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A GEOMETRIC APPROACH TO INNER FUNCTION-OPERATORS AND 

THEIR DIFFERENTIAL EQUATIONS 

Domingo A. Herrero* 

O. ABSTRACT. An inner funation-operator in a (complex separable) 

Hilbert space K is a function U(x) defined on the real line R, 
taking values in the set U(K) of unitary operators in K, weakly 
measurable and such that U(x) = (strong) lim (y+O) U(x+iy) (a.e., 
dx), for some uniformly bounded analytic operator-valued function 

U(z) defined in the upper half-plane. If U(z) can be continued a­
nalytically to R and at z=oo , then (for real x) it satisfies the 

differential equation 

(1) U' (x) = iM(x)U(x) , 

where M(x) is a (norm) continuous function in R, whose values 

are non-negative hermitian operators in K; moreover , 

f+'" 1 
nMH 1 = _'" IIM(x)1I dx < oo. Let A = {M(x)}, where M(x) satisfies 

the aboye requirements, with the metric induced by 11 .11 1 . By con­

sidering U(x) as a continuous (smooth) curve in U(K), it is shown 
that, either M(x) = 0, or the curve defined by U(x) has diameter 
2 and IIMll 1 ;;;. 211"; furthermore, the infimum (211") can be attained if 

and only if U(x) = [ (I-P) + (x-X)/(x-};:)P1X, where I is the iden­
tity operator, P is a non-zero (orthogonal) projection in K, 
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X E U(K) and 1m A > O. Al is a complete metric space and, for 

each M E Al, M(x) 1 o, for any A, 1m A > O, such that U(A) is not 
invertible in K, and for any e: > O, there exists a vector <p E K, 

O<pO = 1, such that (M(x)<p,f) > (21m A - e:)/IX-AI 2 , for all x E R. 

Finally, it is shown that, if U(z) cannot be continued analytica~ 
ly to z=O, then there is no continuous U(K)-valued function V(x) 
suchthat U(x) = V(x) a.e. in (-e:,e:), for any e: > O. 

1. INTRODUCTION AND NOTATION. 

The basic properties of the inner function-operators can be found 

in [ 71 • 

For a given subset ~ of the complex plane e, ~- and 3~ denote the 

closure and the boundary of ~, respectively. 

We find it very convenient to use the double notation of [1]: u 
will always be the complex variable in the unit disc D={u: lul< 1} 

(more exactly, by f(u) we shall denote the value of the analytic 
function f, originally defined on D, at the point u E R(f) = the 

Riemann surface -or, the domain of analytici ty- of f); z will play 
the same role for analytic functions originally defined on the 
upper half-plane UHP = {z: 1m z > O}. Let f(u) be defined on D; 
then f(w) denotes the limit value of f(u) as u approaches non-ta~ 
gentially to w E 3D (in what ·follows these limits will be always 
well-defined a.e., and in the case of operator-valued functions, 

f(w) will denote the limit in the strong operator topoZogy). Simi 
larly, if fez) is defined on UHP, then its non-tangential limit 
values are denoted by f(x), x E R (x and y are the real and imagi 
nary components of z). u E D- and z E UHP- U {co} are always as­

sumed to be related by the equations 

(2) u = (i-z)/(i+z) z = i(l-u)/(l+u) 

The set of all inner function-operators will denoted by F; 
in ~he aboye notation, U(z) (U(u), resp.) denotes an element of 
F, thought as an inner function-operator defined on UHP (on D, 
resp.). As in [ 1], the set of all "analytic" inner function-oper­
ators is 

(Al) {U E F: U (u) can be continued analytically to D-} 

lf, during the proof of sorne result we have to use both expres-
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sions of the same U E F, then the value of U (w.) at w=l will be de 
noted by U(w=l), etc., to avaid confusions. 

8.11 and (.,.) denote the norm of a vector of (or, an operator act 
ing on) K and the inner product of K, resp .. 

Finally, L(K) will denote 'the algebra of all (bounded linear) op­

erators in K and Kl = {~ E K: U~U=l} is the unit sphere of K. 

It was shown in [a] that, if U E F, then U satisfies the differ­
ential equation (1), where M(x) is a continuous function (unless 
otherwise stated, aontinuity of an operator-valued function means 
aontinuity in the norm) defined on the open intervals of RnR(U), 
whose values are non-negative hermitian operators in K. Assume 
that K is one-dimensional; then U(z) is a scalar inner function 
on UHP and M(x) is, precisely, the derivative of arg U(x). Thus, 
if U E (Al), then U is a finite Blaschke product (see [3;7] for 
definition) and 

IIMU 1 = r: UM(x) O dx = 211'N 

where N is the number of zeroes (counted with multiplicity) of 

U(z) in UHP. In particular, the set of values {OM01:M e Al} is 

discrete in R. If dim K > 2 and P is a non-trivial projecti6n, 
then 

UN;,r(~} ;. [(z-i)/(z+i)]Np+[ (z-ri)/(z+ri)] (I-P) E (AL) , 

for all integers N > O and for all r > O. We have 

UN' (x) ,r iMN (x)UN (x) ,r ,r 

where 

and 

It is clear that {RMN,rlll: N'~\O, r> O} = [211',+00); hence, 

(UMI1 1 : M E Al):::> {O} U [211',+00). We shall prove (seat.3) that the 

inclusion can be actually replaced by equality and that, for non 
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constant U, the lower bound 2w can be attained if and only if U 
has a trivial formo For this (and for further purposes) we shall 
need sorne auxiliary results, which are contained in the next sec­
tion. 

The differential equation (1) was first studied by H.Helson ([8]). 
Many of the results of this paper can be considered as extensions 
of the results of S.L.Campbell ([ 1]). In particular, the idea of 
analyzing the U .nl-norm in Al is due to him, but our point of view 
is more geometric: the meaning of the differential equation (1) 
for one-dimensional K suggests that M(x) can be considered as "the 
derivative of the argument", or as "the gradient" of the anaZytic 
curve ~:Ru{~} -+ U(K) defined by ~(x)=U(x), U E (Al), x E Ru{~}. 
This geometiic approach is systematically exploited here. Part of 
the results have been announced in [9]. 

We want to thank Professors H.Helson, S.L.Campbell, M.J.Sherman 
and M.lmina for several helpful discussions. 

