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A GEOMETRIC APPROACH TO INNER FUNCTION-OPERATORS AND
THEIR DIFFERENTIAL EQUATIONS

Domingo A. Herrero*

0. ABSTRACT. An Znner function-operator in a (complex separable)
Hilbert space K is a function U(x) defined on the real line R,
taking values in the set U(K) of unitary operators in K, weakly
measurable and such that U(x) = (strong) lim (yl0) U(x+iy) (a.e.,
dx), for some uniformly bounded analytic operator-valued function
U(z) defined in the upper half-plane. If U(z) can be continued a-
nalytically to R and at z=o , then (for real x) it satisfies the
differential equation

(1) U'(x) = iM(x)U(x) ,

where M(x) is a (norm) continuous function in R, whose values

are non-negative hermitian operators in K; moreover ,

+ o
‘ﬂMﬂl = J IM(x)II dx < e, Let Al = {M(x)}, where M(x) satisfies

the above requirements, with the metric induced by H.ﬂl. By con-

sidering U(x) as a continuous (smooth) curve in U(K), it is shown
that, either M(x) = 0, or the curve defined by U(x) has diameter
2 and IIMIl1 > 2n; furthermore, the infimum (27) can be attained if

and only if U(x) = [ (I-P) + (x-\)/(x-X)P1X, where I is the iden-
tity operator, P is a non-zero (orthogonal) projection in K,
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X € U(K) and ‘Im X > 0. A1 is a complete metric space and, for

each M € Al, M(x) # 0, for any A, Im X > 0, such that U(A\) is not
invertible in K, and for any e > 0, there exists a vector ¢ € K,

lel = 1, such that (M(x)¢,9) > (2Im X - e)/|x-A|2, for all x € R.
Finally, it is shown that, if U(z) cannot be continued analytical
ly to z=0, then there is no continuous U(K)-valued function V(x)
such that U(x) = V(x) a.e. in (-e,e), for any e > 0.

1. INTRODUCTION AND NOTATION.

The basic properties of the inner function-operators can be found
in [7].

For a given subset Z of the complex plane C, © and 9% denote the
closure and the boundary of Z, respectively.

We find it very convenient to use the double notation of [1]: u
will always be the complex variable in the unit disc D={u:|u|< 1}
(more exactly, by f(u) we shall denote the value of the analytic
function f, originally defined on D, at the point u € R(f) = the
Riemann surface -or,the domain of analyticity- of f);z will play
the same role for analytic functions originally defined on the

upper half-plane UHP = {z: Im z > 0}. Let f(u) be defined on D;
then f(w) denotes the limit value of f(u) as u approaches non-tan

gentially to w € 8D (in what follows these limits will be always
well-defined a.e., and in the case of operator-valued functions,
f(w) will denote the limit in the strong operator topology). Simi
larly, if f(z) is defined on UHP, then its non-tangential limit
values are denoted by f(x), x € R (x and y are the real and imagi
nary components of z). u € D and z € UHP U {«} are always as-
sumed to be related by the equations

(2) u = (i-z)/(i+2) , z = i(1-u)/(1+u)

The set of all inner function-operators will denoted by F;
in ‘the above notation, U(z) (U(u), resp.) denotes an element of
F, thought as an inner function-operator defined on UHP (on D,

resp.). As in [1], the set of all "analytic" inner function-oper-
ators is

(AI) = {U € F: U(u) can be continued analytically to D~}

If, during the proof of some result we have to use both expres-
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sions of the same U € F, then the value of U(w) at w=1 will be de
noted by U(w=1), etc., to avoid confusions.

I.0 and (.,.) denote the norm of a vector of (or, an operator act
ing on) K and the inner product of K, resp..

Finally, L(K) will denote the algebra of all (bounded linear) op-

erators in K and k! = {¢ € K: lol=1} is the unit sphere of K.

It was shown in [8] that, if U € F, then U satisfies the differ-
" ential equation (1), where M(x) is a continuous function (unless
otherwise stated, continuity of an operator-valued function means
continuity in the norm) defined on the open intervals of RNR(U),
whose values are non-negative hermitian operators in K. Assume
that K is one-dimensional; then U(z) is a scalar inner function
on UHP and M(x) is, precisely, the derivative of arg U(x). Thus,
if U € (AI), then U is a finite Blaschke product (see [3;7] for
definition) and

+ o
Ml = J IM(x)lIl dx = 27N ,

where N is the number of zeroes (counted with multiplicity) of
U(z) in UHP. In particular, the set of values {HMHI:M S Al} is

discrete in R. If dim K > 2 and P is a non-trivial projection,
then

Uy L (2) = [ (z-1)/(2+1)1VPHl (z-7i)/ (2+r D)) (1-P) € (AD)

for all integers N > 0 and for all r > 0. We have

Uﬁ’r(x) = iMN’r(x)UN’r(x)
where M () = N/ (1+x2) P + 2r/(x2+x?) (1-P)
and “MN r(x)II = max{ZN/(1+x2),2r/(r2+x2)}

It is clear that {IIMN I

N N>0, r> 0} = [27,+»); hence,

\

{IMI: M € A13 D {0} U [2r,+%). We shall prove (sect.3) that the

inclusion can be actually replaced by equality and that, for non
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Constant U, the lower bound 27 can be attained if and only if U
has a trivial form. For this (and for further purposes) we shall
need some auxiliary results, which are contained in the next sec-
tion.

