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SOME ISOTHERMAL PROPERTIES OF CARTOGRAMS T
AND DENSITY TRANSFORMATIONS T*

John DeCicco and Robert V. Anderson

1. ABSOLUTE DERIVATIVES AND NATURAL FAMILIES UNDER A CONFORMAL
CARTOGRAM T.

Consider a conformal cartogram T between two Riemannian spaces
Vn and Vn, each of dimension n > 2, for which the scale p = e¥ =

= ds/ds > 0, where y = p(x) is a point function. Under the con-
formal cartogram T two corresponding unit contravariant vectors

At ana 3t of Vn and Vn respectively transform according to the law
(1.1) - el
—=—1i . )
Under ‘T the arc length absolute derivative Dl of a contravariant
ds
DAt

vector A+ of Vn is expressed in terms of when it is considered

ds

as a vector of Vn, by the set of relations

(1.2) DD o orw DRD v pd, 2w e dit 5 Ay (e 2wy
ds ds ds  ax® ds ik™ gs ax®

In particular if A* and x' are two corresponding un<t contravari-
ant vectors then

Ti i i
(1.3) DA _ e-2u DAZ | o-2u 2 e dx¥ _

. k .
7 ; 2J dx )(gla iﬁh)],
ds s X ds

(gjk ds

Consider two curves C:x* = x (s) and C:X = x-(s)= x> (5) which corres-
pond under the conformal cartogram T between Vn and V;. Their two
unit contravariant tangent vectors satisfy the relations dx'/ds =

= e ¥ (dx*/ds) and the two corresponding contravariant geodesic

. _; . 1
curvature vectors K' and K' obey the law of transformation 0
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. i . i i )
(1.4) ki = e 20 gy o720 (du dx™ _ gio By g
ds ds ax®

. 2 _ . . .

A natural family 9 [*) of w202 curves C of Riemannian space Vn is
such that every curve C of @ corresponds under a conformal carto-

gram T on V_ onto a Riemannian space V; to a geodesic C of Vn.

2

In particular, the set of oo?1" geodesics C of a Riemannian space

Vn is a natural family.

THEOREM 1.1. 4 natural family Q of a Riemannian space Vn 18 com-

2n-2

posed of all the integral solutions of the set of n second

order ordinary differential equations

+ T

.(1 5) Ki=_dzxi ioaxd @x* e s du ax?
ds? ik g5 ds 3x® ds ds

This is obtained from (1.4) by setting K% = 0.

It is evident that under a conformal cartogram T that a natural
family @ of Vn corresponds to a natural family & of Vn.

2. THE SYMBOLS AX. AND B, OF A CONFORMAL SPACE T_.
jk jk n

Consider a Riemannian space Vn of dimension n > 2. The totality
of all Riemannian spaces Vn such that there exists a conformal
cartogram T between Vn and Vn is termed a conformal space r..

If v, and Vn belong to the same conformal space r then their af-
fine connections are related by the law '

(2.1) Ti oo b sty Ch o 2., g LI
J J X axJ ]

where p is the scale of the conformal cartogram T relating Vn and

\

n
It is an immediate consequence of these relations that

(2.2) du _ 1 o _ Lo .o
5 o [I‘mj raj] j=1,2,...,n.

Consider a fixed Riemannian space Vn, for n = 2. The symbols A;k
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and Bjk are defined by the expressions

i _ 41 1 i o _ i 0 1 i Lo
(2.3) A5 =T - g G5 T =% Ta)) * 1 &k & Tap >
o o
@ b T
ik axk axd

THEOREM 2.1. Two Riemannian spaces Vn and V;, for n 2 2, are con-
i
formally equivalent if and only if the two sets of symbols Ajk and

Bjk are the same in every admissible coordinate system (x), pro-

C s - 2
vided that the set of initial conditions gij(xo) = e "(XO)

g3 (Xg)
is satisfied for i,j = 1,2,...,n at some fixed point PO’ where

u(xo) is « fixed real constant.

. . ! i
For, by means of (2.1) and (2.2) it is found that A;k = Ajk and

ij = Bjk for two conformally equivalent Riemannian spaces v, and

V.
n

i _ a1 Y _
Conversely, suppose that Ajk = Ajk and Bjk = Bjk for two
Riemannian spaces v, and V;. The second set represent integra-
bility conditions for the equations (2.2). Thus, let u = n(x) rep-
resent a solution of (2.2). There exists one and only one solu-
tion satisfying the prescribed set of initial conditions at the
fixed point P,. By use of the conditions K?k = A?k the law of
transformation (2.1) is found. It then is easily deduced that
Eij = e2u(x) g5 where y = u(x) is the unique solution discussed

above. Consequently Vn and V; are conformally .equivalent.

It is noted that the symbols A?k are symmetric in the lower indi-

ces and that A% = Ai. = 0. However the A% do not form a tensor.
ik ki _ jk

The symbols Bjk are skew symmetric, that is Bjk = -B ., and form

kj
a skew symmetric covariant tensor of:second order.
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3. COVARIANT DIFFERENTIATION IN A CONFORMAL SPACE I‘n.