2. GEOOESICS IN Kl ANO U(K) .. 

The results of this section do not depend on thestructure of the 
inner function-operators. 
Thus, they have an independent interest. lf Rl and R2 are two ro-
tations on R3 , with rotation angles wl and w2 ' resp., then their 
composition R=RIR2 is a rotation with angle W ~ wl + w2 • 

This simple geometric fact has the following operator theoretical 
analog: 

LEMMA 2.1. Let A,B E U(K) and a8sume that a(A) e r(a 1 ,a 2) and 
a(B) e r(a l ,a 2) (where a(T) denote8 the 8pectrum of T E L(K) and 

iS r(w1 ,w2) = {e :wl ~ fJ ~ w2 }). Then a(AB)=a(BA) i8 contained in 
real +a l ,IX 2+a 2)· 

Proof. Since both AB.and BA are unitary operators, it is clear 
from [6, prob.61] that a (AB)=a(BA) and that this set is contained 
in 3D. 
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Therefore, we can assume that a 2 -a 1< '/t (or B2-B 1< '/t). 

{eieX:X E a(T)}, for all 

TE L(K), we can replace (if necessary) A and B by eielA and eie2B 
and assume, without lossof gener~lity, that a(A) e r(-a,a) and 

a(B) e r(-p ,P), where O os;; a,p < '/tIZ. 

Since AB E U(K), 3a(AB)=a(AB) and therefore every point of a (AB) 
is an approximate eigenvalue of this operator; i.e~, given XEa(AB) 

and e > O, there exists "'O E K1 such that 11 (AB-X)",O" < e. We have 

B",O b"'O+d"'l b = (B",O''''O) E W(B) IbI2+ldI2=11"'01l2=1, and 

A*"'0=a"'0+c"'1+f"'2 ' a=(A*",O''''O) E W(A*) , laI 2+lcI 2+lfI 2= 1 , 

where W(T) = {(T""",):", E Kl } is the numeriaal range of T E L(K) 
1 (see (6)), A* is theadjoint of the operator A, "'1 E K (or "'1=0, 

if Ibl=l), "'2 E Kl (or "'2=0, if laI 2+lcI 2=1) and {"'0''''1''''2} is 

an orthogonal system. Recall that A*,B E U(K); hence, theyare 
normal operators and therefore the closure of W(A*) (W(B)) coin­
cides with the convex hull of a (A*) (a (B), resp.)([ 6 ,pI'ob. 171] ) . 
Therefore, a ( b ) belongs to the convex hull of r(-a,a)(r(-B,B), 
resp.); in particular labl ~ cos a.cos B > o. 
We have 

(AB<Po''''o)=(B'''o,A*'''o)=ab + cd 

By Schwartz'inequality, lab + cdl OS;; 1. On the other hand, since 
"'O is an e-approximate eigenvector with eigenvalue ~, 

e > 11 (AB-~)",O" ~ I ((AB-~)",O''''O) I = lab + cd - ~ l· 

Thus we have proved that: 1) ab # O (in fact, labl is uniformly 
bounded below away from zero for all a in W(A*) and all b in 
W(B)); Z) lab + cdl OS;; 1 ; 3) lab + cd -. ~I < e. Since 1~1=1, it 
is not difficult to conclude from 1), 2) and 3) that 
I~ - exp{i(arg b - ~rg a)}1 = O(e). Since e> O is arbitrary, we 
conclude that ~ E r(-a-B,a+B). This proves the result for the ca­
se when a 2-a 1 < '/t and B2-B 1 < '/t. 

SECOND CASE: '/t OS;; B2-B l < 2'/t - (a 2-a l ). Let 

'Y = (1/2) [(a 2",a 1)+(B 2-B 1)]. An elementary application of the 

spectral theorem for unitary operators shows that B can be fac-
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tores as B=CB1• where C.Bl E U(K). (J(Bl ) e r(B 2-'Y.B 2) and 

u(C) e r(B l .B 2-7) (see. e.g .• [5)). Now the result follows apply­

ing the first case to Al = AC and then to A1Bl = AB. 
qed. 

REMARKS. a) An alternate proof of this lemm~ can be given using 

thm.l of [17). b) This result is clearly sharp; in fact. it cannot 
be improved even in the case when u(A) and u(B) are "very small" 
subsets of an. To see this. observe that the bilateral shift S in 

.e 2 can be written as the product of two symmetries P and Q (see 
[6, p.2691); thus u(P)=u(Q)={-1.1}. while u(S)=u(PQ)=an : 

Lemma 2.1.can be extended to finite or infinite convergent dis­
crete products of unitary operators. Moreover. it .can be also 
extended to aontinuous produats: 

COROLLARY 2.2. Let M(x) be a aontinuous funation defined on the 

(finite 01' infinite) reaZ intervaZ (-a.b) (O < a.b ~ +~). whose 

vaZues are non-negative hermitian operators in K. and Zet U(x) 
be the aontinuous produat (01' muZtipZiaative integraZ) defined by: 

+-fx +- iM. 
U(x) = O exp{iM(t)dt} = lim(N~)TTj~l e J = 

(3) 

lim(N+~) 

where 

(4) fjX/N M. = M(t) dt 
J (j-l)x/N 

j 1.2 •..••• N, 

and the Zimits in (3) are taken in the sense of the norm topoZogy. 

These Zimits' are weH-defined and U(x) E U(K) for aH xE(-a.b). 
Furthermore. 

(5) 

u(U(x)) e r(o.f:UM(t)Udt) • if O ~ x < b 

u(U(x)) e r(-tuM(t)lldt,O) • if -a < x ~ o. 
x 

For the existence of the limit in (3). see [4;15). Since every 
+- N iM. 

appro:x:imating·produat TT. 1 e J isclearly unitary, the uniform JOO 

limit U(x) .must be necessarily unitary. Finally, since 
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a(e iMj ) cT(O,IIM.II) e rco,JJléll-l ItM(t}ldt), if x> 0, 
J (j-l)x/N 

and 

iM. J(j-l)X1N 
a (e J) e re -11 M jJ ,O) e re ~ 11M (t) 11 d t , O), if x < 0, 

jx/N . 

the proof oí (5) fol1ows by induction on ~emma 2.1 and an obvi­
ous continuity argumento This proves aor. 2.2. 

