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ABSTRACT. In this paper the mean convergence of series of eigen-
functions of the equation

(XZU.y|)| + >.‘Y =0

is studied, completing results of Generozov, (Math. Review #527,

(1970)).

1. INTRODUCTION.

1. The problem that we shall consider in this paper is a partic-
ular case of the following general question: let {¢ (x)} be an
orthornormal (Lz-) complete system over an interval (xo,xl) ,

e < x, <X <, with respect to a measure p(x)dx. Determine
the greatest interval a < p < b or A < p < B, for which this sys-
tem is a basis in LP( = the space of p-integrable functions over
(xo,xl) with respect to the measure pdx).

*
We shall always suppose that p € (1,=) and that ¢ € P n LP".
Then it is easy to see that if {¢n} is a basis in LP, the the ser

ies Zm a_¢ that converges in norm to f € LP? is its Fourier ser-
1 "'n'n

ies. That is,

X
a, = &, (D) = [} F0e, e

It is known (cfr. [6], p. 268) that if for every f € LP , the Fou
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rier seriesof f converges weakly to f, then for every g € LP*,
1/p + 1/p* = 1, the Fourier seriesof g converges in LP* to g.
Therefore, if {¢_ } is a basis in LP, it is also a basis in LP*,
So a and b are conjugate exponents. If we know that the system
*1

X

is complete in L% and J pdx < =, the to prove that it is a ba-

o
sis in LP, it is enough to prove:

N )
1 | I € LP
(1) zl a (e} <cC Ifl, vEeLP |

with CP independent of N and f.

In fact, by the Lz-completeness,
N 2
2 - -zl a,(8)e -gl +0 for gelPnl®, p<2

Then by (1), (2) holds for all g € LP. So {¢n} is a basis in LP
and also in LP* by the previous argument.

X
If I 1 pdx = =, then instead of the L2—comp1eteness, it is suf-
Xo

ficient to ask that (2) holds for g € EP = a dense subset of LP.
Then again (1) implies that {¢ } is a basis in LP.
The most celebrated particular case is one due to M. Riesz: the

system {cos nx,sin nx, n=0,1,2,...} is a basis in LP(0,2n) for
1 <p <o (cfr.[18], ch. 7, §3). This is false for p = 1.

2. Particular orthonormal systems appear as solutions of Sturm-
Liouville problems. The simplest case is that of the equation

(3) y'+ay =0
with the boundary conditions

(4) y(0)cosa+ y'(0)sin o

[}
o
-

[}
o

y(2n)cos 8 + y'(2n)sin B , -n/2 <a,B <m/2.
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For the following particular values of o and g the orthonormal
‘systems are: '

case o =0 , 8 =0 , {sin(nx/2)} , n=1,2,... 3
case o = 0 , B =1/2 , {sin((2n+1)x/4} , n=20,1,2,...;
case a =1/2 , 8 =a/2, {cos(nx/2)} : n=20,",... ;3

case o m/2 , 8 =0 , {cos((2n+1)x/4} , n=20,1,... ;

It is easy to see that these four systems are bases in LP for

1 < p < =, For example, we shall prove this for the second sys-
tem. Let us consider the family of periodic functions of period
2m, odd with respect to m and even with reépect to n/2. The Fou-
rier series of such a function is a series in sin(2n+1)x ,
n=20,1,... . By the theorem of M. Riesz, it converges to f in
LP(0,2r) if £ € LP. On the other hand, such a function can be
defined arbitrarily on [0,7/2). So, the system just mentioned ,
restricted to [0,n/2), is a basis in LP(0,n/2). This means that
{sin((2n+1)x/4}; n = 0,1,... 1is a basis in LP(0,2r). Q.E.D.

A more general theorem holds:
THEOREM 1. The system of eigenfunctions of the equation
(5) y' - ax)y +ay =0 , 0<x<2n ,

with the boundary conditions (4) is a basis in LP, 1 < pP<e, 2f
q(x) Zs continuous in [0,27] , ([19]).