The differential equation (1) was first studied by H.Helson ([8]).
Many of the results of this paper can be considered as extensions
of the results of S.L.Campbell ([1]). In particular, the idea of

analyzing the H.Hl-norm in Al is due to him, but our point of view
is more geometric: the meaning of the differential equation (1)
for one:dimensional K suggests that M(x) can be considered as ""the
derivative of the argument', or as '"the gradient" of the analytic
curve N:RU{e} — U(K) defined by n(x)=U(x), U e (AI), x € RU{oo}.
This geometric approach is systematically exploited here. Part of
the results have been announced in [9].

We want to thank Professors H.Helson, S.L.Campbell, M.J.Sherman
and M.Imina for several helpful discussions.

2. GEODESICS IN k! AND U(K).

The results of this section do not depend on the structure of the
inner function-operators.
Thus, they have an independent interest. If R1 and R2 are two ro-

tations on R3, with rotation angles @, and @, , resp., then their

1 +OJ2.

This simple geometric fact has the following operator theoretical
analog:

composition R=R1R2 is a rotation with angle w < w

LEMMA 2.1. Let A,B € U(K) and assume that o0(A) c P(al,az) and
o(B) C l"(81,82) (where o (T) denotes the spectrum of T € L(K) and
F(wl’ab) = {eiezwl <0 < u&}). Then 0 (AB)=0 (BA) <s contained in
F(a1+31,a2+32),

Proof. Since both AB.and BA are unitary operators, it is clear

from [ 6, prob.61] that 0 (AB)=0 (BA) and that this set is contained
in oD.

If (az-a1)+(32-81) = 2m, then there is nothing to prove.
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Therefore, we can assume that az—a1< 7 (or Bz-Bl< m).

FIRST CASE: 0 < 8.-8,< 7. Since o(el®T) = (el®a:d € 0 (M)}, for all
2781

T € L(K), we can replace (if necessary) A and B by el®1p and e192p
and assume, without loss of generality, that o(A) c T (-a,a) and
o(B) c I'(-8,8), where 0 <a,p <m/2.

Since AB € U(K), 90 (AB)=0(AB) and therefore every point of ¢ (AB)
is an approxzimate eigenvalue of this operator; i.e., given M€0(AB)

and ¢ > 0, there exists ¢, € k! such that ﬂ(AB-k)on < e. We have

B, = bogtde, 5 b = (Beg,wy) € W(B) Ib|2+]d|2=le I%=1, and

Arpgmapgrce +E0, o a=(Reg,eg) € WEAR) , lal el ®elg]®= 1,

where W(T) = {(T¢,p):¢ € K'} is the numerical range of T € L(K)
(see [ 6]), A* is the adjoint of the operator A, p, € k! (or ¢1=0,
if |b|=1), ¢, € K" (o ¢,=0, if la]2+]c|?=1) and {eg,9,.0,} is
an orthogonal system. Recall that A*,B € U(K); hence, they are
normal operators and therefore the closure of W(A%) (W(B)) coin-
cides with the convex hull of o (A*) (0(B), resp. e, prob 1711).

Therefore, a ( b ) belongs to the convex hull of I'(-a,a) (I'(-8,8),
resp.); in particular |ab| > cos a@.cos 8 > 0.

We have
(ABp,0 )= (Boy, A% )=ab + cd , ((AB-N)¢,9,)=ab + cd - X.

By Schwartz'inequality, |ab + cd| < 1. On the other hand, since
% is an e-approximate eigenvector with eigenvalue A,

e > I (AB-Mo Il > |((AB-x)¢o,¢0)| = |ab + cd - \|.

Thus we have proved that: 1) ab # 0 (in fact, |ab| is uniformly
bounded below away from zero for all a in W(A*) and all b in
W(B)); 2) |ab + cd| <1 ; 3) |ab + cd - A| <e. Since IN]=1, it
is not difficult to conclude from 1), 2) and 3) that

I - exp{i(arg b - arg a)}| = 0(e). Since ¢ > 0 is arbitrary, we
conclude that A € I'(-a-g,a+8). This proves the result for the ca-
se when a,-ay < 7 and By=By <m,

SECOND CASE: 7 < 82—81 < 2m - (az-al). Let
vy = (1/2)[(a21a1)+(ez—61)]. An elementary application of the

spectral theorem for unitary operators shows that B can be fac-
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tores as B=CB1, where C,B1 e u(xy, o(Bl) C F(32—7,32) and
g(C) cC P(Bl,BZ-v) (see, e.g., [5]1). Now the result follows apply-

ing the first case to A1 = AC and then to AlBl = AB.

. qed.
REMARKS. a) An alternate proof of this lemma can be given using
thm.1 of [17]. b) This result is clearly sharp; in fact, it cannot
be improved even in the case when ¢(A) and o (B) are ”véry small'"
subsets of dD. To see this, observe that the bilateral shift S in

ZZ can be written as the product of two symmetries P and Q (see
[6, p.269]1); thus o (P)=0(Q)={-1,1}, while 0 (S)=0(PQ)=3D '

Lemma 2.1.can be extended to finite or infinite convergent dis-
crete products of unitary operators. Moreover, it can be also
extended to continuous products:

COROLLARY 2.2. Let M(X) be a continuous function defined on the
(finite or infinite) real interval (-a,b) (0 < a,b < +»), whose
values are non-negative hermitian operators in K, and let U(x)

be the continuous product (or multiplicative integral) defined by:

«x “« N iM.
U(x) = J exp{iM(t)dt} = 1im(N+«0TTj=1 e 1 =
0
(3)
: iM_ iM iM,  iM
= 1lim(N+) e N e N_l. .. e 26 1 ,
where
jx/N
). Mj=J M(t) dt , § = 1,2,...,N,

(3-1)x/N

and the limits in (3) are taken in the sense of the norm topology.
These limits are well-defined and U(x) € U(K) for all x € (-a,b).
Furthermore, ‘

o(U(x)) C F(O,JZHM(t)Hdt) , if 0 <x <b

(5) o
g(U(x)) c F(-J IM(t)lIdt,0) , if -a <x < 0.

