A NOTE ON THE MAXIMALITY OF THE IDEAL OF COMPACT OPERATORS

by H. Porta

Let A,B be rings, and \mathcal{L} and A-B-bimodule, i.e., \mathcal{L} is a left A-module and a right B-module and moreover $s(tu) = (st)u$ for $s \in A$, $t \in \mathcal{L}$ and $u \in B$. A subset $C \subseteq \mathcal{L}$ is a sub-bimodule if it is an additive subgroup and satisfies $sku \in C$ whenever $k \in C$ and $s \in A$, $u \in B$.

If E,F are Banach spaces, we shall denote the space of bounded linear operators $T:E \rightarrow F$ by $\mathcal{L}(E,F)$ (and by $\mathcal{L}(E)$ when $E = F$).

Consider the following situation: $A = \mathcal{L}(\ell^q)$, $B = \mathcal{L}(\ell^p)$, $\mathcal{L} = \mathcal{L}(\ell^p, \ell^q)$, where ℓ^r, $1 \leq r < +\infty$ denotes the (real or complex) Banach space of numerical r-summable sequences.

The bimodule structure is defined by composition

$\ell^p \rightarrow \ell^p \rightarrow \ell^q \rightarrow \ell^q$ (we will use capital letters for operators).

It is clear that the set of compact operators $C = C(\ell^p, \ell^q)$ is a sub-bimodule of \mathcal{L}. We aim to make a few remarks on the following results:

a) if $1 < q < p < +\infty$, then $C = \mathcal{L}$;
b) if $1 < p = q < +\infty$, then C is a maximal sub-bimodule (= two sided ideal) of \mathcal{L};
c) if $1 < p < q < +\infty$, then all sub-bimodules $S \subseteq \mathcal{L}$ satisfying $C \subseteq S$ contain necessarily the identity operator $J: \ell^p \rightarrow \ell^q$.

The statements a) and b) are known; a) goes back to Pitt [3] and is in fact a particular case of Th. A2 in [4], b) coincides with Th. 5.1 in [1] and c) seems to be new.

Our goal here is to observe that a modification of known proofs of b) actually yield c) of which b) is a particular case, and that a) is a corollary of b). This last remark would shorten the proof of Th. A2 in [4] and mildly confirms our suspicion that proving c) first has some methodological advantages. We believe (but have been unable to prove) the following:

CONJECTURE: if $1 < p < q < +\infty$, then C is a maximal sub-bimodule,
from which c) follows trivially.

The proof of c) above is obtained by restating meanderingly the ingredients of the proofs of Lemma 5.1 in [1] and Lemmas 1 and 2 in [2]. We denote by \(\|x\|_s \) the s-norm of \(x = (x_1, x_2, \ldots) \), i.e.,

\[
\|x\|_s = \left(\sum_{j=1}^{n} |x_j|^s \right)^{1/s}
\]

LEMMA. Let \(1 < s < \infty \), \(\epsilon_n > 0 \), \(n = 1, 2, \ldots \), \(x^k \in \ell^s \), \(k = 1, 2, \ldots \) and suppose that \(x^k \rightarrow 0 \) weakly and \(\inf \{ \|x^k\|_s \ ; \ k = 1, 2, \ldots \} = \delta > 0 \). Then there exists an increasing sequence of positive integers \(n_1 < n_2 < \ldots \) and elements \(z^k \in \ell^s \), \(k = 1, 2, \ldots \) such that:

i) \(\|x^k - z^k\|_s \leq \epsilon_k \) for \(k = 1, 2, \ldots \);

ii) the operator \(T_1 \in \ell(\ell^s) \) determined by \(T_1 e^k = \frac{z^k}{\|z^k\|_s} \) (where \(e^k \) is the kth unit vector \((0,0,\ldots,1,0,\ldots)\)) in \(\ell^s \) is an isometry and the image \(E = T_1(\ell^s) \) of \(T_1 \) is a complemented subspace of \(\ell^s \).

Proof. Define \(\epsilon'_n = \min(\epsilon_n, \frac{\delta}{2}) \). For \(x = (x_j) \in \ell^s \) and \(n \) a positive integer denote by \(P_n x \) the sequence \((x_1, x_2, \ldots, x_n, 0, 0, \ldots) \).

Let now \(n_1 \) be large enough for \(\|x^1 - P_{n_1} x^1\|_s \leq \epsilon'_1 \) to be true and define \(z^1 = P_{n_1} x^1 \).

Since \(x^n \rightarrow 0 \) weakly (i.e., coordinate wise) there is an integer \(n_2 \) such that \(\|P_n x^n\|_s \leq \frac{\epsilon'_1}{2} \). Choose \(N \) such that \(\|x^{n_2} - P_N x^{n_2}\|_s \leq \frac{\epsilon'_1}{2} \) and define \(z^2 = P_N x^{n_2} - P_{n_1} x^{n_2} \). Clearly \(\|x^{n_2} - z^2\|_s \leq \|x^{n_2} - P_N x^{n_2}\|_s + \|P_{n_1} x^{n_2}\|_s \leq \epsilon'_1 \). The procedure can be iterated in such a way that \(\|x^n - z^n\|_s \leq \epsilon'_n \) and the vectors \(z^k \) have disjoint support, i.e., for each \(n \) there is at most one \(k \) with \(z^n_k \neq 0 \).

Since we also have \(\|z^n_k\|_s > \|x^n_k\|_s - \|x^n_k - z^n_k\|_s \geq \delta - \frac{\epsilon'_n}{2} \) \(= \frac{1}{2} \delta \) \(> 0 \), (i) and (ii) follow from Lemma 1 in [2].
Proof of a). Let p^* be the conjugate of p defined by $p^* = p/(p - 1)$. First observe that if $T \in \mathcal{L}(\ell^p, \ell^q)$, $1 < p, q < +\infty$, and

$$\|T\|_{p^*} < +\infty,$$

then T is compact.

