined naturally here, by
geometric considerations, without using coordinates (tho it does

use the decomposition of RP*Z a5 RP « RZ). If one then puts a

coordinate system on GP(RP+2), the coordinate expression of this
function becomes the usual expression for the symbol.

2) The most general definition of a partial differential equa-
tion (equation , as distinct from operator) seems to be as a sub-
set of a higher order Grassman bundle. We indicate, again geome-
trically, how an operator of the form (1.1) gives rise to a par-
tial differential equation in this sense. Furthermore, it gives
rise to a sequence of such equations, of orders 1 to k; the j'th
equation being of order j. The equation of order k is (1.1) con-
sidered as a differential equation; the equation of order 1 is

the characteristic equation (the zeros of the symbol).

We wish to consider the A of (1.1) as a k-th order vector field
on U, i.e. as a map which assigns to each xeU a k-th order
complex tangent vector to RP at x. Then we wish to show how such
a k-th order vector field gives rise to functions on certain sub-

sets of G;’C(UXRl),...,GE’C(UXRI), where Gﬁ’c(UXRl) is the set of
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complex £-th order p-planes at points of UXRI. This is to be done
separately at each point of U so what we wish to show is that a
k-th order complex tangent vector at x e RP gives rise to some com-
plex valued functions defined on certain £-th order p-spaces in

Rp+l

Since RP is a real manifold and we are referring to complex tan -
gent vectors and p-spaces we briefly discuss complex tangent vec-
tors to a real manifold. Let M be a p-dimensional ¢” real mani-
fold and meM. We now define M;, the complex tangent space to M
at m. We could define M; to be just the complexification M, & C
of the usual real tangent space M . However we prefer to define
M; directly, as follows. Let R} be the complex local ring of M
at m, i.e. the elements of R are the germs of complex valued C
functions at m. Let Im be the maximal ideal of R , so I, con-
sists of the germs that vanish at m. For each non-negative inte-
ger k we define the complex linear space Mk’c to be the dual space

m
of Rm/I;+l. We call elements of Mﬁ’c k-th order tangent vectors
at m and call M:’c

vely a k-th order tangent vector may be considered as a linear

function on R that vanishes on I§+1. Because every f€R  can be

the k-th order tangent space at m. Alternati-

uniquely expressed as f = f + f, where f 1is constant and f; €1
a y p o 1 o 1 m

it is easily seen that every teEM}:’c can be uniquely expressed as
t = to + t. where tof = cf0 (ceC, independent of f) and ty is

k,c k+1,c

1

zero on constants. It is clear that M cM and that the

m m

usual real k-th order tangent space Mﬁ consists of those t(EMz’C
such that t is real whenever f is real valued. And M:’c =

= M: & iM: . Also, a linear partial differential operator defined
on UEERP is essentially the same thing as a map which assigns to

For this reason we call it a

each x€U an element of (Rp)z’c.

k-th order complex vector field on U.

Now we define the Grassman manifold k’CGP(M) of complex k-th order
p-spaces over the real d-dimensional manifold M. This is done es-
sentially as for the real case but since we need below the expli-
cit relation with the real case we give some details here. We
shall write R; , I; for the local ring and maximal ideal formed
from the real valued C  functions at m. We define a p-ideal in
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R, to be an ideal I in Rm for which there exists a set of genera-
tors fn+1,...,fd such that dfp+1,...,dfd at m are linearly inde-

pendent over C. Then we define a z-th order p-ideal at m to be

z+1

any ideal in R of the form I + Im

, where I is any p-ideal in
R . We define a z-th order complex p-space at m as any dual
space of an Im/(I + fz+1) where I is any p-ideal at m. We now

define k’po(M) to be the.set of all z-th order complex p-spaces,
made into a real C” manifold, and a bundle over M, with the follow
ing differentiable structure. Let XysenesXy be any coordinate
system of M with a cubic domain Q. Let N be the submanifold of M
defined by

N=I[meqQ | po(m) = .. = xd(m) = 0]

and let P be the associated projection of N into Q. Lei ?Q = all
z-th order complex p-spaces (m,P) such that meQ and P =

