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I« INTRODUCTION.

In [11] some first extensions of the multiplier theory as devel-
oped in Banach spaces in [5] and [17] were presented for locally
convex spaces. In view of the applications these considerations
were essentially restricted to order-preserving operators. In the
mean time, however, we observed that some of the given and other
examples are also valid in a non-order-preserving setting. In this
general frame a multiplier theory for arbitrary multiplier opera-
tors has interesting new applications, in particular to weighted
locally convex spaces., Motivated by these viewpoints we therefore
continue our investigations in [11], this time for general multi-
pliers in locally convex spaces.

In the applications we treat projective and inductive limits,
essentially of weighted locally convex Hausdorff spaces.,The Fourier
series are defined via classical orthogonal systems such as the
trigonometric system, Laguerre-, Hermite- or ultraspherical poly-
nomials,

After giving some definitions and general results in Section II,
first of all in Section III multipliers are defined. Then some
classical inequalities of approximation theory are extended to
locally convex spaces and the saturation problem for approxi-
mation processes of multiplier operators is treated. In Section
IV we derive a multiplier criterion via the (CK)-condition (4.3).

* Work supported in part by DFG grant Ne 171/1 which is grate-
fully acknowledged.
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Finally Section V gives some nontrivial new applications of this
criterion in (weighted) locally convex spaces for Fourier ex-
pansions by trigonometric and Laguerre polynomials. By similar
considerations: further examples conéerning Hermite and ultra-
spherical expansions could be worked out.

The author wishes to express his sincere gratitude to Professor
R.J. Nessel for his constant encouragement and many valuable
suggestions.

Il. PRELIMINARIES.

Let Z, N, P denote the set of all, of all non-negative and of
all positive integers, respectively. Furthermore, let R and R*
be the set of all real and of all positive real numbers. In the
following (X, {pr}reJ)’ J being an arbitrary index set, will

always denote a locally convex Hausdorff space whose topology T
is generated by a family of filtrating seminorms, or to be short,
by a system of seminorms {p_} _,. Let [X] be the class of all

continuous linear operators of X into itself. A family
{T(p)}p>0 C [X] is called an (equicontinuous) approximation pro

cess on (X, {pr}), if for each r € J there exists t € J and a

constant M(r,t) > 0 such that

(2.1 P, (T(IE) < M(r,t)p, (£) (F€X, p>0
(2.2) lim p_(T(e)f - £) = 0 (f € X)
. . P+ , .

Let (X,{p}) and (Y.{q}) be two locally convex spaces such that
Y is continuously embedded in X. Let X be complete. With

:= I R+, the completion of Y relative to X is defined by
qe{q}
(cf.[31)
YX* = u s®OF , S(R) := n S (O0;R) ,
ReX qe{q} 1 ¢

where §iRiX denotes the closure of S(R) in the X-topology and
Sq(O;e) := {h e Y; q(h) < e}. Let {fB}B€D be a net in Y with di-

rected domain D and Nf(Y) the class of all nets in Y which con-
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verge to £ in X. Then for every q € {q}

€ N‘g} (f e Y X

(2.3) q(f) := inf {Zgg q(fB); {fB}BeD

is a seminorm on Y X with

ND = ({£,),.p € N (Y); (£}, p is bounded in Y}  (f €X).
The locally convex spaces X to be considered in the applications
are representable as projective or inductive limits (cf. [16]1)
of locally convex spaces or even Banach spaces. In treating pro-
jective limits, we always examine the spegial case X C Xr, rej,
with' locally convex spaoes'Xﬁ,,gnd the linear mappings ur:X — X_
are the identity mappings. Furthermere, the system of seminorms
{p,},..y on X is usually given by a countable system of norms

{a, },.p which are in concordance . If the spaces X, are complete
for all k € P, we obtain the class of the complete, countably
normed spaces (Fréchet spaces) (cf. [7]) as a special class of
the projective limit. In the same way in our examples of induc-
tive limits the linear mappiﬁgs u X, — X are always the res-
trictions of the identity map from X to the locally convex sub-
spaces X C X. The topology of the inductive limit is then the
finest locally convex topology on X which induces on each Xr a
coarser topology than the initial. tepology. Particularly.