This is obvious because if $P_n \in \mathcal{L}(\ell^p)$ is the projector on the first n coordinates defined above, then for $x \in \ell^p$ we have $\|T - TP_n\|_q = 0$.

Assume now that S is a sub-bimodule of $\mathcal{L} = \mathcal{L}(\ell^p, \ell^q)$, $1 < p < q < +\infty$ such that $C \subset S$ and $C \not= S$, or equivalently, such that all compact operators belong to S and there is a non-compact $T' \in S$.

For $\epsilon > 0$, choose a sequence $\epsilon_n > 0$ such that $\sum_n \epsilon_n^{p^*} = \epsilon p^*$ and let $n_1 < n_2 < \ldots$ and z_1, z_2, \ldots be as in the lemma above, corresponding to these ϵ_n. It is clear that $\frac{1}{2} \delta < \|z_k\|_p < \Delta$ for some Δ and all k and therefore the operator T_1 in the lemma can be modified by an invertible diagonal operator $D \in \mathcal{L}(\ell^p)$ in such a way that $S_1 = T_1D : \ell^p \rightarrow \ell^p$ satisfies $S_1 e^{k} = z_k$ for all $k = 1, 2, \ldots$. Consider now, for $\lambda_1, \lambda_2, \ldots, \lambda_n$ arbitrary scalars, the estimate
This clearly shows that there is a well defined bounded operator \(S: \ell^p \to \ell^p \) satisfying \(S e^k = x^n_k \) for \(k = 1, 2, \ldots \), and in fact \(\| (S - S_1) e^k \|_p = \| x^n_k - z^n_k \|_p \leq \epsilon_k \). Let now \(T'' = T' S \in S \). Setting \(y^k = T'' e^k = T x^n_k \in \ell^q \), we have \(\| y^k \|_q > \delta > 0 \) for \(k = 1, 2, \ldots \) and since \(e^k \to 0 \) weakly we also have \(y^k \to 0 \) weakly in \(\ell^q \). Hence the lemma above applies again: let \((y^m_k) \) be a sub-sequence of \((y^k) \) and \((w^k) \) satisfy \(\| y^m_k - w^k \|_q \leq \epsilon_k \) with \((w^k) \) equivalent to the unit basis of \(\ell^q \). If \(S' \in \mathcal{L}(\ell^p) \) is defined by \(S' e^k = e^m_k \) we obviously have \(T = T'' S' \in S \) and \(T e_k = y^m_k \). Let us denote by \(U \in \mathcal{L}(\ell^q) \) the operator (corresponding to \(T_1 \) in the lemma) determined by \(U e^k = w^k \) and by \(J: \ell^p \to \ell^q \) the identity map. We have \(\| U J e^k - T e^k \|_q = \| w^k - T e^k \|_q \leq \epsilon_k \) so that \(U J - T \in \mathcal{L} \) is compact by the first part of this proof. Therefore \(U J = (U J - T) + T \in S \). But the subspace generated by \((w^k) \) being complemented in \(\ell^q \) (see lemma) and isomorphic to \(\ell^q \), there is a \(U' \in \mathcal{L}(\ell^q) \) such that \(U' U \in \mathcal{L}(\ell^q) \) is the identity operator. Then \(J = (U' U) J = U'(U J) \in S \), as claimed.

Proof of a. First let us observe that b) implies that every operator \(W \in \mathcal{L}(\ell^q) \) of the form \(W = W_1 W_2 \), \(W_1 \in \mathcal{L}(\ell^p, \ell^q) \), \(W_2 \in \mathcal{L}(\ell^q, \ell^p) \) for some \(p \neq q \), must necessarily be compact. In fact, the family \(M \) of such operators is a two sided ideal in \(\mathcal{L}(\ell^q) \) which contains all operators of finite rank. Thus, the closure of \(M \) contains \(\mathcal{C}(\ell^q) \). But the closure of \(M \) is different from \(\mathcal{L}(\ell^q) \) because the identity in \(\mathcal{L}(\ell^q) \) is at distance one from any proper ideal such as \(M \). But \(\mathcal{C} \) being maximal by b), it follows that \(M \subseteq \text{closure} \ M = \mathcal{C} \).

Assume now that \(1 < q < p < +\infty \) and \(T \in \mathcal{L}(\ell^p, \ell^q) \) is not compact. Then there is a sequence \((x^n) \) in \(\ell^p \) such that \(x^n \to 0 \) weakly and \(\| T x^n \|_q > \delta > 0 \) for some \(\delta \). It follows that \(\| x^n \|_p > \delta' > 0 \) also for an appropriate \(\delta' \). Now we apply the lemma again to produce a
sequence \((z^k)\) in \(\ell^p\) such that: i) there is an operator \(T_1 \in \mathcal{L}(\ell^p)\) satisfying \(Tz^k = z^k\) and ii) \(z^k\) is near \(x^0\), so that also \(\|Tz^k\|_q \geq \delta/2\) for all \(k = 1, 2, \ldots\). Consider now the operator \(W = W_1 W_2\) where \(W_1 = T\) and \(W_2 = T_1 J\) for \(J: \ell^q \to \ell^p\) the identity. From the first remark, \(W\) must be compact, and in particular \(\|Wz^k\|_q \to 0\). But this contradicts \(Wz^k = TT_1 Je^k = TT_1 e^k = Tz^k \to 0\). Then \(T\) is compact, and the proof of a) is complete.

REFERENCES

University of Illinois at Urbana
Champaign. E.E.U.U.

Recibido en noviembre de 1971.