Let Δ denote the open unit disc in the complex plane \mathbb{C}, and let $H^\infty(\Delta)$ denote the algebra of bounded analytic functions on Δ. We wish to prove the following theorem, which was proved in the case that E is open by A. Stray [5].

THEOREM 1. Let $f \in H^\infty(\Delta)$, and let E be a subset of \mathbb{C} such that f extends continuously to each point of E. Then there is a sequence $f_n \in H^\infty(\Delta)$ such that each f_n extends to be analytic on some neighborhood of E, and f_n converges uniformly to f on Δ.

For E a subset of \mathbb{C}, let H^∞_E denote the subalgebra of $H^\infty(\Delta)$ of functions which extend continuously to each point of E. The theorem asserts that the functions in $H^\infty(\Delta)$ which extend analytically to a neighborhood of E are dense in H^∞_E. Combining the theorem with Carleson's corona theorem, we obtain the following corollary, which is due to Détraz [2].

COROLLARY. The open unit disc Δ is dense in the maximal ideal space of H^∞_E.

Proof of the main theorem. We proceed now directly to the proofs. The symbols C_0, C_1, ..., will all denote universal constants. All norms will be suprema norms.

LEMMA 1. Let Q be a closed subset of \mathbb{C}, let W be an open subset of \mathbb{C} at a positive distance from Q, and let $\epsilon > 0$. Let f be a bounded Borel function on C, such that f is analytic on Δ. Suppose there is a continuous function u in a neighborhood of Q such that

$$|f(z) - u(z)| < \epsilon$$

for all $z \in \Delta$ which are near Q. Then there is a bounded Borel function h such that
(i) h is analytic on an open set containing $\Delta \cup Q$.

(ii) h extends analytically across any arc on $\partial \Delta$ across which f extends analytically.

(iii) $f-h$ is analytic on W and satisfies $|f-h| < \epsilon$ there.

(iv) $|f(z)-h(z)| < C_1d$ for all $z \in \Delta$.

Proof. For $\delta > 0$, the open δ-neighborhood of Q will be denoted by $Q(\delta)$. By hypothesis, we can choose $\delta_0 > 0$ so small that $Q(\delta_0)$ does not meet W, that u is defined on $Q(\delta_0)$, and that $|f(z)-u(z)| < d$ for $z \in Q(\delta_0) \cap \Delta$. Since u is uniformly continuous in a neighborhood of Q, we can shrink δ_0 so that also $|u(z)-u(\zeta)| < d$ for all $z, \zeta \in Q(\delta_0)$ satisfying $|z-\zeta| < 2\delta_0$.

Let Γ be the union of the arcs on $\partial \Delta$ across which f extends analytically. There is then an open set U containing Γ such that $|f(z)-u(z)| < d$ for all $z \in Q(\delta_0) \cap U$. Let F be the function which coincides with u on $Q(\delta_0) \setminus (\Delta \cup U)$, and which coincides with f elsewhere. Then F is a bounded Borel function which satisfies

$$|F(z)-F(\zeta)| < 3d \quad \text{whenever } z, \zeta \in Q(\delta_0), \, |z-\zeta| < 2\delta_0.$$

Since F coincides with f on Δ, on W, and in a neighborhood of Γ, it will suffice to obtain the conclusions of the lemma, with f replaced by F.

Now we are in position to use Vitushkin's scheme for approximation, as developed for instance in Chapter VIII of [3], or in [6]. Because we are working on the unit circle, we can employ the version of this technique matching only one coefficient of the appropriate Laurent expansions (cf. [6], V.4). The details are as follows.

