AN ELEMENTARY PROOF OF THE JORDAN CANONICAL FORM

Enzo R. Gentile

Let V be a finite dimensional vector space over a field K. Let t be an endomorphism of V. Then, as it is well known, V can be written as a direct sum of cyclic subspaces. If $m_t(X) \in K[X]$ denotes the minimal polynomial of t, in studying the structure of t one is reduced to consider the case where $m_t(X) = p(X)^a$, with $p(X)$ an irreducible polynomial in $K[X]$ and where a is a natural number.

A cyclic subspace of V admits the following matrix representation:

\[
\begin{pmatrix}
P & N \\
P & N \\
\vdots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
P & N \\
P
\end{pmatrix}
\]

where P is a block consisting of the companion matrix of $p(X)$ and where N is the block

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{pmatrix}
\]

of the same size as P.

The rational canonical form of t consists of the matrix obtained by assembling blocks of the type (C). If $p(X) = X - k$, $k \in K$ (for instance if K is algebraically closed) then (C) becomes a Jordan block, and the canonical form is called the Jordan canonical form. The proof of the Jordan canonical form depends essentially on the canonical form of a nilpotent endomorphism, fact tediously proven in most books in linear algebra.
In this Note we intend to give a direct proof of the Jordan canonical form. Nevertheless the ideas in the proof permit to prove the structure theorem of finitely generated torsion modules over a principal domain, which shall be done elsewhere.

To start with, we set some terminology. Throughout this Note, subspace means subspace invariant (or stable) under \(t \). Furthermore morphism means morphism commuting with \(t \). Recall that a subspace \(W \) of \(V \) is a direct summand of \(V \) if and only if there is a morphism \(f: V \rightarrow W \) whose restriction \(f|_{W} \) to \(W \) coincides with \(\text{Id}_{W} \).

Let \(v \in V \). With \(\langle v \rangle \) we denote the cyclic subspace of \(V \) generated by \(v \). Any element of \(\langle v \rangle \) can be written as \(a(t)v \) for some \(a(X) \in K[X] \).

From now on assume that \(t \) is a nilpotent morphism. For any \(v \in V, v \neq 0 \) we define the order of \(v \) as the highest positive integer \(o(v) \) satisfying

\[t^{o(v)}v = 0, \quad t^{o(v)-1}v \neq 0. \]

Notice the following property of \(o(v) \): for any \(a(X) \in K[X] \),

\[a(t)v = 0 \text{ implies that } X^{o(v)} \text{ divides } a(X). \]

In fact, this follows from the property of being \(K[X] \) a principal domain and standard arguments on polynomials.

Let \(v \in V \) be an element of order \(s \). We consider in \(\langle v \rangle \) the following sequences of subspaces:

\[0 \subset \langle t^{s-1}v \rangle \subset \ldots \subset \langle t^{i}v \rangle \subset \ldots \subset \langle tv \rangle \subset \langle v \rangle \]

We claim that if \(x \in \langle v \rangle \) then

\[t^{i}x = 0 \text{ iff } x \in \langle t^{s-1}v \rangle \]

In fact, part "if" is trivial. On the other hand, let \(t^{i}x = 0 \).

Write \(x = a(t)v \). Then \(0 = t^{i}x = t^{i}a(t)v \) and therefore \(X^{s} \) divides \(X^{i}a(X) \), which implies that \(a(X) \) is divisible by \(X^{s-i} \),

\[a(X) = X^{s-i}r(X). \]

Finally \(x = t^{s-i}r(t)v \in \langle t^{s-i}v \rangle \) as we wanted to prove.

Next we start to prove that \(V \) is a direct sum of cyclic subspaces. Let \(v \in V \) be an element of highest order in \(V \). This implies that

\[t^{s}z = 0 \text{ for any } z \text{ in } V. \]

Let \(\langle v \rangle \) be the cyclic subspace of \(V \) generated by \(v \). We shall define a projection of \(V \) onto \(\langle v \rangle \).

For this, let \(W \) be a subspace of \(V \) satisfying the following properties
i) \(\langle v \rangle \subset W \)

ii) There is a morphism \(f: W \to \langle v \rangle \) such that \(f(\langle v \rangle) = \text{Id}(\langle v \rangle) \)

iii) \(W \) is maximal with properties i) and ii).

Obviously if \(W = V \) nothing has to be proved. Assume then \(V \neq W \).

Choose \(u \in V - W \) and consider the subspace

\[W' = W + \langle u \rangle. \]

\(W' \) contains \(\langle v \rangle \) and we shall extend \(f \) to \(W' \).

Let \(J \) be the ideal of all polynomials \(a(X) \) in \(K[x] \) satisfying

\[a(t)u \in W. \]

\(J \) is generated by a monic polynomial \(g(X) \). Since \(t^s u = 0 \in W \) it follows that \(X^s \in J \), therefore \(g(X) \) divides \(X^s \), so \(g(X) = X^d \)

for some \(d \leq s \). Notice that \(t^d u \in W \) therefore \(f(t^d u) \in \langle v \rangle \).

But since \(t^{s-d} f(t^d) = f(t^s u) = 0 \), by an earlier remark we get that \(f(t^d u) \in \langle t^d v \rangle \), that is

\[f(t^d u) = t^d x \]

for some \(x \in \langle v \rangle \).

We set

\[f': W + \langle u \rangle \to \langle v \rangle \]

\[f': w + a(t)u \mapsto f(w) + a(t)x \]

and we claim that \(f' \) is a well defined morphism of \(W' \) onto \(\langle v \rangle \).

Let \(w, w' \in W, a(X), a'(X) \in K[x] \) satisfy

\[w + a(t)u = w' + a'(t)u. \]

Hence

\[(a'(t) - a(t))u = w - w' \in W \]

implies that

\[a'(X) - a(X) \in J \), that is \(a'(X) - a(X) = b(X)x^d \]

Therefore

\[f(w) - f(w') = f(b(t)t^d u) = b(t)t^d x = (a'(t) - a(t))x \]
\[f(w) + a(t)x = f(w') + a'(t)x \]

which says that \(f' \) is well defined. Clearly \(f' \) is a morphism of \(W' \) onto \(\langle v \rangle \) that extends \(f \). Since \(W \) is properly contained in \(W' \), we have a contradiction. Therefore \(f \) is a projection of \(V \) onto \(\langle v \rangle \) and we can write

\[V = \langle v \rangle \oplus V' \]

But by an inductive argument, \(V' \) is a direct sum of cyclic subspaces, so \(V \) is a direct sum of cyclic subspaces and this was our claim.

REMARK. Notice that the present proof holds for any endomorphism \(t \) whose minimal polynomial is \(m_t(X) = p(X)^a \), with \(p(X) \) irreducible in \(K[X] \). As we remarked at the beginning the general situation \(m_t(X) = \Pi p_i(X)^{a_i} \) of different irreducible factors reduces trivially to the case above.