It is worth noting that, in (4), M. can be also ta.ken equal to 
J 

(xIN)M (x.), fQr some x. in the interval determined by (j -1)xIN 
J J 

and jxlN; however, the expression (4) is more convenient for our 
purposes. 

If (in aor.2.2) a= +~ and lim (x+-~) U(x) 
then we can define 

+-

(6) V(X)=U(X)U(-~)*=J~~eXP{iM(t)dt} 

similarly, we can write 
+-

J
+~ 

(6') W(x)=U(x)U(+oo)*=[ exp{iM(t)dt}] * 
x 

U(-~) does exist, 

x<b, V(-~)=I 

, x > -a W(+oo)=I 

in the case when b=+oo and lim(x++oo) U(x)=U(+oo) does existo 

In particular, JO HM(t)Hdt < 00 (J+~HM(t)ndt < 00, resp.) is a suf-
-~ ° 

ficient .condition for the existence of U(-oo) (U(+oo),resp.), as it 
immediately follows from aor.2.2 (see also [2,p.431). 

THEOREM 2.3. Let M(x) be a continuous funation defined on the 

rea~ interval (-a,b) (O < a,b ..;; +00), whose values are hermitian 

operators in K and let X E U.(K). Then the differential equation 

(1) has a unique solution suah that U(Q)=X. whiah is given by 
+-

U(x) = [J:eXP{iM(tldtllX 

Furthermore. if {Mk(x)l is a sequenae of funations satisfying the 

above aonditions, 

lim(m,p+co) Jb UM (x) -M ex) Udx O, 
-a m p 
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and Uk(x) is the sotution of the equation Uk(x)=iMk(x)Uk(x) sati~ 

fying Uk(O) = I • fo~ k=1,2,3, ... , then {Uk(x)} converges unifor~ 

l.y on (-a,b) to a U (K)-vatued function U(x). 

NOTE. We are assuming neither the boundedness of the IMk (x) 11' nor 
the integrabili ty of IIMk (x) 11. 

Proof. The existence and uniqueness of the solution was proved in 
[ 8]; it is straightforward that the above multiplicative integral 
satisfies (1) (see [4]). 

Let Mk(x) and Uk(x) be as indicated; by the definition of the mul 

tiplicative. integral (3)-(4), for fixed m,p and x in (-a,b), we 
have 

IIU (x) -U (xli = HI - U ,(x)U (x)" 11 = m p p m 

iM iM . -iM . 
• e P,j+l (I-e· P,J. e -m,J)x 

-iM 
x e m,j+l 

-iM N iM. -iM . 
.e m,N I " limI .• 1UI-e P,J. e m~JU. 

N+CD J 

Since'M (t) and M (t) are continuous and Ixl < OC! , there exists a , P m 

constant C(x;m,p) < 00 such that IIMp(t)U "C(x;p,m) and RMm(t)H " 

"C(x;p,m} , forall t in the interval determined by O anel x. Now 
it is easy to sea that 

iM . -iM . 
I - e P,J. e m,~ i (M • - M .) + O (N~2) , 

m,J P,J 

and.therefore 

fjX/N = lim L '~l U [Mm (t) -M (t}]dtl " 
N+CD J (j-l)x/N P 

'JX Jb " ,1M (t)- M (t)ldt" 1M (t)-M (t)Bdt, for O < x < b, 
O m p O m p 
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and similarly, 

UU (x)-U (x)U < JOUM (t)-M (t)Udt < JO UM (t)-M (t)Udt 
m p x m p -a m p 

for -a < x < o. 

Therefore, {Uk (x)} is a Cauchy sequence in the' space of all U (K) -

valued functions, continuous in (-'a,b). Since this is a complete 
metric space under the uniform topology, the result follows. 

qed. 

Consider the real Hilbert space structure of K given by the inner 

product (~'~)R=Re (~,~). It is clear that K~=K1 and H~UR~ U~U, for 

every ~ E KR (= K under the real structure). Let 'Y: [ 0,1] --+ K1 be 

a continuous mapping; then the "length" of the curve 'Y is defined 
by 

(7) K('Y)=supq:j~lU'Yj-'Yj_1U:tO=0 < tI < 

where 'Y.='Y(t.), j=O,l, ... ,N, and the supremum is taken over all 
J J 

partitions. 

LEMMA 2.4. Let 'Y be a eontinuous mapping from [0,1] into K1 and 

assume that -1 < Re ('Y (1),'Y (O)) < 1. Then K ('Y) ;;. w, where 

O < W < n and cos w = Re ('Y(1),'Y(0)). 

Furthermore, the lower bound w is attained if and only if there 

is a eontinuous non-deereasing funetion f(t) from [0,1] onto 

[O,w] sueh that 

(8) 'Y(t)=(cos f(t)) ~O + (sin f(t)) ~1' tE [0,1] 

where ~O='Y(O), ~='Y(1) and ~1 E K~ is defined by the eonditions: 

(~l'~O)R=O and ~=(cos w)~o + (sin w)~l • 

Proof. If K ('Y) =+00 , then there is nothing to prove; so we can di­

rectly assume that K('Y) < +00. lt is clear from the aboye comments 
that we can consider K under its real Hilbert space structure KR; 

it is also immediate that the sum corresponding to a given par­

tition is always smaller than K ('Y) and that this sum increases by 

a refinement of the partition. We recall that the norm of a par­

tition is the maximum of the numbers t.-t. l' j=1,2, ... ,N. Given 
J J-
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e: > O. letR. be (for a given partition of [ 0,11 and for each j, 
J 

j=O.l ..... N) the rotation.of KR defined by Rj'Po= 'P O; Rj'P = 'P. if 
• 

('P·'PO)R = ('P·'Yj)R = O. and Rj'Y j = 'Y! • where 'Y! = ('Y j .'PO)R'P O + 
J J 

+ [1-('Y j .'P0)~)1Ji. 'P 1 • 

Then. 
<;' N 2 2 1/2 

K ('Y) > l.. 1{UR.'Y.-R. l'Y· 1 11 + II(R.-R. 1)'Y· 111} - e: J= J J J- J- J J- J-

where 'YO = 'Yo = 'PO • 'Yl = 'Yi and 'Yj • j=2,3, ... ,N is defined by 

induction, as follows: assume that 'Y o,'Y 1 ..... 'Yj_1 has been chosen, 

thenset'Yj ='Yj. if ('Yj,'P 0)R';;;('Yj'_1,'P 0)R' or'Yj' 'Yj'_1' if 

('Y j .'PO)R > ('Yj'_1,'P 0)R 

Thus, if the norm of the partition is small enough, 

Since e: is arbitrary, we conclude that K('Y) ~ w. 