X = 9 Xm, the inductive limit of a monotone increasing sequence
{(Xm, Tm)}msP of locally convex spaces, is called the countable.
inductive limit of the spaces (Xm, Tm), m € P, or sometimes a
countable union space.

Let X = GO X: be the countable induotive limit of a sequence of
metrisable, locally convex spaces (X s T ) and let Y be the strict
inductive 1limit of locally convex spaces (Yk Tk) with the addi-
tional property that each Y* is closed in Yk+1. Then a family
{T(p)}p>0: X —+ Y of linear operators is equicontinuous iff to
each m € P there exists a % = k(m) € P such that {l(p)}:xm-—+ Yk
is equicontinuous (cf. [16; p. 891, [1]).

Furthermore, each closed linear operator T from a countable in-
ductive 1imit of B-complete locally convex Baire spaces {xk}ksP
into itself is known to be continuous (cf. [1]). A corresponding
version of the closed graph theorem holds for a linear closed
operator T of a barreled, B- complete space X into itself, espe-
cially for complete countably normed spaces X (c£.[16; p. 126]).
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I11. GENERAL THEORY.
III.1 MULTIPLIERS.

Let X be a locally convex (Hausdorff) space whose topology T is
generated by a system {pr}reJ of seminorms. Furthermore, let

(P hep © [X] be a total sequence of mutually orthogonal projec-
tions on X, in short a system {P,}, i.e., (i) mutually orthogonal:
Pij = sjkpk’ ij being Kronecker's symbol, and (ii) total: Pkf=0
for all k € P implies f=0. Then to each f € X one may associate
its unique Fourier series expansion

(3.1) f~ 3 Pkf (f € X)
k=0

The sequence {Pk}keP is said to be fundamental if the set I of all

polynomials, i.e., the set of all finite linear combinations

n

kZO f, with £ e P (X), is dense in (X, {p,}, ;).

With w the set of all sequences t = {rk}keP of scalars, T € w is

called a multiplier for X (with respect to {P,}) if for each

f € X there exists an.element f' € X such that

'(3.2) P f' = ¢ P f (ke P)

Since {Pk} is total, f' is uniquely determined by f. The class

of all multipliers t for X with respect to {Pk} is denoted by

M = M(X; {Pk}). o

To each multiplier v € M there corresponds a closed linear mul-
tiplier operator T': X — X, defined by T'f = £7. (In general
we don't distinguish between multipliers and the corresponding
multiplier operators). The set MC = MC(X; {Pk}) of all 1 € M
for which the operator T is continuous on X, can be identified
with‘a closed subspace of [X], denoted by [X]MC. In general

MC c M, but if the closed graph theorem holds on X, then MC = M.
In this case, to each r € J there exists t € J and a constant
B(r,t) > 0 such that

(3.3) p (T'£) < B(r,t)p, (f) (f € X)

"and we set

(3.4) nTan inf {B(r,t); pr(TTf) < B(r,t;7)p, (f), £ € X}

=l
HM’rpt.

,t
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If the seminorms {p }__j; on X are norms as in the case of coun-

tably normed spaces, then IT* b, e = 1T , where the Banach

[x%,x%]

spaces Xt and X¥ are the completions of the locally convex space
X under the norms p. and P,» respectively.

For an arbitrary ¢y € w we define

(3.5) x¥ := {f e X; there exists an ¥ € X with kakf = Pkf¢
for all k € P} '

Evidently x¥ ¢ X, and the linear operator BY: x¥ — X, defined
by BYf = £¥ for £ € XV, is closed for each ¥ € w. Furthermore,

P (X) c x¥ for each k € P, so that Bw is densely defined if

{P } is fundamental on X.The operators BY are called operators of
mu1t1p11er type.

It is easy to see

LEMMA <(3.6). (a) Under the system of seminorms {pi}reJ’ defined
by pY(£) := p (£) + p, (BYD) reJ, £exh)

XV becomes a locally convex subspace of X; the system {pi}reJ
is filtrating and separating.