= (Im/(I + I;+1))*, where P is any p-ideal having a set of genera
tors of, the form

fp+1 = X4 T hp+1 L I fd =Xy - hd *p
where the hp+1""’hd are C” functions on N. We then define the
. . o
collection of functions wg , 'wr , ”w: for o = (al,...,ap) ,
la] <z, p+1 <r<d, by
[¢]
o _ o _ r
wi(m,P) = xi(m) ’ wr(m,P) - o (m)
X
o o
'wr(m,P) = Re wr(m,P) R
"W = Im w®
r r
The ser of all such (wg » "W . "w.} make k’CGP(M) into a real C”
manirnt i, and a bundle over M.
We note that the usual ka(M) is a submanifold of “’“r (M) conzist

ing of all the (m,P) such that the corresponding p-ideal has a
set of real-valued generators. These are the elements (in the
domain of such a coordinate system) for which all ”wi = 0. We
call elements of ka(M) real z-th order p-spaces.
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We now define, for each ye R, an applicatien @y, of a subset of

k’po(Rp+1) > ka(RP+2). This is the application that carries

each xe RP*! 5 (x,y) e RP*? and carries the complex p-plane whose
: . 0 4.0 e 0 - .
coordinates (relative to the Wi “p+1 , wp+1., obtained from

the usual coordinate system of RP*1) to the element of GP(RP+2)
whose coordinates are these same numbers, i.e.

W Y ="wa

. = o = 1%
LA weo, W ® W p+2 y o+l

p+l y p+l  ?

The geometric construction in going from a linear partial
differential operator to a partial differential equation, or to
the symbol of the operator, is just the projection of a k-th
order vector into a plane P, skew to both factors, followed by a
projection into the second factor. Then in case the second
factor is Rl the resulting vector, which is a function of P, can
be described by its coefficients of orders 0 to k (there is one
coefficient for each of these orders when the second factor is
Rl), so we have k+1 functions of P (depending on the initial
vector field), and these include the symbol and the partial dif-
ferential equation. In the case where the second factor is of
dimension greater than 1, we obtain vector-valued functions of P.
We now describe this geometric process more precisely.

Let M and N be real C* manifolds of dimensions p and q, and let
d = p+q. Let m be a point of M and n a point of N. We shall
speak of vectors tangent to M or to N at (m,n), meaning vectors
tangent to the submanifolds M x (n) or (m) x N ; by tangent
vector we shall always mean complex tangent vectors. Let

k’po(m,n) be the set of k-th order complex p-spaces of M x N at

k,c
M(m,n

to M (really to M x (n) at (m,n), and define

(m,n); let ) be the space of k-th order tangent vectors

k,c e s
N(m’n) similarly.

We have natural projections, that we denote by p and o of

> . k k, . k
k C(MXN)(m,n into ©*°M and of C(MxN)(m’n) into ¢

) (m,n)
o and ¢ are the k-th order differentials of the natural

N(m.n)

projections of M x N into M x (n) and (m) x N (and we could
generalize to the case where M and N are only "k-th order factors"
of some manifold Q). From p we define a subset E of k’po(m,n)

by: E consists of all elements of k’po(m,n] on which p is non-
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singular. We then define a map V of E x k’cM into k’°N

(m,n) (m,n)
by:if PEE and 1:Ek’cM(m n) and if t' is the unique element of P

such that et' = t then

V(P,t) = ot'

We now write a formula for this V, in terms of coordinate systems,
or equivalently, we wish coordinate expressions for V, in case

M = RP and N = R » in terms of the usual coordinates of Eucli-
dean space. We hence assume now that M = RP , N = R? and 1let
Uj,... U, De the usual coordinate system of RS, Then, as usual,
V(P,t) can be expressed as

B
9
V(P:t) = zlslfk VB(Pyt) gs—

where the Vg-are complex valued functions which we wish to find
explicitfly in terms of the coordinates of P and of t. Since
V(P,t) is clearly linear in t the main thing will be to compute
the functions v,  defined by '

aa
Ve (P) = v, (P, aU“)

where o = (al""f“p) . B = (Bl,...,Bq) , and J|o| <k,

|8] <€ k. And we now wish to,express these v in terms of the

Ba

¢ ,‘"wi} of P; we shall write

above coordinates {wg , W

w:= 'wz + i"wI and express the v in terms of the wl

Ba

First, for each o = (al,...,ap) and 8 = (Bp+1,...,8d) with

|a| > |g| we define P, to be the unique polynomial such that,

Bo
for all functions Bp+17+28g in C* at m ,
2% B+l 3 Ba
0% M) [(8yyy = &pyy (M) oo (gg - ggm)) 71
2"g_
= PBa (voes m),...)

