ACTIONS ON A GRAPH

Antonio Diego

ABSTRACT. Part of the theory of flows and tensions on a graph is extended to any kind of actions, i.e. to any subspace of the space of real functions defined on the arcs; in particular, the theorems on the existence of flows or tensions under bilateral restraints.

1. INTRODUCTION.

Our basic setting is a graph $G = (X, S)$; here it means that $S \subseteq X \times X$ verifies: $(i, i) \notin S$ and $(i, j) \in S$ implies $(j, i) \in S$, $i, j \in X$. We assume G connected.

We consider functions f, g, \ldots defined on S and we denote by $f \cdot g = \sum_{ij} f_{ij} g_{ij}$, the usual scalar product.

By E we denote the linear space of anti-symmetric functions:

$e_{ij} + e_{ij} = 0, (i, j) \in S$.

The subspaces of flows and tensions, $\Phi, \Theta \subseteq E$, are defined by:

Φ, if $\sum_j e_{ij} = 0, \forall i \in X$, and Θ, if $\theta_{ij} = t_j - t_i$, t defined on X ($\theta = \Delta t$). Φ and Θ are orthogonal complements in E.

If $F \subseteq E$ is defined as the set of solutions f of the linear system: $\lambda^\alpha f = 0$, $\alpha \in M$, its orthogonal space $G = F^\perp$ in E, is generated by the μ^α, $\alpha \in M$, where $\mu^\alpha_{ij} = \lambda^\alpha_{ji} - \lambda^\alpha_{ij}$ When $M = X$ and the λ^α_{jk} vanish except for $j = i$, writing $\lambda^i_{ik} = \lambda^i_{ik}$, we have $\mu^i_{ij} = -\lambda^i_{ij}$, $\mu^i_{ji} = \lambda^i_{ij}$ and $\mu^i_{hk} = 0$ for the remaining $(h, k) \in S$. Then, the elements $g \in G$ are of the form $g_{ij} = t_j \lambda^i_{ji} - t_i \lambda^i_{ij}$ ($g = \Delta^i t$),

where t is a function on X. The case $\lambda^i_{ij} = 1$ corresponds to $F = \Phi$, $G = \Theta$. Given an orientation to G - i.e. a subset U of S containing for each $(i, j) \in S$ one and only one of the pairs (i, j), (j, i) and a positive m_i, $i \in X$, defining $\lambda^i_{ik} = m_i$, if $(i, k) \in U$, and
\(\lambda_{ij} = 1 \), if \((i,j) \notin U\), we obtain the spaces of multiplicative flows and tensions ([1] pp.225).

Actions of a certain kind can be thought as the elements \(f \) of a subspace \(F \) of \(E - f_{ij} \) representing the intensity of the action \(f \) transmitted from \(i \) to \(j \) through the link \((i,j) \in S\).

Certain notions and results of the theory of flows and tensions on a graph, can be extended to any subspace \(F \) of \(E \). Doing that, a unified linear treatment of the outstanding cases \(F = \emptyset, F = \Theta \) - that may be useful - is obtained.

In 2 we give the notion of elementary action, corresponding to the notions of elementary cycles and cocycles, and a proposition on the decomposition of any action in elementary ones. It gives the known decomposition of a positive flow (tension) - on an oriented graph - as a positive linear combination of elementary cycles (cocycles) ([1] pp.143).

In 3 we prove the analogue of Hoffman and Roy's theorems ([2], [3]) for actions of any kind, using the appropriate geometric version of the consistence theorem of a system of linear inequalities (Farkas-Minkowsky).

2. ELEMENTARY ACTIONS.

For \(f \in E \) we denote \(s(f) = \{(i,j)/f_{ij} > 0\} \), the (effective) support of \(f \).