() If (X, {pr}raJ) is a complete locally convex space, then

(Xw, {pi}rej) i8 complete.

In contrast to the Banach space theory in arbitrary locally con-
vex spaces there here exist unbounded multipliers t correspon-
ding to a continuous operator TY. A simple example is the dif-
ferential operator R = -i(d/dx) with eigenvalues {Ak}keP =
= {k} P which is not a continuous multiplier operator on

(w1th respect to the system {elkx}) but a bounded one on
02“, the locally convex space of 2m-periodic infinitely dif-
ferentiable test functions.

III.2 INEQUALITIES OF JACKSON-, BERNSTEIN- AND ZAMANSKY-TYPE
AND SATURATION.

In the following some fundamental inequalities in approximation

theory will be extended to locally convex spaces, and with these

means the saturation problem for multiplier operators in locally
convex spaces will be treated.

Let ¢(p) be a positive, monotonely decreasing function on (0,=)
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with 1im ¢ (p) = 0.
pro

THEOREM (3.7). Let {T(p)}p>o be a family of multiplier operators
on CX,{pr}) corresponding to {t(p)} CM, and let YV € w. Further-

more, let the family of multiplier operators {L(p)}p>0, given

via {A(p)} C MC’ be equicontinuous on X with respect to p. Then
the condition ‘

(3.8) 7 ) () = 13 =y (o) (ke P)

implies that to each r € J there exists t € J and a constant
B(r,t) > 0 such that the Jackson-type inequality

(3.9) 7 (0)P, (TOIE - £) < B(r,t)p, (8%F) (£ € x¥)
holds. On the other hand, the condition
- (3.10) ) = e Then ) (keP)

implies the Bernstein-type inequality

(3.11) P, (BT(2)£) < B(r,0)s7  (o)p, (£) (£ ex)
and \
(3.12) V() = 0T eI () In, () - 1) (keP)

the Zamansky-type inequality

(3.13) p, B'T(0)E) < B(r, 007 (0)p, (T(0)E - £) (fex)

The proofs are easy and follow analogéusly as those in Banach
spaces (cf. [6]). Indeed, (3.8) immediately implies (3.9) since

(3.14) $-I(D){T(p)f - £} = L(p)BYf (f € x"‘,p > 0)

In a similar way one may treat Bohr-type inequalities (cf. [8])
and the comparison problem (cf. (111, [121).

Let us briefly examine the saturation problem for approximation
processes {T(p)}p>o, defined via multipliers {T(p)}p>0. Procee-
ding as in the Banach space frame (cf. [5;II] and [17]), we set

for an approximation process {T(p)}p>o c [X]Mc
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T := {k € P; 1,(p) = 1 for all p > 0}

Under the assumptidn T # P we ﬁostulate as a sufficient condition
for the solution of the saturation problem:

(3.15) Let {T(p)} C [X]M be an approximation process on
C

X, {pr}reJ) with associated Multipiiers {t(p)}. Let there
exist a family {n(p)} C MC’ whose associated multiplier ope
rators {E(p)} form an approximation process on X, and a
sequence ¥ € w with Y, # 0 if k € T sueh that for all

p >0 and k € P

87 ()t (o) - 1} = wyny (o)

As {E(p)} is an approximation process, there holds lim nk(p) =1

for all k € P so that pre
(3.16)  lim ¢7H(e) Mt (o) - 1} = W, " (ke P)
p+eo

THEOREM (3.17). If pr(T(p)f - f) = Or(¢(p)) for each r € J then

fe UT Pm(X), and T(p)f = £ for all p > 0, Z.e. £ 28 an Znva-
me ‘
riant element.

Proof. As P, € [X] and
P67 ()T (E - £3) = 97 (0D L, (0) - 11P,E

for each k € P and r € J there exists some t € J such that by
~(3.16)

P (W Pyf) = lim p (67 ()t (o) - MPE) <

< B(r,t;k) lim p (7' (0){T(p)E - £}) = 0

P+

Thus ¢, P f = 0 for all k € P which implies P, f = 0 for k ¢ T,
while for k € T one has P, T(p)f = P f. Hence P, T(p)f = P f for
each k € P, and the theorem is proved.