X

For the existence of the limit in (3), see [4;15]. Since every

< N iM,
approximating -product TT5=1 e 1 is clearly unitary, the uniform

limit U(x) must be necessarily unitary. Finally, since
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iM . jx/N
o(e 3y cT0,IM, 1) C r(o,j IM(t)hdt), if x > 0,
J (-1)x/N

and

(3-1)x/

iM. N
o(e I) c F(-HMjH,OJ c P(-I IM(t)1dt,0), if x <0,

jx/N

the proof of (5) follows by induction on lemma 2.1 and an obvi-
ous continuity argument. This proves cor. 2.2.

It is worth noting that, in (4), Mj can be also taken equal to
(x/N)M(xj), for some xj in the interval determined by (j-1)x/N

and jx/N; however, the expression (4) is more convenient for our
purposes.

If (in cor.2.2) a.= + and lim (x+-e) U(x) = U(-) does exist,
then we can define
« -
X
(6) V(x)=U(x)U(-«0*=J exp{iM(t)dt} , x<b , V(-0)=1 ;

similarly, we can write

(_+co
6") W(x)=U(x)U(+w0*=[J expl{iM(t)dt}l* , x > -a , W(+eo)=I
x

in the case when b=+w and lim(x++%) U(x)=U(+x) does exist.

0 + o0
In particular, J IM(t)ldt < oo (J IM(t)ldt < e, resp.) is a suf-
-0 0

ficient condition for the existence of U(-) (U(+),resp.), as it
immediately follows from cor.2.2 (see also [2,p.431).

THEOREM 2.3. Let M(X) be a continuous function defined on the
real interval (-a,b) (0 < a,b < +), whose values are hermitian
operators in K and let X € U(K). Then the differential equation

(1) has a unique solution such that U(0)=X, which is given by
-~

U(x) = [JZexp{iM(t)dt}]X .

Furthermore, if {Mk(x)} ie a sequence of functions satisfying the

above conditions,

1im(m,p-+oo) Ib

-a

IM, ()M, () ldx = 0,
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and Uk(x) i8 the solution of the equation Ui(x)=iMk(x)Uk(x) satis
fying Uk(O) =1, for k=1,2,3,...; then {Uk(x)} converges uniform
ly on (-a,b) to a U(K)-valued funetion U(x).

NOTE. We are assuming neither the boundedness of the HMk(x)H' nor
the integrability of "Mk(x)H.

Proof. The existence and uniqueness of the solution was proved in
[8]; it is straightforward that the above multiplicative integral
satisfies (1) (see [4]). '

Let Mk(x) and Uk(x) be as indicated; by the definition of the mul

tiplicative integral (3)-(4), for fixed m,p and x in (-a,b), we
have

ﬂUm(x)-Up(x)l T - Up(x)Um(x)*" =

< N iM.<—N iMm.
lim HI-[TT5=1 e PsJ][TTj=1 e Tedyay =

Now
iM iM iM_ . -iM_ .
= lim uzjgle PoN e Pajtl(1oe Prd o My,
N->o
-iM_ . -iM iM_ . -iM_ .
x e Wil e TmNjg liijzlﬂI-e Psl e Mody,

N

SincejMp(t) and M_ (t) are continuous and |x] < e , there exists a
constant C(x;m,p) < e« such that HMp(t)H < C(x;p,m) and HMm(t)H <

< C(x;p,m) , for all t in the interval determined by 0 and x. Now
it is easy to see that

i -iM

M . .
. Ps] m,j _ ; - -2
1 e .€ 1(Mm, Mp,j) + O(N ) ,

k|
and therefore

\ . N
10, (x)-U ()1 < lim {Zj=1uMm

Noo

-M_ _I+NO(N"2)} =
J Ps]

N jx/N
= 1lim z._lnf [M_(£)-M_(£)]dtl <
N+ (GG-L)x/n © P

(X b
< JOIMm(t)- Mp(t)ﬂdt < JoﬂMm(t)-Mp(t)Idt, for 0 <x <b,
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and similarly,

0 0
W, (-0, ()1 <J M (£)M_(£)1dt <J M, (£)-M_(e)1dt

X -a

for -a <x < 0.

Therefore, {Uk(x)} is a Cauchy sequence in the space of all u(x)-

valued functions, continuous in (-a,b). Since this is a complete
metric space under the uniform topology, the result follows.

qed.
Consider the real Hilbert space structure of K given by the inner
product (w,W)R=Re (p,¥). It is clear that K;=K1 and H¢HR= lell, for
every ¢ € Kp (= K under the real structure). Let 7:[0,1] — k! be
a cont;nuous mapping; then the "length'" of the curve v is defined

by

- N - . = =
(7) K(v)-sup{2j=1H7j 7j_1ﬂ.t0 0<t; < oo <ty <tg=1},

where 7j=7(tj), j=0,1,...,N, and the supremum is taken over all

partitions.

LEMMA 2.4. Let Y be a continuous mapping from [0,1]1 into x! and
assume that -1 <Re (Y(1),v(0)) < 1. Then k(YY) > w , where
0 <w<w and cos w = Re (v (1),r(0)).