In fact, this is a conséquence of the preceding result and the
following theorem (cfr. [15], ch. I, th 1.9): let £ € L'(0,2n)
and call Sn(f) the nth partial sum of its Fourier series with re-
spect to the system of eigenfunctions of the boundary problem (5),
(4). cCall {Tn(f)} the partial sums of the Fourier series of f
with respect to the eigenfunctions of equation (3) and boundary
conditions (4) but with [sgn a|n/2 instead of o and |sgn g|n/2
instead of 8. Then

(6) [Sn(f) - Tn(f)| = o(1) uniformly in x € [0,2n] .

Now theorem 1 follows easily. Q.E.D.
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3. Other cases of the problem have been treated by several au-
thors. Pollard in [12],[13], [14], considers the cases of series

of Legendre,Jacobi,Laguerre and Hermite and his results are com-
plemented by others. In [2] series of Laguerre and Hermite are con
sidered and in [10] an open question left by Pollard is settled.
[1] gives a review of the problem and Wing in [17] extends some
results of Pollard and investigates Jacobi series. Muckenhoupt in
[9] completes results of Pollard and Wing. The intérvals where
the mean convergence is considered for the polynomials of Jacobi,
Laguerre and Hermite are (-1,1),(0,~) and (-~,~), respectively.

Essentially, these are the only orthogonal polynomials generated
by a Sturm-Liouville problem: Merlo, [8], proves that if an ortho-
normal system has the form {Pn(x)/;T;3 ;n=0,1,..., with P a
polynomial of degree n and is a solution of a problem of Sturm-
Liouville, then except for a change of scale the Pn(x) are the
polynomials of Jacobi, Laguerre or Hermite. [7] contains some re-
sults in this direction which are used by Merlo.

Eigenfunctions of the Bessel equation
2

X“w" + x w' o+ (sz - v2)w =0

give place to Fourier-Bessel expansions whose mean convergence
has been treated in [17) for v=-1/2 and in [3] when -1<v< -1/2.

Generozov in [4] studies this for expansions in eigenfunctions of
the equation

7N (x%%") " +aw =0 , O0O<a<l,0<x<1, w(1)=0 ,

w(0)=0 if 0<a<1/2 ; w bounded if 1/2<a<1

In this paper we shall continue the study of this equation.

20

I'l. THE EQUATION (x““w')' + Aw = 0

4. Let us consider an equation of the form

(8) K CEre 0o-x =0, 0<x<1 , 530, P>0
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If (p/P)l/2 is integrable on (0,1), then the change of variables
X
t = t(x) = J (o/P)/24x
o
and the change of function

u(t) = (P4 = (0 (x(t) P(x ()0 4% (x(2))

transforms equation (8) into

- ot 1/2
(9) u"(t) + (\-q(t))u =0 » 0ecteT = J (p/P) dx
' o
3 =Q.3k0'\2 3 P2 1P’ on a" - 1
where q(t) = - 35207 )" ¢+ ¢ o *wtrtw o U

5. If instead of the given transformatlon we use t = t/T, the
function v(¢) = u(Tt) , verifies

V') +T20-qv =0, 0t <1 ,
or, what is the same thing
(o) V') + (v =0 L. 0<q <1 |

where p = T2, , q = T2q .

6. Let X be the elgenfunctlon corresponding, to A in equation
(8) and to certain boundary conditions, say

(11) X(1) = X(0) = 0 or boundedness of X near a singular
endpoint.

