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ON THE PARTITIONS OF AN INTEGER

Radl A. Chiappa

As is well known (see for example [1], [2]) the following formu-
la (I) gives by recurrence the number of "partitions" - the '"par-
tages' of French authors - of a positive integer n; i.e., the num
ber of non decreasing sequences of positive integers whose sum is
n.

Formula (I) is
o= J (it T ) (1)
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where we take LI 0 for n < 0, and Ty = 1.

We present here a direct calculation - direct, in the sense that
no generating function or Euler identities are used -. Further-
more, for the proof we introduce a general lemma, which seems to
merit some attention in itself.

Let wj o denote the number of such sequences whose first element
H] .

is j (j = 1). Then, LIV ¢1’nvfor n > 2; and L =j§1wj’n for
n > 1, Clearly, Wj , = 1 whenever j = n or [n/3] <j <[n/2] and
’
¢j o = 0when n# j >[n/2] ([x] denotes "integral part of x").
H

‘The following array gives the non zero values of wj n and T for
1<n<14. ’

14

21

¥ N 1 2 3 4 s 6 7 8 9 10 11 12 13
1 1 1 2 3 5 7 11 15 22 30 42 56 77 101
2 .1 1 2 4 7 8 12 14
3 S I R TR B 2 3 4 5
4 N I T 1 1 2 2
5 o T 1 1 1 1
6 B . . 1 1
7

- a - o

LI 1 2 3 5 7 11 15 22 30 42 56 77 101 135
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For convenience, we extend the function ¢ to all n € Z, setting

Wj n = 0 whenever j > 1 and n < 0. We then have the equalities:
s

A) ﬂn—l = wl,n

By n_= J ¢, for n # 0
n jz21 J.n
O Ve, = Yau1,0-1 7 Ya-1,p-q
We now prove C. It is clear, when j # p, ¢jsP = hgj wh’p_j.

Then, for p # q we have:

v = 1 v =V + 1 v =y + ¥
a-1,p-1  p3q-1 RBP4 a-l,p-q ;4 BsP-d q-1,p-q q-p
= = = 1 d = 0.
and fox' p = Q. wq,v ¢q—l,p—1 an wq-l,p—q
In passing, we note that Property C and the values wj a =0 for
£

j=1,n<0, and ¥, | =V = 1 for all j > 1, determine uni-
H]

is23
quely the function V.

The following formula (II) is equivalent to (I), and will provi-
de us with our basic approach.

-
T =2 -7 + J (-7 + A ) (In
n =l n-3 422 3i?_j 31244

coon n 2

where AS =T - =1,

T
s s-1 2

Clearly, evaluating L

o= 0 for n < 0 and T, = Ty

n-1 from (I) provides (II). On the oth-

er hand, evaluating with the aide of (II) the sum of the values

T Tools Tpogoeee We have (I).

Let us see now that the evaluation of T (n#0) - i.e., the sum

of the elements of the n-th column of the array ¥ - can be redu-
ced to the evaluation of a difference: substract the sum of the
values of ¥ on the set L = {(j,n-j-1) ; j = 1} from twice the sum
of the elements of the (n-1)-th column of the array V.

Specifically, for n#0 and from A), B) and C) we get:

T = ¥
o jgl

N = T + 5 - . P
J,n n-1 jgl(w:' ,n-1 wJ sn"J'].)

Therefore, using again A), B) and C) we have:
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L 0 for n< 0, Ty =Ty = 1, and 1)
Tn = : Tn-1 "~ Tn-3 ~ ("n—S - ﬂn~6) - j§3 wj,n—j—l for'm 2

The use of Property D, see below, reduces the evaluation of

)

to the consideration of the elements of the array for
j23

Yi,n-5-1
another set T, which will be determined implicitly by the resulting

equations.

First, it will be convenient to visualize in the following array
the sets L and T, whose elements are represented by means of '"+"
and "°'" respectively.

ve. n=-13 n-12 n-11 n-10 n-9 n-8 n-7 n-6 n-5 n-4 n-3 n-2 n-1n
-] (-] o o o o o o + j=1
-] (-] o o + . 2
o ° ° + 3
° ] + 4
(-] + 5
+ 6

The above mentioned Property D is the following:

R O C S S IR SN W

For the proof, it suffices to reiterate (q-1) times Property C.

