THE FUNCTORS K^n FOR THE RING OF A CURVE

by M. I. Platzeck and O.E. Villamayor

Dedicado al profesor Alberto González Domínguez

We freely use the notations and terminology of [KV].

In this note we compute the groups $K^n(A)$, $n > 0$, for an affine curve C, where A is the affine ring of C.

As it has been proved by Bass [1], these groups are zero for C non singular, hence the nonzero values depend on the singularities of C.

We prove essentially two results:

1) $K^1(A) = 0$ for $i \geq 2$ (dimension theorem?)

2) If C has singular points P_α and s_α is the number of branches of C passing through P_α, then $K^1(A) = \mathbb{Z}(s_\alpha - 1)$, where \mathbb{Z} denotes the additive group of integers.

Let k be a field, A an affine one dimensional integral k-algebra and m_1, \ldots, m_h those maximal ideals in A such that the local rings A_{m_i} are not regular. Let \bar{A} be the integral closure of A in its quotient field and $c = \text{Ann}(\bar{A}/A)$ the conductor of \bar{A} in A.

Lemma 1. If B is an affine finite dimensional integral k-algebra and m a maximal ideal, then B_m is not integrally closed if and only if m contains the conductor of B in B.

Proof. See [4], Ch. II, § 2.2d.

Since we are dealing with one dimensional k-algebras, the lemma says that the maximal ideals m such that A_m is not regular are ex
actly those containing the conductor c. If m_i is one of such ideals, $m_i \overline{A}$ is an ideal in \overline{A} and we may call B_i the (finite) set of maximal ideals in \overline{A} containing $m_i \overline{A}$. Hence $B = \bigcup B_i$ is the set of maximal ideals in \overline{A} containing c. In fact, if I is a maximal ide-}

al in \overline{A}, $I \supseteq c$, then $J = I \cap A \supseteq c$ and J is maximal in A. Let us call $r_i = \bigcap_{M \in B_i} M$, $r = \bigcap_{M \in B} M$.

Remark that the radical of $\overline{A_m} = \overline{A} \otimes_A A_m$ is $r_i \overline{A_m}$, and the con-

ductor of A_m in $\overline{A_m}$ is $c \otimes A_m$.

Let now $r = \bigcap r_i \subseteq \overline{A}$. Then $r \supseteq c$ and there exists an exponent
s_i such that $(r_i \otimes A_{m_i})^{s_i} \subseteq c \otimes A_{m_i}$. If $s = \max(s_i)$, then $r^s \subseteq c$,
hence r/c is a nilpotent ideal in \overline{A}/c. Since $\bigcap m_i / c = r$, we also have that $\bigcap m_i / c$ is a nilpotent ideal in A/c.

LEMMA 2. Let B be a ring with identity and $J \subseteq B$ a nilpotent i-
deal. Then $K^i(J) = 0$ for every $i \geq 0$.

Proof. J^* (i.e., the ring obtained from J by adding an identity) has a nilpotent ideal J and $J^*/J = k$ is a regular ring. By ap-
plying [1], Th. 10.1, Ch. XII we obtain $K^i(J^*) = 0$ for every $i > 0$ and besides, $K^0(J^*) \cong K^0(J^*/J) \cong K^0(k) = \mathbb{Z}$. Hence $K^0(J) = 0$.

LEMMA 3. If c is contained in exactly p different maximal ideals
of \overline{A}, then $K^i(r) = 2^{p-1}$, $K^i(r) = 0$ for every $i \geq 2$.

Proof. Let M_1, \ldots, M_p be the different maximal ideals of \overline{A} which contain c and $J_q = \bigcap_{1}^{q} M_i$, $1 \leq q \leq p$. We shall prove by induction on q that $K^i(J_q) = 2^{q-1}$, $K^i(J_q) = 0$ for $i \geq 2$. This implies the lemma since $J_p = r$.