Then u (t) = (pP)l/AX (x(t)) is an eigenfunction for equation (9]

and the boundary cond1t10ns corresponding to (11). Let f(t) and
F(x) be related as u(t) and X: f = (pP)L/4F., Then ‘

T 1
(1) j £2dt = J F2pdx
[e] [o]
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Also the Fourier coefficients of f with respect to {uj,} are the
same than that of F with respect to {X_} and p. ' That is

T 1

£(t)u_(t)dt J FpX_dx
© © . o o
£~ Zlanun , Fon zlaan with a_ = TS = 7 >
| I uZdt [ x2 o dx
o o
It is easy to see then that
T N 2 1 N 2
(12) J |Zlanql-f| dt » 0 iff f |21aan—R| p dx » 0 ,
o N » = o N » «

and in general, for 1 < q < = ,

N . 1
(13) Jle au -f%dt > 0 iff[

N
|2 aan—F|qu/4+1/2 Pq/"—”2 dx > 0
o 1 o 1 '

7. Analogous results hold if we consider the equation (10) instead

of (9): the eigenfunction associated to (10) and'An = TZX is now
= /T 1/4 _ 1% 1/2
wn(t) =7vT (pP) Xn(x(t)). Here t = T @ /P) dx
[o]
Let f and F be related in the same way as w and X: f = TI/Z(DP)I/AF.

Then
1 1

14) f £24dt =J Fodx
o [o]

and the Fourier coefficients of F with respect to {Xn} and p and
that of f with respect of {wn} are the same. Consequently ,

1 N 2 1 N 2
(15) Jolfl aw -f|"dt > 0 iff J°|Zlanxn—F| pdx > 0 ,

1 N ' 1 N .
i 7 -£]a = olq ,q/4+1/2 ,q/4-1/2 ~q/2-1
Since JOILlahwn £l %dt Iolzlanxn F|% o P T dx,

1 N 1 N
(16) f |1, aw_-£l%dt > 0 ifff |1, a_x_-F[ 0a/4+1/2 pa/b=1/24, 5 ¢,
[o] o

The preceding considerations are implicitly used in the proofs of

part III.
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8. An interesting particular case we have if pP = 1. In that
case (13) reads:

T N rl N
(17) fo IZlanun-f]th > 0 iff Jo izlanxn-ﬂ“ pdx - 0

That is {X,} is a basis in LY with respect to the measure pdx iff
{u } is a basis in LY with respect to the Lebesgue measure. This
last property can be often established by theorem 1.

The Tchebicheff polynomials constitute an important example of this
case. They satisfy the equation

(- 20w )y Yy L g

which is of the form (8) with P = (1-x))Y2 | g = 0 , op = 1 . The

corresponding equation (9) is u'"+iu = 0 » T < t < 0, So in this
case Theorem 1 and the preceding observation assure that the system
of Tchebicheff polynomials is a basis in LY with respect to the

measure (1-x2)—1/2dx for 1 < q < =,

9. Let us consider now the equation (cfr. [4])
(18) Gyt e ay =0, 0<x<q
with one boundary condition y(1) = 0.

Let a < 1. By the transformation of section 4, which in this case

is t = x17%/(1-a) , u(t) = x*2y(x(e)), we get

(19)  u"(t)-q(t)u(t)-ru=0 » 0 <t < 1/(1-a) , u(1/(1-0))=0

with
I 2 = |12
(20) q(t) = (v 7)/t >V lz(1-a)

Two linearly independent solutions of this equation are
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vt Jv(t/f) , Vt J_v(t/T) if v # integer ,
(zmn ‘
Yt J,(t/x) /t Yv(tlf) if v = integer .

If we add the boundary condition
y(0) = 0 in case o< 1/2 ,
(22) v
y bounded in case 1/2<a<1,
we obtain the solutions of (18)
- (1-2a)/2 1-a
(23) yn(ﬂ = Cx J xS,

where s, are the positive solutions of Jv(sn) = 0 and An=s:(1-u)2>0

If o > 1, then a solution of (19) that vanishes at x=1 does not
belong to L2, so no eigenfunction exists.

In fact, if «=1, then for different values of A, the general solu-
tions of (18) are:

. Ci1 JE—
A /4,y =T sin(/r-1/4 1g x + C;)

>
n

174 , y= (Cjlg x + C)//x

c _
A< 1/4 ., y= 7% sinh(Y174-21g x + C,) .