From D, we obtain:

2

j23 jon=-j-1 = j§3(w - ¢1,n—2j-1) - Z z wh,n—Zj—l (2)

ksm=2] h22 jh+l

For convenience, we regroup the terms as follows:

“1,m ~ ! (wl,m—zs - wl,m-Zs—l)
s20
(3)
B for h > 2
“h,m sgo Yh,m-2s or h =
From C, we obtain wz,m = ¢1’m_1 , and more generally, from D
Tl S | Cpmey fOTT>2 (4)

2<hgr-1

Also, from A), C), and (3) we get:

Proo-i+l " ¥2,m-i " "m-i T "m-i-1 T Sm-i (5
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The last equality and the following proposition will permit us to

express ¢ _, and thus [ ¢, , in terms of Ak (k < n-7).

j23 jyn-j-1

PROPOSITION. For r > 3, we have:

k
¢ = A + L (-nTa : y
r,m m-r wew_ m~r (w1+w2+w3+...+wk)

where Wr is the set of sequences of positive integers W (1 <ix<k)

such that LA > LA sy T-1T 2w, , w, =3 .

+1 1 k

Proof. For r=3, the set Wr is empty, and thus, from (4),(5)

Y30 = Y1,m-2 "

For r > 3, the use of (4),(5) and an inductive reasoning gives

14

r,m = pl,m—r+1 - sp2,m—r - wh,m—r

3<hsr-1

=A - 7 @ppn+ I (DA

)
3<h<r-1 ueUh +"°+ut)

-r—h—(u1+u2

where, for each h, we have h-1 > u >u, > U, > .00 > u, > 3.

Setting Wy, o= h and Wio= Uy for 2 <i <k = t+1, we can write:

I N M G DL

wewr m—r—(w1+w2+...+w

»

where the w-sequences satisfy the required conditions.

Having obtained this, we return to (2). If in this formula we sub-
stitute j by (3+s) in the indexes (1,n-2j), (1,n-2j-1) and j by
(h+1+s) in the indexes (h,n-2j-1) for h > 2, we obtain:

I v, .= 1@ - v ) - L1 .
§23 jon=j-1 630 l1,n-6-2s l1,n-7-2s he? §30 h,n-2h-3-2s

Finally, using (3),(5) and the proposition above:

k
L V. .= A - 7 (@ + J (- )
j23 jon-j-1 n-7 hs3 n-3-3h wew, n—3-3h-(w1+w2+...+wk)
For h=3, the set Wh is empty, then:
I v = A - A -8 (6)

i23 j,n=j-1 n-7 n-12

where
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k
S = z @ + Z -1)" A
hss4 n-3-3h weW n—3-3h-(w1+w

h

2+...+wk)) (7)

with h-1 > Wy > W, > W, > 00> W, = 3 for any h > 4.

The only remaining task is now to evaluate S. This task is simpli-
fied by using the following Lemma. Although we need it only for
a=3, b=s1, we will present it for any a > 0, b > 0.

LEMMA. For given arbitrary integers a > 0, b > 0, and every inte-
ger s > a, let WS denote the set of subsets of the set

{a,a+1,...,s}. Then, <f r is any function for which there is some
X such that X > X implies r(x) = 0, we will have:

R=7 7 0 reagsed) + 7wy =

i
s2a weW W.EW
s i

+

= r(aZ+ab) + J (-1)k{r(%(3(k+a)2 - (k+a) + a(2b-a-1)))
k21

(8)

+ r(3(3(k+a)? + (k+a) + a(2b-a-1))))
Proof. The sums in (8) are finite, as follows easily from a > 0
and the above conditions on the support of r.
For fixed s, we shall proceed to associate to each w € W, - with
one exception - an element w' € Wj, where j satisfies either

j = s+l or j =s-1and in such a way that a(s+b) + J. w, =
WiEW
= a(j+b) + 7} w: , with cardinals |wl and |w'l differing in one.

[] 1
W_.EW
1

Therefore, as r(a(s+b)+) wi) is equal to r(a(j+b),+] wi), these
terms can be omitted in the evaluation of R, since they appear
with opposite signs. Hence, for fixed s, the sum

)} (-1)'“' r(a(s+b) + 7} wi) will be reduced to a single term.
wews wisw

To accomplish this, we start by identifying each w € Ws, w # 3,

with the decreasing sequence of its elements. That is to say, if
k is the number of elements in w (w € Ws), we will have

w = (Wl,wz;w3,...,wk), with s 2w >w, >wy > ... >w > a.