If, in addition, the set

(3.18) FIX; T(e)] := {£ € X; p (47 (o) (T(p)E - £1) = 0,(1)

for p+» and each r € J}

contains a noninvariant element, then the approximation process

.
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{T(p)} is saturated in X with order ¢(p), and F[X; T(p)] is called
its Favard or saturation class. Such a noninvariant element always
exists as for each k ¢ T, r € J and 0 # h € P_(X)

p (T(e)h - h) = I'rk(o) - 1|Pr(h)
Let us observe that (3.15) implies for each‘r € Jv
(3.19)  ¢7H(e)p, (T(p)E - £) = p (B'E(o)9) (f € X,p > 0)
THEOREM (3.20). Given (X, {p .} _y) such that the closed graph
theorem holds on X. If {T(p)} satisfies (3.15), then the Favard

class of {T(p)} Zs characterized as (X‘p)~x and the following
seminorme are equivalent on F[X; T(p)l:

(1) p (£) + SUP P (¢” L) T()E - £1) (r e J)
p>0
(ii) 9% () and (iii) sup p (S(p)£) (r €J)
r 0>0

where {S(p)}p>0 C [X]M is an approximation process with S(p) (X) C
[

c xV.

Proof. (i) ¢ (iii): On account of (3.15) one may choose
{S(p)}p>0 = {E(p)}p>0, and the assertion follows immediately by
(3.19) and »

SUP p (E(p)f) < B(r, t)p, (£) + SUP p, (¢~ L)t f - £1) <
p>0 p>0

< B(r, t)lp, (£) + suv p (¢ Lio)tref - £1)1<
p>0 )
< B(r,t) SUP Py Y(E(p)£)

p>0

as {pr}raJ is filtrating.

(ii) = (iii): Given f € (X¥)™%, there exists a net {£5)g0p C x¥

such that pw(f ) < R (r € J) for some R > 0 and 11m P, (f -£)=0.
geD
Obviously BwS(p) is defined and closed on X, so that

BYS(p) € [X],
C
on XY we have BwS(p) = S(p)Bw, and therefore

pY(S(p)E) = p (S(pIE) + Lin p, (B¥s(p)£,)
P, (S()E) + lim p, (scp)B*f ) <
<

8
< B(r, t)[p (£) + sug P, (Bwf )]
B

< B(r,t) sug P (f )
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The left side is independent of the special choice of the net
{f }B D* and the right side is independent of p; therefore

sup p¥(S(p)€) < B(r,t) inf{sup p!(£,); {£,} € N2} = B(r,0)(E).
p>0 geD

(iii) = (ii): This direction is easily proved by examining the
particular net {S(B)}g p+ C x¥,

IV. A MULTIPLIER CRITERION FOR CESARO BOUNDED FOURIER EXPANSIONS.

In the applications the problem arises whether a given sequence
n={nd, . p€wis amultiplier with respect to a’ given ‘ortho-
gonal system {P } ep C [X] in a locally convex space (X,{p }raJ)
In ‘this sectlon we obtain a first criterion for subclasses of
M(X,{Pk}) by the uniform boundedness of the (C,x)-means; these
are just the‘classes‘bvn+1,«we11 known in. the literature for some
time, particularly in connection with the theory of divergent
series.

In the locally convex space.(x,{pr})ﬂwiph the system of projec-
tions {P }, p let the (C,x)-means for x > 0 be defined by - .

k=0

K .o (D+ky _ I(n+c+1
(4.2) Ay = (Cp) = F{HITTF%;ITT

DEFINITION (4.3). ("The (C*)- conditzon"). Let « > 0 and (X {p 1)
be complete. The pair (X,{p }reJ)’ {P } ‘eatiefies the (C¥)- condz—
tion, if for each r € J there ewzsts_t € J and a constant
C(r,t;k) > 0 such that g

4.1 (C,) £ := (A7 T ASPE . (fex,neP)

p, ((C,k) £) < C(r,t;x)p, (£) o (feX,;neP)