Moreover, since RN=I is the only rotation of the aboye described 

type that fixes 1/1 (to seethis. recall that O < w < 71'!) , it is 
not difficult to infer from the aboye inequalities that the infi­
mum can be attained if and only if R.=I and 'Y'!='Y!='Y. , for all 

J J J J 

j =1.2,. : .• N. and for all partitions of. [ 0,11; i. e., if and only 
if'Y has the form (8). 

qed. 

REMARK.The geometric meaning of Zemma 2.4 is the following: if 

'P.l/le K1 and 1/1 ~ -'P (hence, II'P-I/III < 2). then there exists a u-

nique geodesic curvé 'Y:[ 0.1) -+ K1 joining them and the length 
of this geodesic is equal to: are cos Re ('P.I/I) (it is trivial 

that if I/I=-'P thereexist infinitely many geodesics in K1 joining 

these two points). The fact that K1 is "g~ometricaily homogeneous" 
is most impo~tant here. and we guess that analogous results can 
be proved in any uniformly convex ( or even strictly convex) 
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Banach space (i.e., that given two-suffiCiently close-different 

points of the unit sphere of the space, there exists a unique 
geodesic in that sphere joining the two points and, moreover, 

that this geodesic is a smooth curve). But none of these proper-

ties is true in the genera~ case; for example, if X = Ll(R,dx) and 
f 6 (x) is the characteristic function of the interval (6,6+1), then 

f6 E Xl (the unit sphere of X) and Uf O-f6 UX 26, if ° < 6 < 1; 

this shows, in particular, that fo and f6 can be taken "arbitra-
l ri1y close". Fix 6, 0<6 < 1; then'Yo:[O,ll -+- X, 'Y o (t)=(l-t)fo+ 

1 + tf 6 , and'Y l :[O,ll -+-X, 'Yl(t) = f t6 , satisfy 

and therefore, they are geodesics joining fo with f6 ; in fact, 

there are infinitely many geodesics joining these two points. Fur 
thermore, the strong derivative of 'YO(t) is well-defined and 

'Y~(t) = f 6-fo (for O < t < 1), but 'Yl(t) is differentiable nowhere 

(not even in the weak sense!) in (0,1). 

COROLLARY 2.5. Let ~:[O,l]-+ U(K) be a continuous mapping such 

that UQ(O) - Q(l)U = R, O < R < 2 ; then the "Zength" of the cur­

ve Q (defined by (7)), satisfies the inequaZity K(Q) ~ w, where 

O < w < W and 11-e iw l = R . 

Proof. Observe that UQ(O)-Q(l)U=UI-UU=R, where U=Q(l)Q(O)* E U(K); 

this implies that o-(U) e r(-w,w) and, moreover,either e iw E o-(U) 

or e- iw E o-(U). We shall assume that e iw is in the spectrúm of U; 
the other case can be similarly analyzed; then, as in the proof 

of Zemma 2.1. first case. we can see that e iw is an approximate 

eigenvalue of U. Hence, given any € > O, there exists ~ E Kl such 

that U(U-eiwI)~U < €. 

Define 'Y:[O,l] -+- Kl bY'Y(t) Q (t)Q (O)*~ 'Y is obviously contin 
nuous and satisfies 

Icos w - Re ('Y(1),'Y(0)) I = Icos w - ('Y(l),'Y(O))RI < € 

Hence, by lemma 2.4. K('Y) > w - € and, since € is arbitrary we 
conclude that K(QQ(O)*) = K(Q) ~ W. 

qed. 
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In general, two different points of U(K) can be joined by infi­
nitely many geodesics. However, there is exactly one particular 
case in which we have exactly one geodesic; this is the case of 
the following: 

COROLLARY 2.6. L~t 11 be as in 00:t'.2.5 and assume that K(l1) = W 

and a(11(1)11(0)*) e {1,ei~}. Then the:t'e e~ists a non-ze:t'o p:t'ojeo­

tion P in K and a oontinuous non-deo:t'easing funotion f(t) f:t'om 

[0,1) onto [O,w) suoh that 

11 (t) tE[O,lJ 

P:t'oof. Without loss of generality we can assume that 11(0)=1; then 

our hyp'othesis on 11 says that 11 (1) = e iw P + (I-P), for some non­
zero projection P. 

Let VI E K1 n P(K); then 11 (t)VI describes a geodesic in K1 joining 

VI with eiwVl. Thus, by Zemma 2.4. l1(t)VI = eif(t)VI, for sO,me contin 

uous non-decreasing function f(t) from [0,1) onto [O,w). 

Assume that eia E a(l1(t o))' for some t o E (0,1) and some a such 

that e ia¡&1, ¡& eif(tO). Then, if O<a <fetO) (mod 271'), 00:t'.2.5 

implies that 

W=K(11)=K(l1:t E [O,tO))+K(l1:t E [to ,l]);;;' f(to)+w-a > W 

a contradiction. By considering separately all possible cases, we 

conclude that a(l1(t)) e (1,eif (t)} , for all tE [0,1] ; Le., 

11 (t) = eif(t) P(t) + [1 - P(t)) , 

where P(t) is a projection in K, depending continuously on t. 
Moreover, the first part of the proof shows that, if O < tI < t2~ 

~ 1, then P(t1) ;;;. P(t 2) (observe that every ¡fJ, E K1 n P(K) is an 

eigenvector of l1(t), with eigenvalue eif(t»). 

Since O < W < '/1' ,we can find to=O< tI < t 2 < t 3 < t 4 = w, such 

that f(tj)-f(t j _1) < 1, for j=1,2,3,4. If PCtjo) ¡& P(t jo- 1)' for 

some jo' 1 ~ jo ~ 4, then 

K(l1)=w=Ij~l[f(tj)-f(ti_l)] < 1+Ij~joK(11:t E [tj_1,tj )) ~ 
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a contradiction. 

Therefore, P(t) = P(l) = P, for O ~ t ~ 1. 
qed. 