Furthermore, the lower bound w is attained if and only if there
is a continuous non-decreasing function f£(t) from [0,1] onto
[0,w] such that

(8) v(t)=(cos £(t)) ¢, + (sin £(t)) ¢, , tE ro,1 ,

where ¢0=7(0), Y=y (1) and $, € Ké is defined by the conditions:

(¢1,95)g=0 and ¥=(cos w)¢, + (sin w)¢,

Proof. If Kk (y)=+e , then there is nothing to prove; so we can di-
rectly assume that k(y) < +e. It is clear from the above comments
that we can consider K under its real Hilbert space structure KR;
it is also immediate that the sum corresponding to a given par-
tition is always smaller than k(y) and that this sum increases by
a refinement of the partition. We recall that the norm of a par-
tition is the maximum of the numbers tj'tj-l’ j=1,2,...,N. Given
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e >0, let'Rj be (for a given partition of [0,1] and for each j,
j=0,1,...,N) the rotation. of KR defined by Rj¢0= ¥os ij = ¢, if
(©,99)g = (#s75)p = 0, and Ryy, = 7§ , where 7} = (75:90)p%0

. 2,1/2
Then,

N 2 2,1/2
K . IR.vy.-R. . + R.-R. 5 -
r) > ZJ=1{ 375 3-173_1" Il ( ; J_l)vJ_ln }

_ 7 N Vot g2 i 2,1/2 _
Zj=1{H7j Vil TR Ry )Y, 17 € >
N 1wt - N "_mn -
> Zj=1H7j-7j_1H e > Zj=1"7j i - e,

where 73 = 76 =9 > 72 = 7i and 7; s J=2,3,...,N is defined by
induction, as follows: assume that 78,7;,...,73_1 has been chosen,

"o ' s ] " "o " 3
then set 7j 7j , if (7j,¢0)R < (7j-1’¢0)R , Oor vj 7j-1 , if

'
Thus, if the norm of the partition is small enough,

k(r) > ZjE1H7§‘7§;1“ - e >Ww- 2

Since ¢ is arbitrary, we conclude that k(v) > w.
Moreover, since RN=I is the only rotation of the above described

type that fixes ¥ (to see this, recall that 0 <w<®!) , it is
not difficult to infer from the above inequalities that the infi-
mum can be attained if and only if Rj=I and 7;=73=7j , for all
j=1,2,.:.,N, and for all partitions of [0,1]; i.e., if and only
if v has the form (8).

qed.

REMARK. ‘The' geometric meaning of lemma 2.4 is the following: if
v,¥ € K! and v # -¢ (hence, l¢-¥l < 2), then there exists a u-
nique geodesic curve v:[0,1] — K1 joining them and the 1ength
of this geodesic is equal to: arc cos Re (¢,¥) (it is trivial
that if Y=-p there exist infinitely many geodesics in ! joining

these two points). The fact that k! is "geometrically homogeneous"
is most important here, and we guess that analogous results can
be proved in any uniformly convex ( or even strictly convex)
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Banach space (i.e., that given two-sufficiently close-different
points of the unit sphere of the space, there exists a unique
geodesic in that sphere joining the two points and, moreover ,
that this geodesic is a smooth curve). But none of these proper-

ties is true in the general case; for example, if X = Ll(R,dx) and
fa(x) is the characteristic function of the interval (§,56+1), then

£, € x' (the unit sphere of X) and I£-£.l, = 25 , if 0 <3 < 1;
this shows, in particular, that f0 and f6 can be taken "arbitra-
rily close". Fix 8, 0 <& < 1; then 70:[0,1] —_ Xl, 70(t)=(1-t)f0+

1 .
+ tfs, and 71:[0,1] — X7, vl(t) = ft<S , satisfy
K(rg) = x(ry) = M,-£ly, = 28

and therefore, they are geodesics joining fo with f6 ; in fact,

there are infinitely many geodesics joining these two points. Fur
thermore, the strong derivative of vo(t) is well-defined and

76(t) = fs—fo (for 0 < t < 1), but 71(t) is differentiable nowhere

(not even in the weak sense!) in (0,1).

COROLLARY 2.5. Let m:[0,11— U(K) be a continuous mapping such
that In(0) - n(1)l =R, 0 <R <2 ; then the "length" of the cur-
ve 1 (defined by (7)), satisfies the inequality k(M) > w, where

0 Kw<m and |1-eiw| =R .

Proof. Observe that In(0)-n(1)I=1I-Ul=R, where U=n(1)n(0)* € U(K);
this implies that ¢ (U) C I'(-w,w) and, moreover, either - o (U)

or e_im € o(U). We shall assume that et is in the spectrum of U;
the other case can be similarly analyzed; then, as in the proof

of lemma 2.1, first case, we can see that el is an approximate
eigenvalue of U. Hence, given any ¢ > 0, there exists ¢ € K1 such
that | (U-e*¥T)el < €.
Define 7v:[0,1] — k! by v(t) = n(t)n(0)*p ; v is obviously contin
nuous and satisfies

lcos @ - Re (v(1),7(0))] = |cos @ - (¥(1),7(0))gl <

Hence, by lemma 2.4, k(y) > w - ¢ and, since e¢ is arbitrary we

conclude that k(an(0)*) = k() > w.
‘ qed.
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In general, two different points of U(K) can be joined by infi-
nitely many geodesics. However, there is exactly one particular
case in which we have exactly one geodesic; this is the case of
the following:

COROLLARY 2.6. Let n be as in cor.2.5 and assume that K(n) = w

and o (n(1)n(0)*) C {T,eiw}. Then there exists a non-zero projec-—
tion P in K and a continuous non-decreasing function £(t) from
[0,1] onto [0,w] such that

n(t) = [eX¥p o+ (1-p)Inco) , telo,1 .