In a Riemannian space V the covariant derivatives Alk and x; .
’ ’

of a contravariant vector A* and a covariant vector A; may be

given by
i _ 3a i a 1 ,i ¢ 1 i ja a _
)‘,k ox + Aak AT+ o A ru.k + o Gk raa A
_ 1 ia c b
n g €xb I‘ac AT
G-1 8xi a 1 o 1 o
Mk T kT Ak 2a” 7 3T ™ 7 *kTai ¥
1 ab _c
g 8 8 Tao My o

The two corresponding absolute differentials are DAt = At dx

and DA, = A, dx®
i ik

In a conformal space r,,n= 2, with invariant symbols A;k and

Bjk"the conformal covariant derivatives Akxl and Akli of any con-

travariant vector At and any covariant vector A; are defined by

oA,

. i .
i A i.,a. _ i _ ,a
(3.2) R s Akak ’ Ak>‘i - axk Aikxa

The corresponding conformal absolute differentials are
mt - Akxidxk and A, = A a.dx¥
i k™1

i

THEOREM 3.1. The four sets of quantities, Akki, Akki, AV N Axi are

all invariant under the conformal group G of the conformal group
G of r- If Vn 18 an element of r then the relationships between

these conformal covariant derivatives and the covariant deriva-
tives relative to Vn are found by substituting the relations (3.2)

into the equations (3.1).

It is observed that the differential d(¢,¥) of the inner product
(¢,¥) = ¢iwi of any contravariant vector ¢ and any covariant

vector ¢i is



67

(3.3)  d@,¥) = D(,¥) = 6> Dy, + v, Dot = T au, + v,

= A(g,¥).

THEOREM 3.2. If two Riemannian spaces Vn and V;, for n = 2, belong
to the same conformal space ro and correspond by a conformal car-

togram T for which the scale is p = e" = ds/ds > 0, then for every
geometric vector A = at= A with Al > 0 of Vn there exists a
point function r = r(x) depending on A such that by T the images

s _ . . .
2 and A; of 2t oand Ag in Vn are A+ = eT7Hp1 and x = e’ uki. The

two covariant derivatives Alk and Xi k obey the laws of transfor-
’ ’

mation
—i - i i dr i .a du ia ou b
A= eTTH At 4t 3 sia dw g g AT,
» k s k 3Xk k axa kb axa
(3.4)
T r+u ar ou ou
Al = e A A - Ay .+ Ao — 1
i,k [ i,k i axk axl glk g a axb

This result is a consequence of the previous discussion.’

It is noted that when r = 0, we obtain the laws of transformation
for unit vectors.

k. SOME CONFORMAL PROPERTIES OF THE LAME DIFFERENTIAL PARAMETERS
A (U,V) AND A, w1,

In a Riemannian space Vn, for n = 2, the Lamé differential para-
meter Al(U,V) of order one, of two scalars U = U(x) and V = V(x)

is the scalar

4.1 s,y = g3 220 L (graq U, grad v),
axd ax

In particular, if U = V, then Al(V) = Al(V,V) = | grad vl 2.

The Lamé differential parameter of second order A, (V) = V2(U) is
the Laplacean and is defined by the scalar
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(4.2 A WV) = VW) =gi*v, =— .
2 »Jk Vg axd axk

where g = Igijl > 0.
If two Riemannian spaces correspond by a conformal cartogram T
and if V = V(x) is a scalar then

@3 V=V Ve m Ve w Vg vt g A0V

The three laws of transformation for the Lamé differential para-
meters are

B 0,V) = e a ), A(V) = e A W)
(4.4) :

E,00 = 72 [8,(V) + (n-2) 8, (u,N)].

These are obtained by means of Theorem 3.2, where the scalar
r = r(x) is replaced by -u(x).
If a scalar V = V(x) with AI(V) > 0, is a harmonic function in a

Riemannian space Vn, then the equation V = V(x) = constant defines

an Zsothermal family of ool surfaces Zn—l’ each of deficiency one,
in V_.

n
It may be proved that a simple family of w! surfaces Zn_l, each
of deficiency one in a Riemannian space V , for n > 2, is an iso-
thermal family V = V(x) = C = constant if and only if V = V(x)
obeys a partial differential equation of second order of the form

jk
(4.5) 8, (V) gV L

A ) g3k v v

where F = F(V) is a scalar depending only on V = V(x).

" —
THEOREM 4.1.[ ] If two Riemannian spaces Vn and Vn, for n = 2, cor-

respond by a conformal cartogram T then every isothermal family
in Vn i8 converted into an isothermal family in V; if and only if

either n = 2 or else if n = 3, T is a homothetic cartogram for
which w 28 a real constant.

This proposition is established by means of the conditions (4.4)
and (4.5).