REMARK. lt is not difficult to see, using the spectral theorem 

for unitary operators, that the result of cor.2.6 is sharp in the 
sense that, if ~ satisfies the requirements of cor.2.5 and K(~)= 

w (O < w < 71"), but o (~(1)~ (0)*) contains a point e ia ,¡, 1, ~ e illl 

~ -illl 
1" e , then there exists infinitely many geodesics in U(K) join-
ing ~(O) with ~(1). 

3. THE BEST LOWER BOUND FOR UMU,. 

In this section we improve thm.l0 of [1]: 

1 THEOREM 3.1. If M E A and M(x) =j O, then IIMU l ~ 271". Furthermore, 

UM1I 1=271" if and onZy if U'(x)=iM(x)U(x) for some U E (Al) of the 

form 

(9) U ( z) = [ (z -A) / (z - X") P + (I - P)] X 

whereA E UHP P is a non-zero projection in K and X E U(K). 

Proof. Let U be a non-constant inner function-operator in (Al) 
satisfying the differential equation (1). lt follows from thm. 

6.1,iJ of [ll] that 

IIX - ull = supUX-U(x)U:x E R} = 2 , 

for every X in U(K). This means that the continuous (furthermore, 

analytic) qtosed curve ~:R* -+ U(K) (where R* is the one-point 
compactification of the reals) defined by ~(x)= U(x) has diameter 
2 ( U(-~)=U(+~)=U(~)). Therefore, there exists a point Xo E R 

such that IIU(~)-U(xo)ll = 2; i.e., -1 E o(U(xo)U(~)*). 

Thus, by cor.2.5, the total length of ~ satisfies 

,,(~) = ,,(~:-~ ~ x ~ xo) + "(~:xo ~ x ~ +~) ~ 271" . 

But, since ~ is smooth, ,,(~) is indeed equal to 

,,(~) = J::IIU'(X)UdX = J::UM(X)UdX = UMU l 
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r,herefore, '11M ni;;;' 211" (this is also a consequence of COI'. 2. 2. 

If U (z) has the form (9), i t is completely apparent that IIMII I = 211" • 

• Thus., in order to complete the proof we only have to show tha t, 

,if IIMII I '" 211", then U(z) has the form (9). 

First of all, observe that M(x) cannot be identicallj iero on a 
non-empty open subinterval of R (otherwise,the analyticity of 

U(z) would imply that M(x) == ° on R). Therefore, 

x-+-w(x) = I_:IIM(t)1I dt 

is a continuous and strictly increasing function from [ -00,+00] 
on t o [O, 211"] • 

Since U E (Al) it .is easy to see, using eor.2.2 (and comments fo! 

lowing it!), thm.2.3 and the aboye observations about w(x) , that 
U(x)=V(x)U(oo)=W(x)U(oo), where V(x) and W(x) are defined by (6) 

and (6'), resp., and 

a(U(x)U(oo)*)=a(V(x))=a(W(x)) e r(o,w(x)) n r(Z1I"-W(x) ,O) 

= {1, e iw (x)} , x E R* 

U~ing cor.2.6 we can easily follow that 

U(x) = [eiw(x)p + (I-P)]U(oo) , 

for some non-zero projection P in K. 

Since U.E (Al), e iw (x) must coincide with the limits on the real 

axis of a inner function (in the UHP) b(z); moreover, b(u) must 
be analytic on D-. Hence, b(z) is a finite Blaschke product such 

that b(oo) = eiw(~) = 1. On the other hand, by our observations of 

section 1, the numberof zeroes of b(z) is equal to 

N (1/Z1I")r:d arg b(x) = (1/211")r:IIM(X) II dx = 1 . 

We conclude that b(z)=(z-l)/(z-r), for some l E UHP; i.e., U(z) 

has the form (9). 

qed. 
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4. THE BEST LOWER BOUNO FOR UM(x)U. 

Thm.3.1 provides the best lower "global" bound for M(x) and its 

main interest lies in the fact that the lower bound can only be 
attained by a class of par·ticularly simple inner function-opera­

torso This lower bound for UMU l corresponds to "the total varia-

tion of the argument on 3D is ~ Zw", for the scalar case. 

We want to show here that, if M(x) is interpreted as "the gradi­

ent" of the inner function-operator U(x), this makes it easier to 
obtain pointwise lower bounds for UM(x)U . Theopem 4.1 below was 

suggested by an observation of Prof. H. Helson. 

If b(z) is a finite Blaschke product on the UHP with a ~ero at 
Z=A , then 

Igrad b(x)I=I(d/dx)b(xJI ~ I (d/dx)(x-A)/(x-li:) I ~ ZlmA/lx-AI2. 

The vectorial analog of Igrad b(x) I is UM(x)U; thus, the aboye 

scalar result suggests that UM(x)U ~ ZlmA/lx-AI 2, where A E UHP 
is any point such that U(A) is not inve~tible in K. We shall 
prove that this is actually true; furthermore, we have 

THEOREM 4.1. Let U E (Al) be a non-aonstant innep funation-opepa­

top and assume that U(x) satisfies the diffepential equation (1), 
fop x E R. Then, fop any A in the UHP suah that U(A) is not invep 

tible in K and any e > O, thepe exists ~ E Kl suah that 

(M(x)~,~) > (ZlmA-e)/lx-AI 2 , x E R. 

In paptiauZap, 

UM(x)U ~ sup{ZlmA /lx-AI 2 :U(z=A) is not inveptibZe} 

Ppoof. We shall prove the result for the case when A=i; equiva­
lently: when U(u=O) is not invertible in K. The general case will 
follow by a conformal transformation of the UHP onto itself. 

By (Z), 

(10) U' (x)=iM(x)U(x)=-2i/(i+x)2(d/dw)U(w=(i-x)/(i+x)). 

Let U-(u)=U(u)*; it is easy to check that u-tu) E (Al), U-(z) 
U(-l/z)* And U-, (x)=iM-(x)U-(x), where (using (10)) M-(x) = 

(1!x 2)M(-1/x), for all real xlO, and M-(O)=lim(x+O) (1/x 2)M(-1/x)= 
Z[ (d/dw)U(w=-l)]U(w=-l)*. 



217 

Now it is c1ear that, for ~ E K1 and e > O, 

(M-(x)~,~) > (2-e)/(1+x2), for a11 real x , if and on1y if 

(M(x)~,~) > (2-e)/(1+x2) , for a11 real x. 

Therefore, it is equiva1ent to prove the resu~t for M(x) or for 
M-(x) . 