None belongs to Lz. If o > 1 we can reduce equation (18) to (19)
by the same transformation, only now -» < t < 1/(1-a) < 0. We con-
sider separately the cases A >0 , A < 0. In the first case the gen
eral solution of (19) is:

. S (1) (2)
(24) u = VTRl HSY ((6/R) ¢ CHIT (V)

Therefore, the general solution of (18) is
(25) o M 2magy ) l-e /T) + boH(?) (x1e /5\_)}
y 1y a-1 27y o-1

(1)

Using the asymptotic formulae for Hv (2)

v

and H , we obtain
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. 1= . 1=
(26)  y(x) ~ x}/27%(x(emD)/2p ix * /7/(a—l)+bi S R VACTIN

A .
- x_alz(bi eix G/T/(a-lhbé e-ix a/f/(a-lb

This function does not belong to L2 unless bi = bé = 0.

If » < 0 the general solution of (18) is
27y = xM2em gD 1 A2 (e 1))
+ B, Hsz)(xl"“ei"/Z/TT/(a-1))} s

again using the asymptotic formulae for Hsi), we get,

28) y ~ x'“/z(Bi e-xl‘“ =X/ (a=1) x1=% V% (a-1)y

+ Bé e
Since Hsl)(ix) # 0 for real x > 0, (cfr. Watson [16], pp. 78 and

511), the solution that vanishes at x = 1 must correspond to some

b2 # 0. But then (28) does not belong to L. We have proved so
that:

If equation (18) admits a system of eigenfunctions which is a ba-
sis in L°, then a < 1,

Generozov proved in [4] for 0 < o < 1 the following theorem (cfr.
fig. 1).

THEOREM 2. Let -® < a < 1. The system {y / ly N, 5 n = 1,2,...}
(see (23)) of eigenfunctions of the equation

(29) %yt ey =0
with boundary conditions,

y(1) =0 ; y(0) = 0 for -» < a < 1/2, y bounded for 1>a21/2,
ie a basis in LP(0,1) for

2 2
30 —_—_ < < L
(30) 2-(ay0) P ay0

(av¥0 means sup(a,0)).
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FIGURE 1.

S I §

10. We consider now, for o < 3/4, the system of functions

1-20

_ . (1-2a)/2 1- -
31N y, (x) = x o J_, (x a/T;/(l—u)) v = 30y

which are solutions of equation (18) with x = An, determined by

the condition yn(1) = 0, (cfr. figure 1).

(For 1 > a = 3/4 , (23) gives the only solution of (18) wich be-

longs to L2).



177

These functions verify at the origin

(32) xy (x) - cy_(x) = o(x®*2(1-%),

where ¢ = min(1-20,0). These conditions uniquely determine, but

for a constant factor, the solutions (31).

€32) implies the orthogonality of these functions as we shall see
below and might be considered as the boundary condition at the or
igin. So, the functions Y, defined by (31) are also solutions of a

@ Sturm-Liouville problem.
The orthogonality of {yn} follows from,
1 2a 2a 1

(Am-an)fe Ya¥pdx = [ (x*Ty )y - (x y;)ynle =

= -e¥% ey (o) + 2%y (e)y, (o) =

= -2 ey (e)- oy, (D), (e) - (evh(e)-cy, ())y, ()] =

= by(32) = e2%lgect2(1ma)yg ey | 021y = o(1) ,
(recall o < 3/4).

The following theéorem holds:

THEOREM 3. Let o < 3/4, The orthonarmal system {y /My I}, Ya
defined by (31), s a basis in LP(0,1) if
2

. 2
i) s=<P<j3F when 2/3>0>0 |,
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- 1 1
ii) 701-9) <p < 52T

when 3/4 > a > 2/3 ,
iii) 1<pc<e
We consider first the case p = 2.

LEMM? 1. The orthonormal systems of theorems 2 and 3 are complete
in L7,

Proof. This. follows from the equality

1 1 . .
J £(x) x(l‘z“)/sztxl'“sn)dx=ﬁ-&f f(tl/“'“))t“”““‘)Jv(tsn)t”zdt
o [o]

and the fact that when v > -1, {J\)(tsn)tll2

in Lz, (cfr. [3] and the references there mentioned).