If (4.3) is satisfied for a‘fixed K > 0;'thén it follows that for
all g > «
p,((C,8) £) < C(r,t;x)p, (£) (fe€X,neP)

To derive an appropriate multiplier criterion we introduce the
sequence spaces bv as subspaces of £”, the set of all bounded
sequences, by

K+l
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.= @, . Kk+1
(4.4) va+1 = {net """bv' =

AL A
k+l k=0 K

o~8

n |-+ 1lim |n < w}
i o+ i g

where the (fractional) difference operator AB is defined via

(4.5) B AsB-1

n, = } n
Y B 1

With 8 > 0 and n € £° the series (4.5) converges absolutely. We

still remark that iiﬂ N, =N, exlsts for n € bv_,, and
(4.6) va+1 - va+1 0<vy <«
Furthermore, for each n € wa+1
& v K ,k+l
(4.7 Nt Mg o kzo Ag 8570 (n€P)

For these fundamentals see [17; Sec.3] and the literature cited
there.

THEOREM (4.8). Let (X,{p } . ;), {P,} satisfy the (C*)-condition
(4.3) for some « > 0. Then bvK+1
MC(X;{Pk})’ i.e., to each v € J there exists t € J and a constant
C(r,t;x) > 0 such that

18 continuously embedded in

Inl < C(r,t;n)llnllbv (n € bv

c+1 K+1)

M,r,t

Proof. Analogously to [5; II] or [12] we set up for an arbitrary
feX and n € bVK+1

n ._ pt K,K+1 L
£ kzo AkA nk(C,K)kf + n_f

Then £" € X since by (4.3) and (4.4) ({pr} being filtrating)
v +1
p, (") < C(r,t;x)p, (£) e Al L+ Inglp () <

< C(r,t;K)IInIIbv ' ps(f)
K

To prove that Pnfn = n P f for each n € P we consider

0~ if n >k
Pn(C,K)kf =
K K .
(Ak_n/Ak)Pnf if n<k

and obtain by (4.7) that

v
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K
k-n AK+1

+n,} =nP f

My nn

Concerning sufficient conditions for n € va
and [17; Sec.3 £ff].

+1 e refer to [5; II]

To give an application, let (X,{pr}), (P} satisfy (4.3) for some
k = 0. Then one may consider the Abel-Cartwright and the Riesz
means of (3.1), thus for ¢ > o0 and A > 0

©

(4.9) Wo(p)f ~ Z W((%’-)G)Pkf and RO’,}\(p)f ~ kZO r}\((_lg_)c)Pkf

k=0

-X

w(x) = e

(1-x)* 0<x<1
and rx(x) =

1 <x

For each ¢ > 0, » = « one has (cf. [5; II], [17; Sec:4]) that
kyo kyo

(4.10) (DY L (DY cby

uniformly in o > 0. Furthermore,

lim w((E)c) = 1 and ' lim rx((h)g) =1
p->oo P p-»oo p

so that convergence of the Abel-Cartwright and the Riesz means

follows on I (cf. Sec. III.1). If &I is dense in X and X barreled,

then the families {Wo(p)}p>0 and {Rc,x(p)}p>0 form approximation

processes on X.

To determine the Favard class F[X; Wo(p)] we examine (3.15) and
have for any o > 0

b = oK% 0(e) =077, e(x) = -xLexp(-x")-11 ,

n (p) = e(k/o), gig ne(p) = 1, and {n (p)} p € bV,

for each j € P (cf. [5; II]).

By theorem (3.20) it therefore follows that

RIX; W (p)] = XM with y =(-k%1,p

For further examples of processes, also in connection with theo-
rem (3.7) see [4], [5], [6], (91, [17] and the literature cited
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there. In this direction one has the following Bernstein-type ine-
quality