FlRST CASE. Ker U(u=O)*=Ker U-(u=O)=Ko'{O}. 

Then (see [12;13;16]), U(u) can be factored as U(u)=B(u)C(u) where 
B(u)=uP+(I-P) (P=the projection of K onto Ko) and C E (Al). 

Thus, in UHP we shall have U(z)=B(z)C(z)=[ (z-i)/(z+i)P+(I-P)]C(z). 

If M(x), M(x;B) and M(x;C) are the hermitian va1ued functions as­
sociated to U, B and C, resp., by means of the differentia1 equa­
tion (1), then (see [8,thm.3l) 

M (x) =M (x; B) +B (x)M (x ;C) B (x) * ';> M (x ;B) . 

Hence, if ~ E K1 n Ko ' then (M(x)~,~) ;> (M(X;,B)~,~).=2/(1+x2). 

SECOND CASE. Ker U(u=O)=K~r U-(u=0)*=K11{0}. 

App1ying the first case to U-(z), we obtain 

(M-(x)~,~) ;> 2/(1+x2) (and therefore,(M(x)~,~) ;> 2/(1+x2)), for 

a11 ~ E K1 n Kl anda11 x E R. 

THIRD CASE. U(u=O) is not invertib1e, but Ker U(u=O)=Ker U(u=O)*= 
={O}. 

In this case we sha11 prove that U(u) can be approximatedby e1e­
ments of (Al) satisfying the conditions of the first case, unifor~ 
1y on lul .,;; R, for some R> 1. Without 1055 of genera1ity we can 
assume that U(w=l)=I; then K admits the orthogona1 direct sumde-

compositionK=KT$~ 

tion of U(u) to ~) 

ATOT(U)BT ' where 

reducing U(u), where U(u) IKl (= the restric­
T 

is the identity IT of ~ and U(u)I K = 
T 

0T(u)=[ -T+UDT*(I-UT*)-lDTll v :VT - VT* 
T 

is the aharoaateroistia funation of a Coo-contraction T on a Hilbert 

space H, DT=(I-T*T)1/2~, DT*=(I-TT*)1/2 , VT= c10sed Range(DT) , 

VT*- c10sed Range(DT*) and AT and BT are unitary maps (independent 

of u) from VT* onto KT and from KT onto VT' resp •. For defini-
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tions and properties of the characteristic function of a contrac­
tion, Coo-contractions, etc., see [16]; for details about the de-

composition K=KT~~' see [13]. Here, we want to use those results 

without specifying detail~: since U(u) E (Al), u(T)={u E D:U(u) 

is not invertible} in particular, O E u(T), Le., T is not inver­
tibIe in H. Moreover, our hypothesis on U(u=O) and thm.VI.4.1 of 
[16] imply that the polar decomposition of T has the form T=XH, 
where, X E U(H) and H E L(H) is a non-invertible hermitian non-ne­
gative operator such that Ker H = {O} and. UHU < 1. Therefore, by 
the spectral theorem for hermitian operators (see [5]), given any 
{j > O there exis ts an hermi tian opera tor H\5 E L (H) such tha t 

_UH\5U < {j,UT-T\5U <(j (whereT\5=X(H-H\5))' Ker (H-H\5) # {O} and 

u(H-H\5) e {O} u [{j/2,11. We can assume that {j < 1; then DT and 

D =(l-T*T )1/2=1_(H_H ) have the same range and, similarly DT* T\5 \5 \5 o 

and DT* have the same range. Thus, if we set 
\5 • 

Uo(u)=AT9T (u)BT~lT ' 
\5 

then Uo(u) E (Al), Ker U\5(O)*=ATX[Ker(H-H\5)]=K\5#{O}, and 

U(u)-U\5(u)=AT[9 T(u)-9 T (u)]BT~O = 
, o 

A {XH +uD· [(I-uT*)-I- (l-uT*)-I]D }B ~O T \5 T* \5 T T 

clearly, since U, Uo E (Al), UU(u)-U\5(u)U < {jI on \u\ < R (for 

sorne R> 1), where {jI -+ O, as {j -+ O. 

From the Cauchy formula 

(11 ) (dn/dUn)U(u)=(n!/211'i)f U(t)(t-u)-n-l dt , \u\ < R, 
\t\=R 

for the derivatives of a function analytic on \u\ < R, it follows 
that 

(12) II (d/dw)[U(w)-U\5(w)]U < {jl/(R-1)2 < e: , 

and therefore 

(where Mo has the obviousmeaning), for all x E R, provided {j 

(and hence (jI too) is small enough. 
1 Applying the first case to this U\5~ for all ~ E K n K\5 and for 
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all x e R, we obtain 

(M(x)op,op) > (M6op,op)-el(1+x 2) ;> (2-e)/(1+x2). 
qed. 

REMARKS. a) lt was proved in [1,p.9] that, if U e (Al), then 
~+.. 2 ~+.. n IIM(x) II .s;;; (2Ln=lnftUnll)/(1+x ), where U(U)=Ln=OU Un is the Taylor 

series of U(u) about the origin (here Un e-L(K); since the Taylor 

series of U(u) converges in a closed discof radius larger than 
one, the sum of the norms in the upper boundof 11M (x) U - also con­
verges). Here is an alternate proof for the existence of an upper 
bound: it follows from (10)-(11)-(12) that 

11M (x)ll = IIU' (x) II .s;;; [2 inH (R-1) -2 max IIU (Rw) II }] / (1 +x 2) , 
wean 

where the infimum is taken over all -R > 1 such that U(u) can be 
continued analytically to lul .s;;; R. 
b) The result of thm.4.1 is obviously sharp (and it provides a 

new proof of: "IIMII I ;> 2'11", for al! Me Al, M(x) '10"). We can say 

even more; it was proved in [l,aor.l] (using a result due to 
Potapov, L15,p.l.54]; see also Zemma 4.2 and aor.4.3. below) that, 

if M e Al then Ket M(x) = Ker M(O), for all real x. This result 
might suggest that, in thm.4.1. one can replace "there exists a 

op e KI " by "for every op e K1 , op 1 Ker M (x) ... "; however, the 
analogy with the scalar case cannot be carried to this point, as 

it is shown by the following example: let K=C 2 (i.e., dim K=2) 
with otthonormal basis {~1'~2} and let O < w < '11"/2; define 
U(w) e (Al) by 