It is seen that, for \(f, g \in E \):

\[(A) \quad \emptyset \neq s(g) \subseteq s(f) \Rightarrow s(f-\lambda g) \subseteq s(f), \text{ properly, for the positive number } \lambda = \max \left\{ \frac{f_{ij}}{g_{ij}} \mid g_{ij} > 0 \right\}. \]

A function \(f \in F, f \neq 0 \), is said to be an elementary function of \(F \) if for any \(g \in F, s(g) \subseteq s(f) \) implies \(g = \lambda f \).

This means that \(s(f) \) is a minimal set of \(\{s(g)/g \in F\} \). In fact, \(s(f) \) minimal implies, for each \(g \in F \) with \(s(g) \subseteq s(f) \), that \(s(f-\lambda g) \subseteq s(f) \), properly, (A); since \(f - \lambda g \in F \) it follows \(s(f - \lambda g) = \emptyset \), \(f = \lambda g \). The converse is clear.

Of course, if \(f \) is an elementary function of \(F \), so is \(\lambda f, \lambda \neq 0 \).

PROPOSITION. Any \(f \in F, f \neq 0 \), is a sum of elementary functions.
\mathcal{F}_a of F such that $s(f_a) \subset s(f)$.

Proof. Let g_1 be an elementary function of F such that $s(g_1) \subset s(f)$. From (A), for some $\lambda_1 > 0$, it is $s(f - \lambda_1 g_1) \subset s(f)$, properly. If $f - \lambda_1 g_1 \neq 0$, we apply to $f - \lambda_1 g_1 \in F$ the same argument and we get an elementary $g_2 \in F$, $\lambda_2 > 0$, such that $s(g_2) \subset s(f - \lambda_1 g_1)$ and $s(f - \lambda_1 g_1 - \lambda_2 g_2) \subset s(f - \lambda_1 g_1)$, properly. After a finite number of steps we have elementary $g_1, \ldots, g_k \in F$, $\lambda_1, \lambda_2, \ldots, \lambda_k > 0$, such that $f - \lambda_1 g_1 - \ldots - \lambda_k g_k = 0$. The proposition follows with $f_a = \lambda_1 g_a$, $1 \leq \alpha \leq k$.

For a set $Z \subset S$, such that $(i,j) \in Z$ implies $(j,i) \notin Z$, we define $\xi = \xi(Z)$ by $\xi_{ij} = 1, -1, 0$ according to $(i,j) \in Z$, $(j,i) \in Z$ or $(i,j), (j,i) \notin Z$, respectively. $\xi \in E$ and $s(\xi) = Z$.

If $Z = \{(i,j), (j,k), \ldots, (h,l), (l,i)\}$ is a cycle, ξ is a flow, if $Z = \{(i,j)/i \in A, j \notin A\}$ ($A, X - A \neq \emptyset$) is a cocycle, ξ is the tension $\Delta(-1)\lambda$. If the sequence i,j,k,\ldots,h,l of the cycle Z has not repeated elements Z is an elementary cycle. If A and $X - A$ are connected, in the graph G_z obtained eliminating the $(i,j), (j,i)$, with $(i,j) \in Z$, the cocycle Z is said to be an elementary one.

It is clear that $\xi = \xi(Z)$ is an elementary flow, when Z is an elementary cycle. For an elementary cocycle Z, if $\theta = \Delta t$ is such that $s(\theta) \subset Z = s(\xi)$, the connectedness of A and $X - A$ in G_z implies $t_{\mid A} = \alpha, t_{\mid X - A} = \beta$, then $\Delta t = \theta = (\beta - \alpha)\xi$, with $\beta > \alpha$. Hence ξ is an elementary tension.

Conversely, if $\varphi \neq 0$ is a flow, $s(\varphi)$ verifies that $(i,j) \in s(\varphi)$ implies $(j,k) \in s(\varphi)$ for some $k \neq i (\varphi_{ji} + \sum_{k \neq i} \varphi_{jk} = 0, \varphi_{ji} = -\varphi_{ij} < 0)$.