THEOREM (4.11).Zet v > 0. If (X,{p_}), {P,} satisfy the (C*)-conds
tion (4.3) for some k > 0, then to each r € J there exists t € J
and a constant B(r,t;x) > 0 such that for all polynomials

n .
f= ] Pfen it follows that
k=0

n n
p () kP £) <B(r,t;x)Cn’p (] P £)
Thk=o K ’ Ek=0 k

Proof. We reduce the proof to (3.10) with p+= replaced by n-+w,

Let v > 0 and e(x) € C:o(lo,w)), the class of infinitely differ-
entiable functions with compact support on [0,=), such that

e(x) =x" if 0 <x <1 and e(x) = 0 if x > 2, Evidently the se-
quence A(n) with Ak(n) =e(k/n) belongs to b\rj+1 for each j € P
uniformly in n € P(cf. [5; I, II]; the dependence of the parameter
n € P being of Fejér-type). Thus we choose j = [ k] + 1 with [«]
the greatest integer less than or equal to «. Now we identify

v, = k¥, ¢7h(m) = n¥; finally, 1 € w with () = @)% (n)

is a multiplier on X. Particularly, for f = E Pkf we have

k=0
1if k<n

by (3.11) as rk(n)

n ©
pr(kgo(k/n)vpkf) P (L MR D) < B(r,t;K)ﬂAHbvj+l p, (£) ,

and the theorem is proved with C = HAHbV .
VJ+1 -~

V. APPLICATIONS TO CESARO BOUNDED ORTHOGONAL SYSTEMS.

V.1. TRIGONOMETRIC SERIES.

As a first example we treat trigonometric expansions in weighted
locally convex spaces of 2n-periodic functions. Here theorem
(5.2) (cf. [14]) gives necessary and sufficient conditions upon
the weight functions Ur(x) such that the (C,1)-means of the
Fourier series expansion satisfy condition (4.3). This in turn
determines examples of locally convex spaces XE,J and Xs’J for
which the (C*)-condition is satisfied for « = 1 but not for

k = 0.

Let the system {Pk}keP be defined by



139

(5.1)  Pof(x) = £2(0), P £(x) = £2(K)el™™ + £2(-K)e ™ i* (ke N)

f* (k) denoting the usual Fourier coefficients

£2(K) = 3= [" £u)e tkugy k € )

-

THEOREM (5.2). [14; p. 223/224]: Assume that 1 < p < », f(x) is
integrable on [0,27], Ur(x) >0, £(x) and Ur(x) have period 2w,
Then the following are equivalent:

2
(5.3) lim JOF [ (€, 1) £(x) - £(x)|PU_(x)dx = 0

n+o

for every function f satisfying az(f)

2w
SSRGS
0
2w 2w
G4 e, E@ P, e < SIS
0 n r P 0 r
the constant Cp being independent of f and n.

(5.5) For every interval I with |I| < 2n (|I| the length of 1)
one has with a constant K, independent of I,

= -1/(p-1) -1 P -
A = JI U_(x)dx (JI[Ur(y)] P~Dgy)p-l c k|I|P (1 <p <=)
A = J U_(x)dx ess sup[U (y)]'1 < K|I] (p=1)
1 T yel ¥

REMARK. In the case 1 < p < = one may replace the (C,1)—means in
theorem (5.2) by the usual partial sums Sn(f;x) (cf£. [10]).

LEMMA (5.6). For every subinterval I C R the weights Ur(x) = |x|*
eatiefy the condition

Ap<K|I|p if -1 <7t <p-1 (1 <p< =)
A, <K|If if -1<r<0 (p=1)

with a constant K = K(r,p) <ndependent of I.

In view of the estimate

(5.7) _;r2-<§%7-’5/—2<1 x e [0,n]

Lemma (5.6) immediately implies
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LEMMA (5.8). The weight functione

U.(x) = |2 sin x/2|* (x € R)
satisfy (5.5) for

A<r<pl if 1<p<e,

-1<r<o if p=1.

Let us observe that on the fundamental interval [ -w,n] the func-
tions U (x) have to be defined here such that they are symmetrlc
in some ne1ghborhood of its singularities and zeros.

Via the weights Ur(x) of Lemma (5.8) we define the Banach spaces

I,p .. 1. ,p .
(5.9) Xyab = {f €Ly 5 a (f) :
” . 1/' .
= (J [£(x) [PU_(x)dx) P < =} (1<p<=)
-
as subspaces of L;". We have in the sense of continuous embedding
© s 1
(5.10) Lo Acvxgnp cL,, re (-1,p-1), 1<p<ew

and ng is dense in X;’P. Therefore the projections P,keP,
defined in (5.1), are continuous, total and fundamental on Xg;p
for all r € (-1,p-1).