Proof. Without loss of generality we can assume that n(0)=I; then

our hypothesis on n says that n(1) = elv p 4 (I-P), for some non-
zero projection P.

Let ¢ € K1 N P(K); then n(t)y describes a geodesic in K1 joining

¢ with el®. Thus, by lemma 2.4, n(t)y = elf (), £or some contin

uous non-decreasing function f(t) from [0,1] onto [0,w].
Assume that eiu

(S a(n(to)), for some t, € (0,1) and some a such

0
that eia#1, # eif(to) Then, if 0 <0 < f(to) (mod 27), cor.2.5
implies that

w=kkM)=k(n:t € [O,tO])Hc(n:t € [t0,1]) > f(ty)+wa >w ,

a contradiction. By considering separately all possible cases, we

conclude that o(n(t)) C {T,eif(t)} , for all t € [0,1] ; i.e.,

act) = X5 pey (1 - PO,

where P(t) is a projection in K, depending continuously on t.

Moreover, the first part of the proof shows that, if 0 < t1 < t2<

< 1, then P(tl) > P(tz) (observe that every V € k! n P(K) is an

eigenvector of n(t), with eigenvalue eif(t)).

Since 0 < w < w,we can find t0=0< t) <t, <ty <t, =0 such

4
that £(t,)-f(t. ,) <1, for j=1,2,3,4. If P(t. ) # P(t. ), for
3 j-1 ig ip-!
some jo, 1< jO < 4, then
==} 4 . .
K(m)=w Zj=1[f(tj) f(tj—l)] < 1+Zj¥jox(n.t € [tj_l,tj]) <

< Ilﬂ(tjo)-n'(tjo_l)ﬂ + ZJ—#J--OK(n:t €ty ppt.]) <),
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a contradiction.

Therefore, P(t) = P(1) =P, for 0 <t < 1.

qed.
REMARK. It is not difficult to see, using the spectral theorem
for unitary operators, thdt the result of cor.2.6 is sharp in the
sense that, if m satisfies the requirements of cor.2.5 and k(n)=

=w (0 <w<<7), but o(n(1)n(0)*) contains a point ei“ #1, # eim .

# e'i“, then there exists infinitely many geodesics in U(K) join-
ing n(0) with n(1).

3. THE BEST LOWER BOUND FOR “M“].
In this section we improve thim.10 of [1]:

THEOREM 3.1. If M € Al and M(x) # 0, then IMI| > 2r. Furthermore,
"M“1=2W if and only if U'(x)=iM(x)U(x) for some U € (Al) of the
form

(9) U(z) =[(z-2)/(z-X)P + (I-P)IX ,
where N\ € UHP , P is a non-zero projection in K and X € U(K).
Proof. Let U be a non-constant inner function-operator in (AI)

satisfying the differential equation (1). It follows from thm.
6.1,7) of [11] that

u

IX - Ul = sup{lIX-U(x)l:x € R} 2,

for every X in U(K). This means that the continuous (furthermore,
analytic) closed curve n:R* — U(K) (where R* is the one-point
compactification of the reals) defined by n(x)= U(x) has diameter
2 ( U(-)=U(+x)=U(w)). Therefore, there exists a point X, € R

such that HU(«OFU(XO)H =2; i.e., -1 € o(U(xO)U(«O*).
Thus, by cor.2.5, the total length of 7 satisfies

k(M) = k(Mi-0o <X < Xg) + K(M:X) S X < +) > 27 .

But, since # is smooth, k(n) is indeed equal to

+o +o
k(m) = J lu' (x)lldx = J IM(x)ldx = IMD, .
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Therefore, ﬂMII1 > 2t (this is also a consequence of cor.2.2.
*'If U(z) has the form (9), it is completely apparent that HMI1= 2w,

:Thus, 'in order to complete the proof we only have to show that,
Jif IIMII1 = 2m, then U(z) has the form (9).

First of all, observe that M(x) cannot be identically zero on a
non-empty open subinterval of R (otherwise, the analyticity of
U(z) would imply that M(x) = 0 on R). Therefore,

X
x — w(x) = J IM(t)Il dt

.is a continuous and strictly increasing function from [ -eo, +cd]
onto [0,27] .

Since U € (AI) it is easy to see, using cor.2.2 (and comments fol
lowing it!), tAm.2.3 and the above observations about w(x), that
U(x)=V(x)U () =W(x)U(e0), where V(x) and W(x) are defined by (6)
and (6'), resp., and

o (U(x)U(=)*)=0 (V(x))=0 (W(x)) C [(0,w(x)) N T(2r-w(x),0) =
= (1,efe®)y 4 e e

Using cor.2.6 we can easily follow that
Ux) = [P+ (1-P)]U(e)

for some non-zero projection P in K.

Since U € (AI), e () nust coincide with the limits on the real
.axis of a inner function (in the UHP) b(z); moreover, b(u) must
be analytic on D . Hence, b(z) is a finite Blaschke product such

that b(w) = () = 1, on the other hand, by our observations of
section 1, the number of zeroes of b(z) is equal to

+ oo

+ o0 .
N = (1/21r)f d arg b(x) = (1/21;)J M) dx = 1 .

We conclude that b(z)=(z-\A)/(z-X), for some A € UHP; i.e., U(z)
‘has the form (9). '

qed.
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L. THE BEST LOWER BOUND FOR IM(x)I.

Thm.3.1 provides the best lower 'global" bound for M(x) and its
main interest lies in the fact that the lower bound can only be
attained by a class of particularly simple inner function-opera-
tors. This lower bound for IMI, corresponds to 'the total varia-

tion of the argument on 9D is > 2n", for the scalar case.
We want to show here that, if M(x) is interpreted as '"the gradi-
ent" of the inner function-operator U(x), this makes it easier to

obtain pointwise lower bounds for IM(x)ll . Theorem 4.1 below was
suggested by an observation of Prof. H. Helson.