If $q = 1$, we have the exact sequence

$$0 \longrightarrow M_1 \longrightarrow \overline{A} \longrightarrow \overline{A/M_1} \longrightarrow 0$$
which gives us

\[K^0(M_1) \rightarrow K^0(\overline{A}) \xrightarrow{\alpha} K^0(\overline{A}/M_1) \rightarrow K^1(M_1) \rightarrow K^1(\overline{A}) \rightarrow 0 \rightarrow \]
\[\cdots \rightarrow 0 \rightarrow K^i(M_1) \rightarrow K^i(\overline{A}) \rightarrow 0 \rightarrow \cdots \]

since \(\overline{A}/M_1 \) is a field.

Besides, \(K^0(\overline{A}/M_1) = \mathbb{Z} \) and \(\alpha \) is the rank map, i.e., for a finitely generated \(\overline{A} \)-projective module \(P \), \(\alpha(P) = \text{rk} P \), hence \(\alpha \) is surjective and, since \(\overline{A} \) is regular, \(K^i(\overline{A}) = 0 \) for \(i > 0 \), so we obtain \(K^i(M_1) = 0 \) for \(i > 0 \).

Assume then to have \(K^1(J_q) = \mathbb{Z} q^{-1} \), \(K^i(J_q) = 0 \) for \(i > 1 \), \(1 \leq q < p \), and consider the exact sequence

\[0 \rightarrow J_{q+1} \rightarrow J_q \xrightarrow{\beta} k' \rightarrow 0 \]

where \(k' = \overline{A}/M_{q+1} \) and \(\beta \) is surjective since \(J_{q+1} \neq J_q \).

We have then

\[K^0(J_{q+1}) \rightarrow K^0(J_q) \xrightarrow{\alpha} K^0(k') \rightarrow K^1(J_{q+1}) \rightarrow K^1(J_q) \rightarrow \]
\[0 \rightarrow \cdots \rightarrow 0 \rightarrow K^i(J_{q+1}) \rightarrow K^i(J_q) \rightarrow 0 \rightarrow \cdots \]

\((i > 1) \) since \(K^i(k') = 0 \) for \(i > 0 \) because \(k' \) is a field.

So, we have \(K^i(J_{q+1}) = 0 \) for \(i > 1 \) and to finish the proof we must show that \(\alpha \) is the zero map.

Since \(\overline{A} \) is a \(k \)-algebra, by taking \(J_q^* \) by adding \(k \) to \(J_q \), we have \(J_q \subset J_q^* \subset \overline{A} \) and the natural map \(\overline{A} \rightarrow \overline{A}/M_{q+1} = k' \) induces the commutative diagram

\[
\begin{array}{ccc}
J_q & \xrightarrow{i} & J^*_q \\
\downarrow{\beta} & & \downarrow{\bar{\beta}} \\
k & & k'
\end{array}
\]

\[
\begin{array}{ccc}
\downarrow{\gamma} & & \\
k' & & \\
\end{array}
\]
and, obviously, $\bar{\beta}$ induces the rank map $K^0(J_+^q) \to K^0(k')$.

Since $K^0(J_+^q) = Ker[K^0(J_+^q) \to K^0(k)]$ and $K^0(\beta) = K^0(\gamma) K^0(\delta) K^0(i)$, $
\alpha = K^0(\beta) = 0$ is the zero map.

Lemma 4. Let B be a commutative ring with connected spectrum (i.e., without non trivial idempotents), M_1, \ldots, M_p maximal ideals in B, $\alpha : K^0(B) \to K^0(B/\cap M_i) = \bigoplus_1^p K^0(B/M_i) \cong \mathbb{Z}^p$, $\alpha = K^0(B)$, β the canonical map $B \to B/\cap M_i$. Then $\Im \alpha$ is the diagonal Δ of \mathbb{Z}^p. If P is a finitely generated projective B-module and $[P]$ its class in $K^0(B)$, then $\alpha[P] = (h, h, \ldots, h)$, $h = \text{rk } P$.