Given some open interval J C (-1,p-1),'by

(5.11) XxP

.= T,p P .= I,p ©
p,J ° n X and X 1= U X5 (1<p<=)

reJ 2m v,J reJ

there are defined locally convex spaces in which the (C*)-condi-
tion (4.3) holds with k=1 for p=1 and by [10] even with =0 for
1'<p <=,

Evidently, for p=1 the (C,0)-means are not equicontinuous on
1
X ,] °f X ,j as the example

n
£f,(x) = sgn D_(x), Dn(x)~= 1/2 + kzlbcos kx

shows. Indeed, one has (n+=)

a (5, (£,5x)) > (1/2)IIS (sgn D_;x)I 1T 0(log n)
2w
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Under the system of norms {az}reJ which are in concordance, Xg 3

1 <p<w®», is a countably normed, barreled and B-complete

Hausdorff space, metrisable but not normable. As the closed graph
P . = P .

theorem holds we have MC(XD,J H {Pk}) M(XD,J H {Pk}). On each

X;;p c Léﬂ, r € (-1,p-1), and therefore on Xg,J and Xs,J the sys-

tem {Pk}kaP is continuous, fundamental, total and mutually ortho-
gonal. '

Xs 7 1 <p <=, is a countable strict inductive limit, complete,
’ N

barreled and Hausdorff but not metrisable and not necessary B-com.
plete; however by the closed graph theorem we have M, = M.

Let us conclude with an application of Theorem (4.11) in connec-
tion with the spaces (5.11) and weights (5.8).

COROLLARY (5.12). Let v > 0. Then to each r € (-1,p-1) there
existe a t € (-1,p-1) such that for each trigonometric polynomial
n .

I ¢ e*¥X  Lith some constant D(r,t;k,v) > 0
k=-n k

m™ n ik 1/
(I | Y x| cke1 *|P|2 sin x/2]%dx)" /P <
-7 k=-n
™ n .
< D(r,t;m,v)nv(J ) ckelkxlplz sin )(_/thdx)”p
-7 k=-n

V.2. LAGUERRE SERIES.

Let LP(0,=), 1 <p < =, denote the usual Lebesgue spaces (with
respect to ordinary Lebesgue measure) of functions for which the
norms

£y := (lef(x)ll"dx)”P : (1<p< =)
P 0

are finite. Lzoc(o,w) denotes the set of functions which belong
locally to LP(0,»), i.e. on every compact subset of (0,«).

With the weight functions, defined on (0,«) for some (fixed)
a > -1

(5.13) U, (x) := x‘“/zx]’(1+x)"“b exp (-x/2) (b,r € R)

let us introduce the Banach spaces
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P .- P ®): P .
(5.14) Xb r T {f € Lloc(O, ) wb,r(f) : If(x)Ub,r(x)llp <

Then for every open subset J c R, by

(5.15) xD g i= rQJ Xﬁ,r and xg,J 1= rLeJJ xg . | (1 <p <=)
locally convex spaces are defined in which considerations analo-
gous to V.1 are valid. Therefore the closed graph theorem holds
so that each multiplier t is continuous. Obviously these and the
following considerations are also true for a variation of the Pa
_rameter b in an open set J C R or of the pair (b,r) in an open

J CR,. '

Let L;(x), o > -1, denote the kth Laguerre polynomial given via

T o k _ _eny-o-1 __sXx
kzo Lk(x)s = (1-s) exp (-79%

Then to each f € Xp L3 or f € X L respectively, one may associ-
ate its (well- def1ned) (cf. [15ﬁ p.17]1) Laguerre series.expansion

(5.16) £~ ] P £
where

A7) EH ) = Gk, jo £(y)e Ty LE (1) dy)LE (x)