If b(z) is a finite Blaschke product on the UHP with a zero at
z=N , then

lgrad b(x)|=] (d/dx)b(x)| > | (d/dx) (x-\)/(xX)| > 2ImA/|x-1 |2
The vectorial analog of |grad b(x)| is IM(x)l; thus, the above

scalar result suggests that IM(X)I > ZImR/|x-k|2,'where A € UHP
is any point such that U(A) is not invertible in K. We shall
prove that this is actually true; furthermore, we have

THEOREM 4.1. Let U € (Al) be a non-constant inner function-opera-
tor and assume that U(x) satisfies the differential equation (1),
for x € R. Then, for any N in the UHP such that U(N) Zs not inver

tible in K and any € > 0, there exists ¢ € Kl such that
Mx)v,p) > (ZImk-a)/|x-X|2 , x € R.

In particular,
M(x) I > sup{ZImk/Ix-klz:U(z=k) is not invertible}

Proof. We shall prove the result for the case when A=i; equiva-
lently: when U(u=0) is not invertible in K. The general case will
follow by a conformal transformation of the UHP onto itself.

By (2),

(10)  U'(x)=iM(x)U(x)=-2i/ (i+x)? (d/dw)U (w=(i-x)/ (i+x)).
Let U~(u)=U(T)*; it is easy to check that U~(u) € (AI), U~(z) =
= U(-1/2)* And U™' (x)=iM~(x)U~(x), where (using (10)) M~(x) =

= (1/x*)M(-1/x), for all real x#0, and M~(0)=1im (x+0) (1/x2)M(-1/x)=
= 2[ (d/dw)U(w=-1)1U(w=-1)%*.



217

Now it is clear that, for ¢ € k! and ¢ > 0,

M~ (x)e,¥) > (2-e)/(1+x2), for all real x , if and only if
M(x)e,0) > (2-¢)/(1+x%) , for all real x.

Therefore, it is equivalent to prove the result for M(x) or for
M™(x).

FIRST CASE. Ker U(u=0)*=Ker U~(u=0)=K0#{0}.

Then (see [12;13;16]), U(u) can be factored as U(u)=B(u)C(u) where
B(u)=uP+(I-P) (P=the projection of K onto Ko) and C € (AI).

Thus, in UHP we shall have U(z)=B(z)C(z)=[ (z-i)/(z+i)P+(I-P)]1C(z).

If M(x), M(x;B) and M(x;C) are the hermitian valued functions as-
sociated to U, B and C, resp., by means of the differential equa-
tion (1), then (see [8,thm.3])

M(x)=M(x;B)+B(x)M(x;C)B(x)* > M(x;B).

Hence, if ¢ € K' n Ky, then (M(x)¢,#) > (M(x;B)p,0)=2/(1+x%).

SECOND CASE. Ker U(u=0)=Ker U~(u=0)*=K1#{0}.

Applying the first case to U™(z), we obtain

M~ (xX)e,p) = 2/(1+x2) (and therefore, M(x)y,p) > 2/(1+x2)), for
all ¢ € K' n K, and all x € R.

THIRD CASE. U(u=0) is not invertible, but Ker U(u=0)=Ker U(u=0)*=
={0}.

In this case we shall prove that U(u) can be approximated by ele-
ments of (AI) satisfying the conditions of the first case, uniform
ly on |u] <R, for some R > 1. Without loss of generality we can
assume that U(w=1)=I; then K admits the orthogonal direct sum de-

composition K=KT9Kt reducing U(u), where U(u)|K1 (= the restric-
T
tion of U(u) to K;) is the identity I, of Kt and U(u)lK =
T
= ATGT(u)BT , Where
) -1
0 p (w)=[ -T+uD, (I-uT*) DT]IDT:DT — O,

is the characteristic function of a Coo-contraction T on a Hilbert

1/2,._D,1,*=(I-TT*)1/2 , DT= closed Range(DT) ,

DT*= closed Range(DT*) and AT and B, are unitary maps (independent

space H, DT=(I-T*T)

of u) from DT* onto K, and from KT onto DT, resp.. For defini-
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tions and properties of the characteristic function of a contrac-
tion, Coo—contractions, etc., see [16]; for details about the de-

composition K=KT9Kt, see [13]. Here, we want to use those results

without specifying details: since U(u) € (AI), o(T)={oc € D:U(0)
is not invertible} in particular, 0 € ¢(T), i.e., T is not inver-
tible in H. Moreover, our hypothesis on U(u=0) and tim.VI.4.1 of
[16] imply that the polar decomposition of T has the form T=XH,
where. X € U(H) and H € L(H) is a non-invertible hermitian non-ne-
gative operator such that Ker H = {0} and IHI < 1. Therefore, by
the spectral theorem for hermitian operators (see [5]), given any
6 >0 there exists an hermitian operator H6 € L(H) such that
.HHGH < B,NT-Tﬁﬂ < & (where T6=X(H'H6))’ Ker (H-Hs) # {0} and
o(H-ﬁs) c {0} U[&/2,1]. We can assume that § < 1; then DT and
1/2

=(T-T% =T-(H- o .
DTG (I TSTs) I-(H HG) have the same range and, similarly DT*

and DT* have the same range. Thus, if we set
6 ®
UG(u)=AT0T6(u)BT®IT ,
then U (u) € (A1), Ker UG(O)*=ATX[Ker(H-H6)]=K6¥{0}, and
U(u)-Ué(u)=AT[0T(u)-éT6(u)]BT®O =

- - -1 1. -1 .
= Ap{XHg+uD [ (I-uT*)™ - (I-uT%)™"1D;}B,®0 ;

clearly, since U, U, € (AI), 10 (u)-U (u)l < ' on |u| <R (for
some R > 1), where 8' — 0, as § — 0.