U(w) = 11 cos W 

-sin w 

sin 

:1111: ~IIII ::: : 
-sin 

cos cos : 1111: ~II . 
Then, a straightforward computation shows that Ker M(x) = {O}; 
however, K(U(w)~2) = O(w), and therefore (for small values of w) 

~2 cannot satisfy the thesisof thm.4.1. Furthermore, according 

to the p~oof of -the theorem (fi.rst aase), there exists a vector 

~ in KI , such that (M(x)op,op) ;> 2/(1+x2), for all x e R and there­

fore, K(U(W)op) ;> 2'11"_; however, there is no ~ ~ KI such that the 
curve {U(w)~} has diameter 2. 

c) For the scalar case, Igrad b(x)1 is always determined by its 
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values on a small segment of the reals. The situation is different 
in the vectorial case: given any closed subset 1: of R and an or-

thonormal basis {~n}::l of X, it is always possible to select a 

sequence {?\ E UHP} in such a way that, if U (z)~ = (z-?\ ) I (z-A )~ , 
n n n n n 

n=1,2,3, ... , then HM(x)n=2/(1+x 2) if and only x E 1:. 

We are going to close this section with an improvement (in fact, a 
"localization" of the result) of the aboye mentioned result of 
Potapov (pemapk b) to thm.4.1). 

LEMMA 4.2. Let ~(z) be a K-vaZued anaZytia funation in the UHP 

and assume that: 1) H~ (z) U OS;;; 1; 2) fop some 1/1 E K1 , 

lim (y,¡.ol(~(iy),1/I)=1 ando eithep lim (y,j.O) (d/dz)(~(z=iy),1/I)=0, 

op lim (y,j.O) [(~(iy) ,1/1)-1] ly=O. Then ~(z) == 1/1. 

Ppoof. It follows from the theorem of Julia-Carathéodory (see,e.g, 
[14,p.57]) and1) .and 2), that thescalar analytic function f(z)= 
= (~(z),1/I) == 1. Hence, ~(z)=1/I+1/I(z), wh.ere (1/I(z),1/I) == O, in UHP. 

This last expression of ~(z) and 1) imply that, for all z E UHP, 

1 ;;;. 1I~(z)112 = 1 + 111/I(z)11 2 , which is clearly impossible, unless 
1/I(z) == O; i.e., ~(z) == 1/1 on UHP. 

qed. 
From this Zemma and thm.2.3. we obtain the following 

COROLLARY 4.3. Let U E f and ~ E Kl • and assume that. fop some 

1/1 E Kl • (U(z)~,1/I) satisfies t~e aondition 2) of Zemma 4.2; then 

U(z)~ == 1/1. Mopeovep. if U(z) is anaZytia at z=O. then ~ E KerU' (x) 
and Ker M(x) = U(O)[Ker U'(O)] == Ker M(O), fop aZZ x E R n R(U). 

5. COMPLETENESS OF A'. 

THEOREM 5.1. Al is a aompZete metpia spaae. 

Fupthepmope. if {Mk} is a Cauahy sequenae in 1 A and Uk E (Al) is 

the soZution of Uk(x)=iMk(x)Uk(x), Uk(O)=I, then thepe exists 

U E (Al) sati{Jfying (1) , suah that U(O)=I and 

i) Fop eaah n ;;;. O, n (dn/dun)[Uk(u)-U(u)]U -+- O (k -+- 00), 
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unifol'mZy fol' I U I E;; R, fOl' 80me R > 1 j 

ii) (1+x 2)IIMk (X)-M(X)U -+- O and IM k -M0 1 -+- O (k -+- 00). 

Pl'oof. i) By thm.2.3. the sequence {Uk(x)} converges uniformly on 

R toa U(K)-valued function U(x). Hence, IlUk(w)-U(w)11 -+- O, uni­

formly on 3D; since F is complete, it follows that U E F and that 

IIU k (u) -U (u) 11 -+- O, uniformly on D- (Clearly, U (w=1) = U (x=O) = I). 

Therefore, there is an m such that OUk(u)-U(u)O < 1/4, for all 

k ~ m and all u E n- . 
Since Uro E (AI), there exists e: > O such that Uro (u). is invertible 

in K and,moreover, IIU (u)-1 0 < 4/3, in the annulus l-e: E;; lul E;; 1. ro 
-1 -1 . Hence, IIUk(u) 11 < 2 and IIU(u) O E;; 2, on that annulus. Thus, It 

follows from [101 that Uk(u) (k ~ m) and U(u) can be continued 

analytically to the closed disc of radius Ro=l/(l-e:); moreover, 

OUk (u) -U (u)ll -+- O, uniformly for lu I E;; Ro' Now i) follows from 

the Cauchy formula (11) for the derivatives of an analytic func­

tion, by choosing as R any real number such that 1 < R < RO' 

ii) In particular, for the first derivative, (10)-(11)-(12) show 

that 

(1 +x 2) IIMk (x) -M (x) 11 E;; (1 +x 2){ IlUk (x) -U' (x) 0+ 11 U' (x)! Uk (x) * -U (x) *111 }E;; 

E;; max {O (d/dw) [Uk (w) -U (w) I11 }+C max {IIUk (w)-U{w) O} , 
we:an . we:an 

where 11M (x).11 E;; C/(1+x 2), as in thm.4.1 (and M is related with U 

by (1)). It follows that (using i)) 

(1 +x2 ) IIMk (x) -M(x)ll -+- O (k -+- 00) , 

uniformly on R, and therefore 

qed. 

NOTE. The completeness of Al has been independently proved by 

S.L.Campbell (perso~al communication). 

6. CONTINUITY ON THE BOUNDARY. 

The resul t of this section has an independent character. LetU E F. 
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It was shown in [8] that, if U(z) .is continuous on {z:Im z = 0, 

I z I < el, then U(z) can be continued analytically to z=O. In fact, 
a stronger result is true: U(z) can be continued analyticallyto 

z=Q if ánd only if Vez) is invertible in K and HU(z)-l. is unifol"!!. 
ly bounded for all i in the set {z:Im z > 0, Izl <e} for some 
e> ° (see [10]). The result of [8] can be improved in a differ­
ent direction; .namely: 

THEOREM 6.1. Let U E F and assume that U(x) aoinaides a.e. with a 
aontinuous U(K)-vaZued funation V(x) on (-E,E) (for some E > O); 
then U(z) aan be aontinued anaZytiaaZZy to tnat reaZ intervaZ and 

U(x)=V(x), for aZZ x E (-E,E). 