For a fixed δ satisfying $0 < \delta < \delta_0$, choose discs

$\Lambda_k = \{|z-z_k| < \delta\}$, $z_k \in Q$, which cover Q, and choose functions g_k supported on Λ_k such that $0 < g_k < 1$, $\sum g_k = 1$ in a neighborhood of Q, $|\frac{\partial g_k}{\partial z_k}| < 4/\delta$, and no point z is contained in more than C_2 of the discs Λ_k. If

$$G_k(\zeta) = \frac{1}{\pi} \int \int \frac{F(z) - F(\zeta)}{z-z_k} \frac{\partial g_k}{\partial z_k} \, dx \, dy, \quad \zeta \in C,$$

then G_k is analytic in $\Delta \cup Q$. The main point is that $|G_k(\zeta)| < C_2t\delta$ for $\zeta \in C$.
then G_k is a bounded Borel function, G_k is analytic wherever F is analytic, G_k is analytic off A_k, and $G_k(\infty) = 0$. Moreover, $F - \sum G_k$ is analytic on the interior of the set on which $\sum g_k$ assumes the value 1. In particular, $F - \sum G_k$ is analytic in a neighborhood of Q. The condition (*) can be used to estimate G_k, yielding the bound

$$|G_k| \leq C_j d.$$

Suppose the expansion of G_k near ∞ is given by

$$G_k(z) = \frac{a_1}{z - z_k} + \ldots .$$

By Schwarz's lemma we have

$$|a_1| \leq |G_k| \delta .$$

Now the analytic capacity of the connected open set $A_k \setminus \delta$ is at least one fourth its diameter. Hence we can find a continuous function H_k on \mathbb{C} such that H_k is analytic off a compact subset of $A_k \setminus \delta$,

$$|H_k| \leq 5 |G_k| .$$

$$H_k(z) = \frac{a_1}{z - z_k} + \ldots .$$

Now $|G_k - H_k| \leq C_4 d$ so that

$$|G_k(z) - H_k(z)| \leq C_4 d \delta^2 / |z - z_k|^2$$

for $z \in \Delta_k$. As H_k has been defined so that $G_k - H_k$ has a double zero at ∞, the estimate (***) persists for all $z \in \mathbb{C}$.

Now we define

$$h = F - \sum (G_k - H_k) .$$

Since $F - \sum G_k$ is analytic wherever F is analytic, and each H_k is
analytic in a neighborhood of \tilde{a}, the function h is analytic on Δ and extends analytically across Γ. Moreover, h is analytic in a neighborhood of Q, so that (i) and (ii) are valid. Since $F - h$ is analytic off $Q(\delta)$, $F - h$ is analytic on W. To complete the proof, it suffices now to obtain the estimates in (iii) and (iv).

To verify (iii), fix $z \in W$ and consider $F(z) - h(z) = \sum [G_k(z) - H_k(z)]$. Since no point lies in more than C_2 discs Δ_k and each Δ_k meets $b\delta$, there is a grand total of at most $2\pi C_2/\delta$ discs Δ_k. Thus by (**)

$$(***) \quad \sum |G_k(z) - H_k(z)| < 2\pi C_2 C_4 d \frac{\delta}{\text{dist}(W, \cup \Delta_k)}^2.$$

Taking δ much smaller than $\text{dist}(W, Q(\delta_0))$, we get $|F - h| < \epsilon$ on W.

To verify (iv), we first observe that $F - h = \sum [G_k - H_k]$ is analytic off $Q(\delta)$, so that it suffices to obtain the estimate

$$\sum |G_k(z) - H_k(z)| < C_1 d$$

for $z \in Q(\delta)$. So fix a point $z \in Q(\delta)$. Let $M(m)$ be the number of discs Δ_k whose centers satisfy $m\delta \leq |z - z_k| < (m + 1)\delta$. Since no point z is contained in more than C_2 discs, there will be a constant C_2 such that

$$M(m) \leq C_5 \quad \text{if} \quad 0 \leq m \leq 1/\delta,$$

providing δ is sufficiently small. (Here we use the geometry of the unit circle, and the fact that z is close to the unit circle) Using the estimate $|G_k(z) - H_k(z)| < C_4 d$ for the at most C_2 indices k for which $|z - z_k| < \delta$, the estimate (**) for those k for which $m\delta \leq |z - z_k| < (m + 1)\delta$ and $1 \leq k < 1/\delta$, and the same estimate used to obtain (***) for those k for which $|z - z_k| \geq 1$, we find that

$$\sum |G_k(z) - H_k(z)| \leq C_2 C_4 d + \sum_{k=1}^{1/\delta} M(k) C_4 d/k^2 + 2\pi C_2 C_4 d \delta \leq C_1 d.$$