From the Cauchy formula

(11) (d“/dun)U(u)=(n!/2wi)Jl | u(e) (t-u) ™™t de , Jul <R,
t|{=R

for the derivatives of a function analytic on |u| <R, it follows
that

(12) 1(@/dn) U -U, 11 <8'/R-D? < e,
and therefore
(1+x2) M (x) M () | < e

(where M6 has the obvious meaning), for all x € R, provided &
(and hence &' too) is small enough.

Applying the first case to this UG; for all ¢ € k! n K6 and for
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all x € R, we obtain

M(x)e,0) > Mgp,0)-e/(14x%) > (2-¢)/(1+x?).
qed.
REMARKS. a) It was proved in [1,p.9] that, if U € (AI), then

IM(X) I < (ZzzzlnﬂUnH)/(1+x2), where U(u)=Z;:0unUn is the Taylor
series of U(u) about the origin (here Un €-L(K); since the Taylor
series of U(u) converges in a closed disc of radius larger than
one, the sum of the norms in the upper bound of |M(x)ll -also con-

verges). Here is an alternate proof for the existence of an upper
bound: it follows from (10)-(11)-(12) that

IMCOI=N0" ()1 < [2 inf{(R-1)"2 max NU(RW)I}]/(1+x2) ,
weaD
where the infimum is taken over all R > 1 such that U(u) can be
continued analytically to |u| <R.
b) The result of ¢tim.4.1 is obviously sharp (and it provides a

new proof of: "IIMII1 > 2n, for all M € Al, M(x) # 0"). We can say

even more; it was proved in [1,cor.1] (using a result due to
Potapov, [15,p.154]; see also lemmq 4.2 and cor.4.3, below) that,

if M e Al then Ker M(x) = Ker M(0), for all real x. This result
might suggest that, in thm.4.1, one can replace "there exists a

Y e Kl” by "for every ¢ € Kl, ¢ L Ker M(x) ..."; however, the
analogy with the scalar case cannot be carried to this point, as

it is shown by the following example: let K=c? (i.e., dim K=2)
with orthonormal basis {wl,wz} and let 0 < w < w/2; define
U(w) € (AI) by

w 0"

0 1

Then, a straightforward computation shows that Ker M(x) = {0};
however, K(U(w)wz) = 0(w), and therefore (for small values of w)

COsS W -sin w
U(w) =

cos w sin w’

w j
0 1

-sin w Cos w sin w cos w

¢2 cannot satisfy the thesis of thm.4.1. Furthermore, according
to the proof of .the theorem (first case), there exists a vector
¥ in Kl, such that M(x)e,y) > 2/(1+x2), for all x € R and there-

fore, Kk (U(w)y) > 27 ; however, there is no ¢ € K1 such that the
curve {U(w)¥} has diameter 2.

c) For the scalar case, |grad b(x)| is always determined by its
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values on a small segment of the reals. The situation is different
in the vectorial case: given any closed subset Z of R and an or-

thonormal basis {wn};:1 of K, it is always possible to select a
sequence {hn € UHP} in such a way that, if U(z)¢n=(z—Kn)/(z-Tn)¢n,
n=1,2,3,... , then HM(x)ﬂ=2/(1+x2) if and only x € Z.

We are going to close this section with an improvement (in fact, a
"localization" of the result) of the above mentioned result of
Potapov (remark b) to thm.4.1).

LEMMA 4.2. Let ¢(z) be a K-valued analytiec function in the UHP

and assume that: 1) le(z)l < 1; 2) for some Ve Kl,
lim (y$0) (v (iy),¥)=1 and, either lim (y40) (d/dz) (¢ (z=iy),¥)=0,
or lim (y40) [ (¢ (iy),¥)-11/y=0. Then ¢(z) = V.

Proof. It follows from the theorem of Julia-Carathéodory (see,e.g,
[14,p.57]) and 1) and 2), that the scalar analytic function £(z)=
= (¢(z),¥) = 1. Hence, 0 (z)=y+¥(z), where (¥(z),¥) =0, in UHP.

This last expression of ¢(z) and 1) imply that, for all z € UHP,

1> 0e(2)1? =1+ “w(z)ﬂz, which is clearly impossible, unless
¥(z) = 0; i.e., v(z) =¥ on UHP.

qed.
From this Zemma and t#m.2.3, we obtain the following

COROLLARY 4.3. Let U € F and ¢ € Kl, and assume that, for some

Ve Kl, (U(z)¢,¥) satisfies the condition 2) of lemma 4.2; then
U(z)p = V. Moreover, if U(z) is analytic at 2=0, then ¢ € KerU' (x)
and Ker M(x) = U(0)[Ker U'(0)] = Ker M(0), for all x € R n R(U).

5. COMPLETENESS OF Al.

THEOREM 5.1. Al is a complete metric space.

Furthermore, if {Mk} ig a Cauchy sequence in Al and U, € (AI) <s
the solution of Ui(x)=iMk(x)Uk(x), Uk(0)=I, then fhere exists

U € (AI) satisfying (1), such that U(0)=1I and

i) For each n > 0, | (dn/du“)[Uk(u)-U(u)lll — 0 (k — o),
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uniformly for |u| < R, for some R > 1;
ii) (1+x2)IMk(x)-M(x)ﬂ — 0 and IM_-MI; — 0 (k — o).