} is a complete system

111. PROOF OF THE MAIN RESULTS.

11. Proof of theorem 2. We follow the same line of proof as Ge-
nerozov, {4]. Improved estimations will permit to cover a greater
range of a. Let - < a < 1, and v > -1/2. Actually we shall prove

that the system yn(x) = x(l—za)/sz(xl_“sn), Sp = positive zero of

. .. 2 2
J basis in LP for ——— < p < —— |
v(x), is a basis 1 7 (av0) P ™y
Then, by taking v = E%%Zﬁj we have theorem 2 and by taking
-0
1-2a .
v E - | — we have i) of theorem 3.
2(1-9)

Since by lemma 1, the system yn(x) is complete in Lz, it is enough
to prove for our purpose that the Dirichlet kernel

Ny (x) y,(8)

Dy(x,6) = ] 2=
N Zn-l N

verifies
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1 (1 il
(33) [ |f Dy (x,e) E(x)dx|Pde, xz(:pJ fece)|Pag

o o o

for 2/(2-(av0)) < p < 2/(aV0). Let us call

(34) Yalt) = VT (rs) = ¢t/20m)y 1m0y
- .N - - 2
(35) “N(l,l) = )n=1yn(t) yn(w)/"ynﬂz
Making the change of variables x = tll(l—“), £, = JA (A=) 5y (33)
and obscrving that “ynﬂi = (1-u)“yn"§ , we get (cf.54-7):
Lt tou/2(1=a) 1/ (1-u) /(l-a)
(36) f lf by(t, 0 (" “EC fya P e <
o] o
r]. - ) ( -
< o J |F(tl/(l 1))|P tt/(l l)dt
p
o
Finally calling f(t) = F(tl/(l_“))t”/p(l_") , we scc that (33)
‘holds iff
11 . (3-o)7 1
(37) J lf Dy(t,) () Pt ey dt | Pan < @ f | r(t)|Pat
[¢] o ! P [6)

But, (cfr. 0171),

Ytuhy Iy (AT g (A1) . ftT/\N Jv+l(/\Nt).IV(I\N'l)

38 Dy(t,n) =
(38) n(tr) 2 1-t 2 t-u '
Lo, o
T+ t -t-t
where AN = (N+%+%)n

Since vt Jv(t) is bounded for v = -1/2, the (irst two terms arce of
the form h(tv)k(t)/(v-t), where h and k arc bounded independently
of N. Then, to prove that (37) holds it is cnough to prove that
the kernels

(e A (e L (He 1

1 1-t 1 1+t ; 2-1-t
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with B = (%-%)T%; define continuous operators in LP(0,1).

The operator

1 B

(39) 1) - [ (B A e,
o

is continuous in LP(0,1) if (cf.[3],56),

(40) BVO < 1/p < 1A(1+B)

In our case (40) reads

a 11 1 a 1 1
Ovm(7“5)<6<1+[-1—:;(7-5)/\0]
or equivalently
(41) CIN > 2
av0 p 2-(av0) ‘

Also the operators

Ve® £
(42) p.v. f (?) Tir dt

o

are continuous in LP(0,1) (cf. [5lor [11]) for -1/q < 8B < 1/p ,
1 <p<o 1/p+t1/q = 1, which is just (40) and then in our case
(41). Q.E.D.

12. Proof of theorem 3. In the proof of theorem 3 we need the
following auxiliary result,

LEMMA 2. The operator

(43) S A 1 |£|B £(t) g¢- T asll? 1|'B'af(t)
p.v. e Tele[E T Pev. | -

i8 continuous in LP(-=,=) {f -1/p < -8, -a-B < 1/q .
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It is an easy consequence of the lemma in p. 308 of Muckenhoupt's
paper, [9] .

(It can be proved using Theorem 3 of [3] with r(x,t) = Ix/tlllpq).