It follows that $s(\varphi)$ contains a cycle, and then also an elementary cycle Z. Hence if φ is an elementary flow, $\xi = \lambda \varphi, \lambda > 0$. On the other hand, if $\theta = \Delta t \neq 0$ is a tension, taking α: $\min t_i < \alpha < \max t_i$, the cocycle Z defined by means of $A = \{i/t_i < \alpha\}$ is contained in $s(\theta)$. Hence, if θ is an elementary tension we have $\xi = \lambda \theta, \lambda > 0$. Z has to be an elementary cocycle, otherwise we could
take a connected component A' of A (alternatively of $X - A$) in G_z and define Z' in terms of A'. But this would imply $s(\mathcal{F}') \subseteq s(\mathcal{G})$, properly; which is a contradiction.

Resuming, the multiples $\lambda s, \lambda > 0, s = s(Z)$, for Z elementary cycle (cocycle), are the elementary functions of $\Phi(\mathcal{G})$.

3. EXISTENCE THEOREM.

We consider a finite dimensional linear space with the scalar product $x \cdot y$. For a cone $Q = Q^+ Q \subseteq Q$, $\lambda Q \subseteq Q$ for every $\lambda > 0$ - the dual cone is defined by $Q^0 = \{x / x \cdot y \geq 0, \text{for any } y \in Q\}$.

We need the theorem of consistence of a system of linear inequalities under the following form:

"Given the polyhedral set C and the polyhedral cone Q, $(C, Q \neq \emptyset)$ it holds: $Q \cap C \neq \emptyset$ if and only if, for every $x \in Q^0$ there is a $c \in C$ such that $x \cdot c \geq 0$".

In fact, if $Q \cap C = \emptyset$, we can separate the closed convex (polyhedral) set $Q - C$ from 0; i.e. there is x such that $x \cdot (c - q) < 0$, for any $c \in C, q \in Q$. Taking $\lambda q, \lambda > 0$, instead of q, we conclude that $x \cdot q > 0$, i.e. $x \in Q^0$. For $q = 0$ we have $x \cdot c < 0$ for every $c \in C$. The converse is clear.

We will apply the theorem to a subspace Q. In this case $Q^0 = Q^\perp$.

THEOREM. Let $c_{ij} + c_{ji} > 0$, for any $(i, j) \in S$, and F be a linear subspace of E. In order that there exists $f \leq c$, $f \in F$, it is necessary and sufficient that, for each elementary $g \in G = F^\perp$, $g^+ \cdot c > 0$.

REMARK. As it is usual: $g^+ = \max(g, 0)$. The condition $c_{ij} + c_{ji} > 0$ is obviously necessary for the existence of an anti-symmetric $f \leq c$.

Proof. Omitting the word "elementary", the equivalence follows from the theorem of consistence applied to $Q = F, C = \{x / x \leq c\}$ in the linear space E.

In fact, $Q \cap C \neq \emptyset$, i.e. there is $f \in F, f \leq c$, is equivalent to
assert that for any \(g \in G = Q_\lambda \) there is \(x \in E, x \leq c \) such that \(g.x \geq 0 \). This implies \(g^+.c \geq 0 \), since from \((g^+-g^-)x \geq 0 \), \(c \geq x \), it follows \(g^+.c \geq g^+.x \geq g^-.x \), and then \(2g^+.c \geq (g^++g^-)x = |g|x = 0 \) (\(|g| \) is symmetric).

And conversely, if \(g^+.c \geq 0 \), \(g \in G \), then defining, for a given \(g \in G \), \(x \) by \(x_{ij} = c_{ij}', -c_{ij}', -1/2(c_{ij}-c_{ji}) \), according to \(g_{ij} > 0 \), \(< 0 \) or \(= 0 \), we have \(g.x = 2g^+.c \geq 0 \).

Finally, if \(g^+.c \geq 0 \) for elementary functions \(g \in G \), the same holds for any \(g \in G \), since from the proposition we can write \(g^+ = \sum_a g_a^+ \), for elementary functions \(g_a \) of \(G \).

REFERENCES

Recibido en marzo de 1974