Proof. i) By thm.2.3, the sequence {Uk(x)} converges uniformly on
R to a U(K)-valued function U(x). Hence, HUk(w)-U(w)H — 0, uni-

formly on 3D; since F is complete, it follows that U € F and that
10, (u)-U(u) Ik — 0, uniformly on D~ (Clearly, U(w=1) = U(x=0) = I).
Therefore, there is an m such that HUk(u)-U(u)H < 1/4, for all

k >m and all u € D

Since Um € (AI), there exists e€ > 0 such that Um(ul is invertible
in K and, moreover, HUm(u)-lﬂ < 4/3, in the annulus 1-¢ < |u| < 1.
Hence, HUk(u)'lﬂ < 2 and HU(u)-lu < 2, on that annulus. Thus, it
follows from [10] that Uk(u) (k > m) and U(u) can be continued
analytically to the closed disc of radius R0=1/(1-e); moreover,

U, (W)-U()l — 0, uniformly for |u| < R,. Now i) follows from

the Cauchy formula (11) for the derivatives of an analytic func-

tion, by choosing as R any real number such that 1 <R < Rb.

ii) In particular, for the first derivative, (10)-(11)-(12) show
that

(1+x2)ﬂMk(x)-M(x)ﬂ < (1+x2)[HU£(x)-U'(x)H+IU'(x)[Uk(x)*—U(x)*]H}<
< max {I(d/dw)[U, (W) -UG)]1}+C max {1V, W) -UG)I} ,
wedD " ‘wedD

where IM(x)I < C/(1+x2), as in thm.4.1 (and M is related with U
by (1)). It follows that (using 1))

(1+x3)IM_ () "M = 0 (k — o) ,
uniformly on R, and therefore

M -MI | < sup{(1+x2)HMk(x)jM(x)H:x € R} — 0
- ' qed.
NOTE. The completeness of Al has been independently proved by
S.L.Campbell (pefsonal communicétibn).

6. CONTINUITY ON THE BOUNDARY.

The result of this section has an independent character. Let UEF.



222

It was shown in [8] that, if U(z) is continuous on {z:Im z = 0,
|z] < e},then U(z) can be continued analytically to z=0. In fact,
a stronger result is true: U(z) can be continued analytically to

z=0 if and only if U(z) is invertible in K and "U(z)’lﬂ is uniform
1y bounded for all z in the set {z:Im z > 0, |z| < e} for some

e > 0 (see [10]). The result of [8] can be improved in a differ-
ent direction; namely:

THEOREM 6.1. Let U € F and assume that U(X) coincides a.e. with a
continuous U(K)-valued function V(x) on (-e,e) (for some e > 0);
then U(z) can be continued analytically to that real interval and
U(x)=V(x), for all x € (-e,e).

Furthermore, if 0 & R(U), Z <s any null set (with respect to the
Lebesgue measure) and w € 0D, then given any 8 > 0, there exist
EO,EI € (-€,e)\Z such that U(Ej)=lim(y¢0) U($j+iy) e u(), j=o0,1,

and
dist[w,o (U(E IUENMI<S

Proof. Clearly, it is enough to prove the last statement.

Without loss of generality, we can assume that
U(x) = 1lim(y40) U(x+iy) € U(K), for all x € (-e,e)\Z and that

U(E0)=I, for some EO in that set. Assume that, for some el® € ap
and some & > 0,0 (U(x)) NT(0-6,0+8) = @, for all x € (-e,e)\Z .

Let a € D and consider the inner function-operator

(13)  U_(z) = [U(2)-all[I-a0(z)17" %8,

It follows from the previous observations and the spectral mapping
theorem (see, e.g., [6,prob.591), that if a is close enough to

eie, then o(Ua(x)) cI(-n/4,7/4), for all x € (-e,e)\Z . Hence,

(14)  Re (U (x)e,9) > 1/VZ , for all ¢ € k'

(and a.e. x € (-e,e)).

Recall that, for z=x+iy € UHP, (Ua(z)w,w) is given by the convolu
tion of'(Ua(x)¢,¢) with the Poisson kernel y/w(x2+y2).

Since |(Ua(x)¢,¢)|< 1, it follows from the properties of the

Poisson kernel (see, e.g., [18]) and (14) that there exists a po-
sitive m such that Re (Ua(2)¢,¢) > 1/2, uniformly with respect to
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¢ € k! and z € F = {x+iy: |x| <e/2, 0 <y <n}; this shows, in
particular, that Ua(z) is, invertible in K and HUa(z)'1n< 2, for

all z € F,
Thus, it follows from the above mentioned result of [ 10] that

0 e R(Ua). From (13), we conclude that 0 € R(U).
qed.

REMARK. Continuity cannot be replaced by strong continuity in thm.
6.1. In fact, if {Wn}nzl is an orthonormal basis of K and U € F
is defined by U(u)wn=bn(u)¢n, where bn(u) is a finite Blaschke
product (n=1,2,...), then U(u) is strongly continuous on the
closed unit disc. If, for example, bn(u)=un, then U(u) is compact

for all u € D and R(U) = D (i.e., every point of 8D is a singular
ity of U). If b (z)=(z-i-n)/(z+i-n), n=1,2,... , then U(z) is ana

lytic on R and it satisfies the differential equation (1), where
Mx) = [17) 2/01+(x-m)%1P_

(Pn is the orthogonal projection of K onto the one-dimensional
subspace spanned by wn), and

X
0 < N(x) = J M(t) dt < 271 ;

moreover, N(x) converges strongly to 2mI as x converges to +oo.
However, U ¢ (AI).
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