au"
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Hence if N = the number of n = (nl,...,np) such that 0 < n <o
then Py, is a polynomial in (d-p)N variables. It is clear that
this defines unique polynomials Pg, . It will be important that
the variables here are labelled with the subscripts (n,r) as abov

The formula we desire to prove for ‘the vy, is:
(1.2) Vag (P) = Pgo(evu,wi(P), . ..)/8!

and we now make the calculations to prove (1.2). We first seek
o
3
the coordinates of that t} €P such that pt! = — . That t,
U
will have the form

5Y

1 = R
(a) R

~ _ thru all v = (¥;,...,Y4) Wwith |v| < k. Because

5Y

ot' = a —(m)
o - =y = yo Y
YT =Y, 0 AU
we have
(®) Ve (®) = 30,8,
Hence we are interested in the a, for which Yp = e TYp S 0 .

But for the moment we consider general y. We write
Y Vi
(u - u(m;n)) =T-ri(ui - ui(myn))

From (a) we have the usual formula-:

=<
t
"

ty (U - U(m,n))"

aq
(ga —zm)) (U - U(m,n))’
U

aa
2—(m) (U - Um,n))" -« g)
aU
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. . . .
= —EF (m) [(TFLI(Ui - Uj(m,n)) ) (Tr?:pﬂ(g . gj(m) iy

We write v = y' + y" where y' = (yl,...,yp,o,...) and
Y= (0,050, 415405 Yg) . So the above becomes
3¢ y! "
Yhay, = —mIu-um)’ (g-gm) Y]
U
] n ' a-n ' "
© = —— A m) (U-um) ) B (m) (g-g )Y
o<n<a n!(a-n)! 23U U

We recall the fact, easily proved by induction,

X n
(a) E—(m) (-um)® = ! s if 0<n<a
Y an

(where o = (al,...,ap), n = (nl,...,np)); then (c) and (d) give

al BQ"Y' il
€  vra, = —— 2 m)((g-gm)"")
(a-yr)r ay*’Y
If we take vy = (0,8), so y' = 0, y" = vy, this gives (1.2).

Now we specialize to the case where q=.1 (d=p+1), so the

Vg PBu’ ag, becomes vo’a,...,vk,a, P Pk,a’ ao,a,...,ak’a.

In this case we give the explicit expression for the Pj by

o’a,...,

iterating the Leibnitz product rule. We have

2%hd _ a! A - S Y
T = :
au® (a-n ).'...(nJ -n?

where this sum is taken over all choices of nl,...,nJ—l such that

1 2

a=n 20> ...>0d >0 . Applied at m to h = g-g(m), all

undifferentiated terms vanish so
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(1.3) Pj’a(...,w yees) =
- o! ot-n1 _nj-Z nj'l nj"l
- 1 72 3-1y, 3-1 W W
(o-n)!...(n -n )!n !
where this sum is taken over all nl,....,nJ_1 such that,
a«>nt>n2> . >n3"l > 0. wWe note, in particular, that all

non-zero terms of Pj o are products of at least j w's, and
’

contain no w' with [n] > k-j+1. Hence

v _1_2 a!l
35 7 5y Taentyr(alon?yr, (T 2ondithy adth

aonl nlop2 wnj—z_nj—l ni-l
* Wp+1 Wp+]. CttTp+l wp+1
where this sum is taken over all nl,...,nj—l such that
o« >nl > . >n3"l > o, 1f j=k and this is # 0 then we must
have |o| = k, and all these products of wp+1's are the same, all
being equal to
8 o § o
1 1 P P
(wp+1) ...(wp+1) .
Furthermore, when j = k = Ja] , k!/a! is the number of such
1 k-1 . . -
sequences N ,...,"n (as is shown by an easy induction) so
61 al Gp up
Via T (wp+1) - (wp+1) if la] = k
Hence
§ o $ o
9 1 1 P P
(1.4) V(PZ a ———)=Z a, (w ) .. (w )
k ’ Ialsk o BUU' ‘a|=k a p+l p+l

which is the usual formula for the symbol of (1.1).

As given by (1.2) and (1.3) the Vi, are functions on k’CGP(M) but

. . . . no_.
since all non-zero terms in (1.3) contain only w with



85

In] < k-j+1 we see that Vs is the 1ift of a function defined on

)
o sud

and this function defines the j-th partial differential equation

k-j+1,c .
Gp(M) , hence the same is true of V(P’Zlﬁ|§k a
In

associated with A, to which we referred in the introduction.

particular, the k-th equation, given by (1.4), is defined on

l,c
GP(M).
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