To prove the theorem we first observe that we have already proved
i) in §11. For the rest of the theorem we follow the proof of the
orem we follow the proof of theorem 2 but taking -1 < v < -1/2 ,

v = -|1-2a|/|2(1-a)]. Then again {y,(x)} is a basis in L?(0,1) if
(37) holds. Now the estimation (38) of the Dirichlet kernel
ﬁN(t,T) does not hold but instead we have (cf. [3] ,54):

(44) D (t,7)

K(AN,tiT) * K(AN’T,t) + H(AN’t:T) + H(Anj‘t’t) +

+

0(1 ; v+1/2
E‘-‘t('-‘rL" 0(1) (t1)

1/2
3,00, 0 ML,

where K(A,t,t)
Alte 1/2

H(A,t,t) D)

JV(AT)Jv+1(tA)

To prove (37) for some p, it is then enough to see that each term
in the right hand side of (44) multiplied by |t/r|B ,

8 = (1/2 - 1/p)a/(1-a), defines a continuous operator in LP(0<t<1),
whose norm is uniformly bounded in N.

We call these operators respectively K,K*,H,H*,I,J, and show that:

a) K and H are uniformly continuous in LP (0<t<1) for

1

2 3
m<p< when 3‘<G<I,

fIN

1<p <= when a <0 ,
b) K* and H* are uniformly gontinuous in LP for

2 1

7oa < P < 5o when

W
A
Q
A

Sl

-

1<p<o when ~ a < 0 ,
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c) I is continuous in LP(0,1) for Et?f;33-< P < 30 ,a< 1,
d) J is continuous in LP for
1 1 )
Z(1-a) <P < gy 'hem Fca<q
1<p< > when o4 < 0

Then for ¢ < 0, there is no restriction on P énd iii) follows. If
2/3 < a < 3/4, the interval 1/2(1-%) < p < 1/ (20-1) given by d),

contained in the remaining intervals given by a), b) and c), and

ii) follows.

¢) we have already proved in §11, by considering operator (39).
d) The operator

2

T t f(t)dt

1 \)4—;—6 \)+l+8
(45) f

[¢]
is continuous in LP if t € L9(0,1) and t € LP(0,1) .

That is, if

(46) v o+ % -8 > -% and v + % + 8 > -%
Replacing v by -|2a-1|/|2(1-a)| and g by (1/2 - 1/p)a/(1-a) , (46)
is equivalent to

1 1 . 2 3
709 P zy M oFcec<g,
(47)
1<pc<o if o< 0

That proves d).

b) We consider the operators

(_.__ —
(at.An) /2y 2 PT gy gy

‘ 1 1, a
o J (At)J_ (AT) )
(48) P V‘f Tvtl Ty T
6]

tir
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An easy change of variables shows that their norms as operators in
LP(D,M) do not depend on A. So we take A = 1 and determine the
P's for which (48) is continuous in LP(0,1).

Let us call
(49) a=-(v) , 8= (1/2- 1/p)a/(1-a) .
Since 0 < a < 1/2 , we have: .

A2 = oM, 0 <x <

(50)

M2 s oMY, 0 ex < |

This implies that the operators defined by (48) are continuous in
LP(O,“) whenever the operator (43) with a and 8 given by (49) is
continuous.

It is easily verified that it is true for any p € (1,=) if a < 0.
When o € (2/3,3/4), the mentioned operators are continuous if
1/(2¢-1) > p > 2/(2-a). This is the condition to which reduce
those of lemma 2.

a) follows from b) by duality if we observe that K* with

8 = (;--%JTgE as operator in L? is the adjoint operator of K with

B = (%"%)T%E as operator in LY, (cf. [3],56). Q.E.D.

ADDED IN PROOF. Theorem 1 still holds even when one only requires
that q(x) € L¢:

M.M. Crum, "On the Sturm-Liouville expansion', The Quat. J. of
Math., Vol. 6, N°24, (1955), 288-292,
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