Proof. If P is a finitely generated projective module it is obvious that the image of $[P]$ in $K^0(B/\cap M_i)$ is $\text{rk } P \otimes_B B/M_i$, but, as it is well known, $\text{rk } P \otimes_B B/M_i = \text{rk } P \otimes_B B_{M_i}$ where B_{M_i} is the local ring at M_i. Since SpecB is connected, $\text{rk } P \otimes_B B_{M_i}$ is independent of M_i and equal to $\text{rk } P$, hence the lemma is proved.

Theorem. If h is the number of maximal ideals of A containing c and p the number of maximal ideals of A containing c, then

$K^1(A) = \mathbb{Z}^{p-h}$, $K^i(A) = 0$ for every $i > 1$.

Proof. From the exact sequences

$0 \to c \to r \to r/c \to 0$

and

$0 \to c \to \cap M_i \to \cap M_i/c \to 0$

since r/c and $\cap M_i/c$ are nilpotent, we obtain $K^i(c) = K^i(r) = K^i(\cap M_i)$ for all $i > 0$, and

$0 \to \cap M_i \to A \to A/\cap M_i \to 0$

gives, using that $K^i(A/\cap M_i) = \bigoplus K^i(A/m_i) = 0$ if $i > 0$, that

$K^i(A) = K^i(\cap M_i)$ for $i > 2$, so
\(K^i(A) = K^i(r) = 0 \) for \(i > 2 \), by lemma 3.

To compute \(K^1(A) \) we consider the commutative diagram

\[
\begin{array}{ccccccc}
0 & \rightarrow & \cap m_i & \rightarrow & A & \rightarrow & A/\cap m_i & \rightarrow & 0 \\
& & \downarrow & \searrow & i & \downarrow & \& \\
0 & \rightarrow & r & \rightarrow & A & \rightarrow & A/r & \rightarrow & 0
\end{array}
\]

induced by the inclusion \(i : A \rightarrow A \). Hence

\[
\begin{array}{ccccccc}
K^0(\cap m_i) & \rightarrow & K^0(A) & \varphi_0 & K^0(A/\cap m_i) & \gamma & K^1(\cap m_i) & \rightarrow & K^1(A) & \rightarrow & 0 \\
& \downarrow & & \\
K^0(r) & \rightarrow & K^0(\bar{A}) & \varphi_0 & K^0(\bar{A}/r) & \delta & K^1(r) & \rightarrow & 0
\end{array}
\]

is exact and commutative.

If \(\{N_{i,j}\} \) is the set of maximal ideals of \(\bar{A} \) containing \(\bar{A}.m_i \), the images of \(K^0(A/m_i) \rightarrow \bigoplus_j K^0(A/N_{i,j}) \), \(\varphi_0 \) and \(\psi_0 \) are the diagonals of the codomains \(\mathbb{Z}^n \), hence they are direct summands of such codomains.

Since \(\text{Im} \varphi_0 = \text{Im} \psi_0 = \mathbb{Z} \) we have

\[
\begin{array}{ccccccc}
0 & \rightarrow & \mathbb{Z} & \rightarrow & \mathbb{Z}^h & \gamma & \mathbb{Z}^{p-1} & \rightarrow & K^1(A) & \rightarrow & 0 \\
& \uparrow & & \uparrow \alpha_0 & & \uparrow & & \uparrow & & \uparrow & & \\
0 & \rightarrow & \mathbb{Z} & \rightarrow & \mathbb{Z}^p & \delta & \mathbb{Z}^{p-1} & \rightarrow & \mathbb{Z} & \rightarrow & 0
\end{array}
\]
Hence $\text{Im } \gamma$ is a direct summand in \mathbb{Z}^{p-1}, so $K^1(A) = \text{Coker } \gamma = \mathbb{Z}^{p-h}$.

REFERENCES

Universidad Nacional del Sur
Universidad Nacional de Buenos Aires
Argentina

Recibido en abril de 1971.