Denoting by:

W, =1(w/w-= Wys Wyy vnn W) o, w = a}
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w2
s

{w/ w

(Wl’ Wos eee s wk) > W > a2, W < s}

w3
s

w/ we= (W, Wy, «ev wk) s W >a , W o= s}

we get: W_ = Wl U W: U Wz v g}, where @s will denote the empty
set as element of W_.
S
. 2 2 2
Clearly, Wa, Wa, and Wa+1 are empty.

We now define the rule of association and, for the sake of clari-
ty, we divide the problem in two parts.

1

PART I. For fixed s > a, let a_: W, :

—_—
WS+

1 Y {®s+1} be the map-
ping defined by:

as(wl,wz,...,wk_l,a) = (wl,wz,...,wk_l) when k > 1, as(a) = ¢s+1
Obviously, «_ is onto and one-to-one.

We will then have:

R = r(a(a+b) + ] ) 3(-1)*W' r(a(s+b) + | w.)

1
>a+ weW W.EW
s>a+1 s i

because for $§ > a the terms in Wi compensate with those in

2

v ) 2
Ws+1 U {¢s+1}, and for s > a+1 the same occurs with WS U {@S}
and W;_l. Moreover, we see that in R appear, now, only the terms

corresponding to Qa and Wz (s > a+1).

PART II. First, let £, 1 < f <k, be the greatest integer such
3 i :
that for w € Ws, w o= (wl,wz,...,wk) we have W, = s - (i-1) whe-
never 1 <i < f£.
For convenience, we set: w, = atg and, since it will be needed la

ter, we single out the case f=k. Thus, the additional assumption
g=f clearly implies s = 2k + a - 1 and reciprocally; while g‘= f+1
implies s = 2k + a and reciprocally. That is to say, f=k=g if and
only if (s-a) is odd, while f = k = g-1 if and only if (s-a) is

even. Thus, for both we have k = [5;%111 , where [ ] denotes the
function "integral part of",
Next, we consider in Wz two subsets:Wé, whose elements are the se

quences such that w,=a+g<at f but excluding that one with
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f=%=g (if any); and Wz, where we=2a+g > a + £, but exclu-
ding that one with £ = k = g-1 (if any).

4 5 5
Clearly, Wa+1, Wa+1, and Wa+2 are empty.

The above considerations enable us to complete the rule of asso-
ciation by defining the following mapping: '

. 4 5 .
For fixed s = a+1, let ﬁs: WS — WS+1 be given by:
BS (Wl’ Wos +oe s wk) = (wi, wé, cen wL_l) where
w. +1 when 1 <1i<g
w! = .
W, when g+1 < i < k-1

Clearly, ﬁs is one to one. Moreover, it is onto, since for

w' € W:+l , wW' = (w!, wé, e s wi), the sequence

w = (wl, Wos wne s Wps wk+1) that has

=

1l

{ {
]

I

o Hh

H

il —

NN

[

NN

W Fh

<)
+
H
[y
Hh
[
n
P
+
—_

gives ﬂs(w) =w'.

By means of ﬁs, we see that for s > a+1 the terms corresponding
to Wi are equal to the terms corresponding to W:+1, and for

s > a+2 the same thing happens with the terms of Wz and W:_l.
Therefore, in the evaluation of R they compensate and hence can
be omitted. Thus, for each Wz, only one element will remain for

evaluating R. Using this, we have the following reduced expres-
sion:

k
R=r(a?+ab)+ § (-DFrals+d) + [ wy)
s2a+l i=1

9

where W,
1

s - (i-1) ,1<i<k, and k = [5:%114.

According to these restrictions, we have, for s = 2k + a - 1

k
a(s*b) + ] w, = 3 (3(kva)? - (k+a) + a(2b-a-1))
i=1 *

and for s = 2k + a
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k v
a(s+b) + J w, = & (3(k+*a)? + (k#a) + a(2b-a-1))
i=1

Replacing these expressions in (9), we obtain the asserted equali-
ty (8).

Returning to our problem, we substitute in the Lemma the values

a=3, s=h-1, b=1, r(j) = An-3—j' Then, the resulting value»of R is

precisely the value of S given by (7).

If moreover, we set k+3 = i, we obtain:

i

S =A + 7 - (A + A } (10)
Bkl ggy 3i%_j 352:5
n——-—z— n_T

Finally, by replacing in (1) the results from (6) and (10), we
obtain (II), as asserted.
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