That completes the proof.
LEMMA 2. Let \(f \in H^w(\Delta) \), and let \(E \) be a subset of \(b\Delta \). Suppose there is an open set \(U \) containing \(E \), and a function \(u \) defined and continuous on \(U \), such that \(|f(z) - u(z)| < \delta \) for all \(z \in U \cap \Delta \). Then there is \(h \in H^w(\Delta) \) such that \(h \) extends to be analytic in a neighborhood of \(E \), and

\[
\sup_{z \in E} |f(z) - h(z)| \leq C_0 \delta.
\]

Proof. By replacing \(E \) by \(U \cap b\Delta \), we can assume that \(E \) is relatively open in \(b\Delta \). Then we can write \(E = (\cup Q_n) \cup (\cup R_n) \), where \(Q_1, Q_2, \ldots \) are pairwise disjoint closed intervals, \(R_1, R_2, \ldots \) are pairwise disjoint closed intervals, each \(Q_n \) joins the endpoints of two of the \(R_k \)'s, and each \(R_n \) joins the endpoints of two of the \(Q_k \)'s. Then we can choose \(\delta_n > 0 \) so that the \(\delta_n \)-neighborhoods of the \(Q_n \)'s are pairwise disjoint.

Starting with \(\phi_0 = f \), we construct by induction a sequence of Borel functions \(\phi_n \) such that

1. \(\phi_n \) is analytic on \(\Delta \), and \(\phi_n \) is analytic on a neighborhood of \(Q_n \).

2. \(\phi_n - \phi_{n-1} \) is analytic off the \(\delta_n \)-neighborhood of \(Q_n \) and satisfies \(|\phi_n - \phi_{n-1}| < d/2^n \) there.

3. \(\|\phi_n - \phi_{n-1}\| < 2C_1d \).

Indeed, having chosen \(\phi_{n-1} \), we note that on the part of \(\Delta \) near \(Q_n \) we have

\[
|\phi_{n-1} - u| < |\phi_{n-1} - \phi_{n-2}| + \ldots + |\phi_1 - f| + |f - u| < d/2^{n-1} + \ldots + d/2 + d < 2d,
\]

so that Lemma 1 will provide the desired function \(\phi_n \).

For each \(z \), \(|\phi_j(z) - \phi_{j-1}(z)| < d/2^j \) for all but at most one index \(j \), while always \(|\phi_j - \phi_{j-1}| < 2C_1d \). Hence the \(\phi_j \) converge point-
wise to a function ψ satisfying

$$|\psi(z) - f(z)| \leq \sum |\psi_j(z) - \psi_{j-1}(z)| \leq (2C_1 + 1)d.$$

The convergence is uniform on any compact set at a positive distance from $\lim Q_n = bE$, so that ψ is analytic on Δ. Since $\psi_j - \psi_{j-1}$ is analytic on the δ_n-neighborhood of Q_n for $j \neq n$, while $\psi_n - \psi_{n-1}$ is analytic in a neighborhood of Q_n, $\psi - f$ will also be analytic in a neighborhood of each Q_n.

Now we perform essentially the same construction on the R_n's, being careful to retain analyticity across the Q_n's. Choose $\varepsilon_n > 0$ so that the ε_n-neighborhoods of the R_n's are disjoint. Starting with $\psi_0 = \psi$, construct by induction a sequence ψ_n such that

(i) ψ_n is analytic on a neighborhood of $\Delta \cup R_n$.
(ii) ψ_n is analytic across the arcs of $b\Delta$ across which ψ_{n-1} is analytic.
(iii) $\psi_n - \psi_{n-1}$ is analytic off the ε_n-neighborhood of R_n and satisfies $|\psi_n - \psi_{n-1}| < \varepsilon_1^2$ there.
(iv) $||\psi_n - \psi_{n-1}|| < C_7d$.