Furthermore, if ° é R(U), ~ is any nuZZ set (with respeat to the 
Lebesgue measure) and w E aD, then given any 6 >0, there exist 

~O'~l E (-E,E)\~ suah that U(Ej)=lim(y'O) U(~j+iy) E U(K), j=O,l, 

and 

Proof. Clearly, it is enough to prove the last statement. 

Without 1055 of generality, we can assume that 
U(x) = lim(y+O) U(x+iy) E U(K), for aÚ x E (-E,E)\~ and that 

iS 
U(~o)=I, for some ~O in that seto Assume that, for some e E aD 

and some 6 > O,a(U(x)) n r(9-6,9+6) = 0, for all x E (-e,E)\~ 

Let a E D and consider the inner function-operator 

It follows from the previous observations and the speatraZ mapping 

theorem (see, e.g., [6,prob.59]), that if a is close enough to 

e iS , then a(ua(x)) e r(-w/4,w/4)~ for allx E (-E,e)\~ . Hence, 

(14 ) for all 'P E Kl 

(and a.e. x E (-E,e)). 

Recall that, for z=xtiy E UHP, (U (z)'P,'P) is given by the convolu a 

tion ot" (U (x)'P,'P) with the Poisson kernel y/wCx2+y2). 
a 

Since I (U (x)'P,'P)/ <; 1, it follows from the propertiés of the 
a 

Poisson kernel (see, e.g., [18]) and (14) that there exists a po­
sitive'l/ such thatRe OJa(z)'P,'P)> 1/2, uniformly with respeetto 
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~ E K1 and Z E F = {x+iy: Ixl < E/2, O < Y < ~}; this shows, in 

particular, that Ua(z) is. invertible in K and IIUa(z)-lU';;; 2, for 

all Z E F. 
Thus, it follows from the aboye mentioned result of [10] that 

O E R(U a). From (13), we corrclude that O E R(U). 
qed. 

REMARK. Continuity cannot be replaced by stI'ong continuity in thm. 

6.1. In fact, 

is . defined by 

if {~ } ~1 is an orthonormal basis of K n n= 

U(u)~ =b (u)~ , where b (u) is a finite n n n n 

and U E F 

Blaschke 

product (n=1,2, ... ), then U(u) is strongly continuous on the 

closed unit disco If, for example, b (u)=un , then U(u) is compact 
n 

for all u E D and R(U) = D (i.e., every point of aD is a singula~ 

ity of U). If bn(z)=(z-i-n)/(z+i-n), n=1,2, ... , then U(z) is ana 

lytic on R and it satisfies the differential equation (1), where 

M(x) = ,+00 2/[1+(x-n)2]p 
¿n=l n 

(Pn is the orthogonal projection of K onto the one-dimensional 

subspace spanned by ~n)' and 

O .;;; N(x) = f_: M(t) dt .;;; 2wI 

moreover, N(x) converges strongly to 2wI as x converges to +~. 

However, U ~ (Al). 

[ 11 

[ 21 

[ 3] 

[ 4] 

[ 5] 

[ 6] 

REFERENCES 

S.L.CAMPBELL, Op~4at04 vaLu~d lnn~4 6unetlona, Dissertation, 
Northw.stern Univ., Evanston, Illinois, 1972. 

L.CESARI,Aaymptotle b~havl04 and atablLlty p40bL~ma ln 04dl­
na4y dl66~4~ntlaL ~quatlona, Springer-Verlag, New York, 1963. 

P.L.DUREN, Th~04y 06 HP apac~a, Academic Press, New York and 
London, 1970. 

F.R.GANTMACHER, The th~04y 06 mat4lc~a, V.II, Chelsea Publ. 
Co. New York, 1960. 

P.R.HALM0S, lnt40duetlon to HlLb~4t apae~ and th~ th~04y 06 
ap~et4aL muLtlpLlelty, Chelsea Publ.Co., New York, 1951. 

~ _________ , A.HlLb~4t apac~ p40bL~m boo~, Van Nostrand Co. 
Princeton, New Jersey, Toronto, London, 1967. 



224 

[7] H.HELSON, Leetu~e~ on inva~iant ~ub~paee~, Academic Press, 
New York, 1964. 

[8] --------, The di66e~ential equation 06 an inne~ 6unetion, 
Studia Math.3S(1970), 311-321. 

[9] D.A.HERRERO, The di66¿~ential equation 06 an inne~ 6unetion­
ope~ato~. A geometric approach, Notices Amer.Math.Soc.19(1972) 
A-S22. 

[10] -----------, Analytie eontinuation 06 inne~ 6unetion-ope~ato~h, 
Paco J. Math.40(1972), 327. 

2 
[11] -----------, Full-~ange inva~iant hub~paee~ 06 HK. l. Natural 

topologies, (to appear). 

[12] -----------, Inne~ 6unetion-ope~ato~~, Dissertation, Univ. 
of Chicago, 1970. 

[13] -----------, The exeeptional ~ub~et 06 a Co-eont~aetion, (to 
appear in Trans. Amer.Math.Soc.). 

[14] R.NEVANLlNNA, Analytie 6unetion~, transl. from 2nd.German ed., 
Springer-Verlag, New York, Heidelberg, Berlin, 1970. 

[lS] V.P.POTAPOV, The multiplieative ~t~uetu~e 06 ]-eont~aetive 
mat~ix 6unetion~, Amer.Math.Soc.Transl.1S(1960, 131-243). 

[16] B.Sz.-NAGY and C.FOlAS, Analy~e ha~monique de~ opé~ateu~h de 
l'ehpaee de Hilbe~t, Masson et Cie., Akádemiai Kiadó, 1967. 

[17] J.P.WlLLlAMS, Speet~a 06 p~oduet~ and nume~ieal ~ange, J.Math. 
Anal.Appl.17(1967), 214-220. 

[18] A.ZYGMUND, T~i90nomet~ie ~e~ie~, V.1 and 11 (eombinedJ, 2nd. 
ed., Cambridge Univ. Press, 1968. 

State University of New York at Albany 
Department of Mathematics 

Recibido en enero de 1973. 