69

5. DENSITY TRANSFORMATIONS BETWEEN TWO RIEMANNIAN SPACES Vn AND Vn'

Let two Riemannian spaces Vn and V;, for n =2 2, correspond by a

cartogram T, conformal or not, for which the differential ds and
ds of arc length along corresponding curves C and C of Vn and V;

are defined by ds? = 855 dx! dxI and 45? - Eij dx1 axd

A density transformation T* between V_ and Vﬁ is such that their
respective points correspond by a cartogram T, either conformal

or not, and a scalar V = V(x), which is evaluated at a point P of
Vn is converted into the scalar

(5.1) = V(x) = F(V;x) ,

v
for which ¥ - 3E
3V 3V

ponding point P of Vn. A scalar V = V(x) calculated at P in Vn is

# 0, whose value is associated with the corres-

called a density V of P.

THEOREM 5.1. Under a density transformation T* between two Rie-
mannian spaces Vn and Vn, for n = 2, the Lamé differential para-

meters AI(V) and AZ(V) of a density transform according to the
laws

50 = AHra vy + 2 25 v,p) + 3 (®) ,

3V VvV
A = EDZaw + 28 w,R 8 E),

v Vv

(5.2) .
2 .
X (7 F % X % (OF , 3°F %
A, = EX ) +5, @ + 285, v+ 2E8 w
2 3V 2 2 1 oV ’ 3V2 1 4
- 3F oF 3 2F

A(V) = S A (V) +A_(F) #+ 240, (% ,V) + £ A ().
2 3V 2 2 1 3V ’ aVZ 1

A conformal density transformation T* is one for which the asso-
ciated cartogram T is conformal. Under a conformal density trans-
formation T* the preceding result yields

THEOREM 5.2. Under a conformal density transformation T* for which

the scale of the associated conformal cartogram T is p = e =

= ds/ds > 0, the Lamé differential parameters transform according
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to the rules

e X (V) = (%%)2 AL(V) + 2 %% A (V,F) + B, (F)

—~
(7]
w

—

(]
N
=

>

N

—~

<

—
1

2
A sa,m s 2838,y 228 W)
vV Vv Vv

v ()28 A (v,u) + B (Rl
v

This is established by means of equations (4.4) and Theorem 5.1.

If a conformal density transformation T* between two Riemannian
spaces is such that the scale of the associated cartogram T is

p = e* = ds/ds > 0 and the law of change for the density V is

(5.4) GV =0(x) V(x) = V(x) =V

where G = G(x) is a fixed positive scalar, then from Theorem 5.2
the Lamé differential parameters transform as follows

GheZ B (V) = 62 A, (V) - 26V A (V,6) + V2 A, (G) ,

(5.5) G%“Zﬂﬂ [GA,(V) - VA,6)] + (n-2)[G A (V,u) -

SV A 6,W] + £ VA6 -G AV,6I].

The following proposition is an extension to Riemannian space Vn,

]

5
for n =2 2, of the Kelvin transformation T*[ of a Euclidean

space En.

THEOREM 5.3. The conformal density transformation T* whose density
transforms according to the law (5.4) is such that the Lamé dif-
ferential parameter of second order obeys

2 24 N TN o
(5.6) G%e“¥ 8,(V) =G 4,(V) - VA,

if and only if, except for a real positive multiplicative constant,
the scale of the associated cartogram T and the law for the change
of density are

(5.7) o =¢e"=1/R? =ds/ds >0 , V=R"2y,

where R = R(X) <8 a real positive scalar. The rules for the change
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of the Lamé differential parameters are
T Ty _ p2n _ n-2 n-2
Al(v) = R [AI(V) 2 VR Al(V , 1/R ) +
(5.8) + v R A (v,

A,(V) = R™*? A, (V) -V R2n A2(1/R“'2) )

For, the given conformal density transformation T* possesses the
stated property if and only if

(5.9) (m-2)IG Al(V,u) -V Al(G,u)] + é [v Al(G) -G Al(V,G)] =0

is an identity. If p = et = 1/R2, where R = R(x) is a real posi-
tive scalar, then the preceding identity is valid if and only if

1
G =e2 (™2 - 1/p""2 oxcept for a real positive multiplica-

tive constant. Upon substituting this value for G in equations
(5.3) the result follows.

In terms of cartesian coordinates of a point P in a Euclidean
space En, for n = 2, an inversion T with respect to a sphere Xn—l

of dimension n-1 2 1, with ceénter at a fixed point Po>given by
(Xé) = (xé,...,xg) and radius a > 0 is given by the set of n e-
quations

. . 2 . .
(5.10) Xt - xg = éz x* - xg) , i=1,2,...,n,

where R? = cSiJ.(xi - x(i))(xj - xg) > 0. The scale of this inversion
T is p = d5/ds = a?/R% > 0.
Therefore, every such T is a conformal cartogram T of the Euclid-

ean space En onto itself, except for the center (xg) of the
sphere J _;

Since 1/Rn_2 > 0, is a harmonic function in En it is found that

(5.11)  V=r*2V , A, =r™2Am) .

The system of equations (5.10) and (5.11) forms the Kelvin trans-
formation T* for the Euclidean space E . The importance of such a
transformation is that it converts every isothermal family @ of
oo surfaces Zn—l into another family @ of «! surfaces in En.
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