This is again possible by Lemma 1. As before we see that the ψ_n converge to a function h, uniformly on sets at a positive distance from bE, such that $h \in H^\omega(\Delta)$, h extends analytically across each Q_n and across each R_n, and $|h - \psi| < (C_7 + 1)d$. Then h is analytic across E, and $|h - f| < (C_7 + 2C_1 + 2)d$, so that h is the required function.

Corollary. Let $f \in H^\omega(\Delta)$, let E be a subset of $b\Delta$, and let $d > 0$. Suppose that for each $z \in E$, the diameter of the cluster set of f at z is less than d. Then there is $h \in H^\omega(\Delta)$ such that h extends to be analytic in a neighborhood of E, and

$$\sup_{z \in \Delta} |f(z) - h(z)| < C_0d.$$
Proof. As the diameter of the cluster set of f at $z \in \partial\Delta$ is an upper semicontinuous function of z we can replace Δ by a larger open set. It is now easy to construct a continuous function satisfying the hypotheses of Lemma 2.

Proof of Theorem 1. If f extends continuously to each point of Δ, then we can take the d of the preceding corollary to be arbitrarily small. The resulting h's will approximate f uniformly on Δ, and they will be analytic on Δ.

Proof of the Corollary to Theorem 1. To show that Δ is dense in the maximal ideal space of H^w_{Δ}, one must show that if $f_1, \ldots, f_n \in H^w_{\Delta}$ satisfy $|f_1| + \cdots + |f_n| > \delta > 0$ on Δ, then there are $g_1, \ldots, g_n \in H^w_{\Delta}$ satisfying $\sum f_j g_j = 1$. In fact, it suffices to show this for f_1, \ldots, f_n lying in any dense subalgebra of H^w_{Δ}, so that by Theorem 1 we can assume that f_1, \ldots, f_n extend analytically to a neighborhood of Δ. Then there is a simply connected open set $U \supseteq \Delta \cup \Delta$ such that f_1, \ldots, f_n are bounded on U and satisfy $|f_1| + \cdots + |f_n| > \delta/2$ there. By Carleson's theorem, applied to U, there are bounded analytic functions g_1, \ldots, g_n on U satisfying $\sum f_j g_j = 1$. Since the g_j's belong to H^w_{Δ}, they are the required functions.

CONCLUDING REMARKS. For a subset Δ of $\partial\Delta$, let L^w_{Δ} denote the uniform closure of the functions in $L^w(\partial\Delta)$ which extend continuously to an open set containing Δ. Then L^w_{Δ} consists of the functions in L^w which are constant on each "fiber" of the maximal ideal space of L^w lying over points of Δ. If we identify functions in $H^w(\Delta)$ with their radial boundary values, we can regard $H^w(\Delta)$ as a subalgebra of $L^w(\partial\Delta)$. Under this identification, H^w_{Δ} becomes a subalgebra of L^w_{Δ}. In fact, $H^w_{\Delta} = H^w \cap L^w_{\Delta}$, and H^w_{Δ} is a logmodular subalgebra of L^w_{Δ} (cf. Détraz [2]).

For $f \in L^w(\partial\Delta)$, we define as usual the distance from f to L^w_{Δ} by
and we define $d(f, H_E^w)$ similarly. Lemma 2 can be restated as follows.

Theorem 2. There is a universal constant C_0 such that for all $E \subseteq b\Delta$ and all $f \in H^w(\Lambda)$,

$$d(f, L_E^w) \leq d(f, H_E^w) \leq C_0 d(f, L_E^w).$$

We hope to study the smallest possible constant C_0 in another paper.

Acknowledgments. The authors would like to acknowledge the partial support of the National Science Foundation Grant #GP-11475 in the preparation of this manuscript. The first-named author would like to acknowledge the partial support of the Alfred P. Sloan Foundation.

References

University of California
Los Angeles

Recibido en agosto de 1970.