These projections {Pz}ksP form a total, fundamental and mutually

orthogonai system on Xg,J and Xs,J’ With the results in [13] and
[15] we determine now open intervals J = J(x,p) C R such that on
Xg’J and Xs’J the (CX)-condition (4.3) holds withr<t, r,t € J
for «=1; but (4.3) isn't valid with «=0 for all r € J and any
choice of t € J. This is an immediate consequence of the fact
that the conditions about the parameters b and r in [13] concer
ning (C,0)-summability are sharp. However, it was not
Muckenhoupt's aim to study summability conditions in a locally
convex frame. In particular for o > -1/2 and ‘

(5.18) 1/4 - 1/p <b < 3/4 - 1/p (1<p<~=)

one has the following intervals J(k,p) for the parameter r:
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{ (1/4 - 1/p, 3/4 - 1/p), p € [4/3,4]
(5.19) for =0 J(0,p) =

@ ,» p $14/3,4]

In case «=0 the restriction r < t, r,t € J, is necessary for p=4/3
and p=4. Thus, if p ¢ [4/3,4], then the (C,0)-means are not equi-
continuous on Xg j or Xs j respectively. On the other hand,

’ ’

(-1/(3p) - 5/4, 7/4 - 1/p), 1 <p < 4/3
(5.20) for «=1 J(1,p) =4 (-1/p - 3/4 , 7/4 - 1/p), 4/3 <p < 4
(-1/p - 3/4 , 19/12 - 1/(3p)), 4 <p < =

Furthermore, for b=r, o > -1, in (5.13), i.e.

Ur r(x) = xalzxrexp(-x/Z) there are other open intervals J(1,p)

(cf£. [15, p. 11]1) such that the (C,1)-means, but not the (C,0)-

means are equicontinuous on Xg j or Xs 7> 1 <p <, respecti-
’ ’

vely, namely

-1/p-min(a/2,1/4) <r <1 - 1/p + min(a/2,1/4)
(5.21) , (1<p<=)
-2/(3p) - 1/2<r<7/6 - 2/(3p)

So (5.20) means, in the case 1 < p < 4/3, for example, that to
‘each r € (-1/(3p) - 5/4, 7/4 - 1/p) and each t € [r, 7/4 - 1/p)’
there exists a constant C(r,t) > 0 such that

p p p p
‘“b,r((c’1)nf) < C(r,t)wb't(f) (f € XV,J or f € XD,J)
r(p)
CEZE LS S L U SRSy Sy NN
3/2 \ \ \ \
14
3/4
1/2
P (0,00 ¢ J(1,p,)
— 1 ANV e °2
0 4/3 ‘ Py P

-1/2
-3/4

-3/2

-19/12
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The figure gives the upper and lower bounds of the parameter
= r(p) of conditions (5. 19), (5.20) which determine the allow-
able intervals J(0,p) and J(1,p).

ObQiously J(0,p) € J(1,p), and the restriction'r <t in (5.18) -
(5.20) may not be omitted. In the case k=1 the parameter r gener- -
ally still depends on the parameter b = b(a,p). '

Further examples of weighted locally convex spaces’with the mo-
re general weight functions U (x) of (5.13) may be derived
from the results in [13] and [15] by variation of the parameters
b and r under the given restrictions.

Correspondingly one may treat Hermite expansions in suitable
weighted functions spaces (cf. [11], [12]) using results of [13]
and [15] or ultraspherical expansions by taking inductive and
projective limits with respect to the parameter p € [1,=)

(cf£. [ 2], [12]). Some examples of domains J valid for Hermite
expansions are given in [11; cf. (3.5) and (3.6)] in the order-
preserving case, but they are valid on spaces analogous to
(5.15) also in the general case. One can obtain; further examples
of locally convex spaces satisfying the condition (4.3) from the
examples in V.1 and V.2 by forming countably normed spaces and.
inductive limits with respect to the free parameters in an open
set A, for example in V.2 with p € A C [1,=)

X := n XxP and X = U X® . or
D,A peA D,J V,A peA D,J X
I p
X = U X
V,A peA v, J

In the last case the closed graph theorem may fail on X; A 28
. . . s

this inductive limit is not countable, and hence one may then

get M, C M with proper inclusion.
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