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A NOTE ON EMBEDDING OF FUZZY SETS IN A NORMED SPACE

Osvaldo Borghi , Ezio Marchi and Felipe Z6

1. The idea of a fuzzy set was introduced in [1], with the inten-
tion of extending the concept of a set by introducing a member-
ship function which is a generalization of the characteristic
function.

It is natural to try to obtain some algebraicand topological
structures for certain classes of fuzzy sets.

First of all, in this note we define a sum and a multiplication
by scalars for some fuzzy sets, which are defined on a given 1li-
near space X. These operations are extensions of the usual sum
and product by scalars for ordinary sets. For a class of fuzzy
sets we introduce certain metrics which are pairwise uniformly
equivalent. These metrics are a natural generalization of the
Hausdorff metric. Finally, following an idea of Radstrom [2], it
is possible to embed such a class in a cone of normed space.

2. Let X be a real linear space. We denote by A,B,C,... the fuzay

sets defined on X, which will be identified with .their membership
functions A,B,C,... : X —> [0,1]. The extension of the usual ope-
rations between ordinary sets for fuzzy sets can be found in [1].

Let A and B be two fuzzy sets on X. Then we define their sum by

(A+B) (x) = sup{min[A(x-y),B(y)]} for all x € X
yeX

and for any given real number A we define AA

A(%) if N #£0

(AA) (x)

x{e}(x) if X\ =0 for all x € X

Here and in what is to follow X denotes characteristic functions
and 6 is the zero element of the linear space X.

The following properties are immediate consequences of the above
definitions: '

a) A+B=3B+A b) A(A+B) = AA + \B
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c) u(AA) = (MMA d) A+ X = A e) 1.A = A

From now on, we only consider a class of fuzzy sets such that the
supremum in the definition of the sum of any two fuzzy sets in that
class, is attained. Under such an assumption one can check

easily that the following property holds:

£)- (A+B) + C = A + (B+C)

In general, the equality (A+M)A = AA + uA does not hold true even
in the case of ordinary subsets of X. For ordinary subsets, it is
well known that the equality remains to be true when X and u are

real numbers having the same sign and when A is a convex set.

We say that A is a quasi-concave fuzzy set, if for each « € (0,1]:
the ordinary sets Au = {x € X: A(x) > a} is convex. If A and nu

have the same sign and A is a quasi-concave fuzzy set then the fol-
lowing expression holds true

g) (A+B)A = AA + pA

Proof. If m.XA = 0, it is immediate. Thus, we consider the case
A.p > 0. Because of the quasi-concavity for any pair z, x € X

. Z=X X . Z
min[ A ( ) AR < AGHD)
. z _ u Z-X A i
holds, since peri G=ro B et GH) - 3

Then AMA + pA < (A+u)A.

On the other hand, for all z, x € X

(A+uA) (2) > min[A(E%), AD)].

If x = 22 ye have the following inequality

>
+
=

(\A+pA) (2) > A(GE)

2z
At+p
that is, (MAA+pA) > (A+p)A, which guarantees the validity of g).

We note that the last inequality is true without any restriction
on the fuzzy set A,

3. In order to prove the law of cancellation, we impose topological
properties on the linear space X and the fuzzy sets defined on it.
In what follows X will be a real normed space.

LEMMA 1. Let A,B,C be fuzazy sets defined on X such that B is quasi-
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concave and continuous on the respective support. Let C have bounded

support, max A(y) < max C(y) and A + C < B + C. Then, A <B.
yeX yeX

Proof. Let z and Z be two points of X such that A(z) > 0 and
A(z) < C(Z). From the following inequalities

A(z) < sup {min[A(z+Z-y),C(y)]}< (B+C)(z+Z)
yeX

we deduce that there exists an element x; € X such that

A(z) < B(xl) and A(z) < C(z+7-xl)

By iteration, we can construct a sequence {xn} in X having the

properties A(z) < B(zn) and A(z) < C(nz+z - 'lei)-
i=

Then, for all n, because of the quasi-concavity of the fuzzy set

B it results

*) A(z) < min B(x.) <BE 7§ x.)
l<ign . mogay ?t
n
Calling y, = nz+ zZ- X, since C(yn) > 0, there exists a num-
i=1

n
ber M > 0 such that for all n, Iy I <M. Thus, lim % ) x; = z.
i=1

n->o

From the continuity of the fuzzy set B on its support, we have
A(z) < B(2). (Q.E.D.)

Let us denote by D a class of quasi-concave fuzzy sets contained
in the functional space [0,1]X, with bounded supports, continuous
in their supports and having their maxima equal to 1. Then, from
the previous result we obtain the following

COROLLARY. If A,B € D then A + B = A + C <mplies B = C.

Indeed, the condition that the maxima of these functions be 1
could be weakened by the assumption that they be equal to some
a > 0.

4. We will now introduce a metric on ¥, in such a way that on
p n 2% it coincides with the well known Hausdorff metric.[3].
Here 2% denotes the space of all characteristic functions on X.

Consider A,B € D and X > 0. Let S be the closed unitary ball in X,
and define the distance d(A,B) = dX (A,B) between A and B to be
S

the infimum of those A such that both A+ Ax, > B and
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B + RXS = A hold.

One can easily check that, indeed this defines a metric on D. The
existence of a A > 0 satisfying both requirements follows from
the fact that the functions have bounded supports. In addition to
Xg there are other fuzzy sets H € D for which the analogous cons-
truction yields a metric which we denote by dH. All these metrics
dH are uniformly equivalent.

LEMMA 2. If A and B are quasi-concave and A > 0, then A + B and

AA are quasi-concave.

Proof. Let a be an element of (0,1]. Consider z, Z € X such that
(A+B)(z) > a and (A+B)(Z2) > «

Then there exist two elements x and X belonging to X with the pro-

perties "

min[A(z-x),B(x)] = a and min[A(Z-X),B(X)] > «a

If we indicate by xp the point px + (1-p)X with 0 <p < 1, we
have

min[A(pz+(1—p)Elxp), B(xp)] > a

which implies (A+B) (pz+(1-p)Z) > a. The remaining proof for AA
is immediate. (Q.E.D.)

Along the lines of Lemma 3 in [2], one can derive the following

LEMMA 3. Let A,B,C be clements of D such that A.+ C and B + C
belong to D and the fuzzy sets A + kxs and B + XXS are continuous
in their support, for all X = 0. Then d(A,B) = d(#A,uB) for all
=0,

We now present the following result relating to topological pro-
perties.

LEMMA 4. The operations of sum and product by scalars are conti-

nuous on D with respect to the introduced metric.

Proof. Clearly, d(An,A) — 0 and d(Bn,B) — 0 implies
d(An+Bn,A+B) — 0.

Let Xu — N and Au — A be two convergent sequences. Let ¢ > 0
be arbitrary. Because the product by scalars is continuous in X
one can immediately obtain for all n bigger than a certain n,:

A
nA *oeXg > AA and AA + eXg > AuA



40

Since d(An,A) — 0 ,for all n > n, we have An + eXg > A and

A+ eXg > An, from which we derive the following expressions:

A < eXg * knexs + hnAn

and

ann < Rn(A+eXS) < AA + eXg + Xnexs

Since M is a bound for all Xn;n > n_,n,,we have the inequalities

AnAn < e(M+1)Xs + NA and

which implies that d(knAn,XA) — 0

A < e(M+1)XS + KnA

.

n

(Q.E.D.)

_ LEMMA 5. Let A and B have compact supports and AN>0, then A + B

and AA have compact supports.

Proof. This follows from the next following relations between the

supports:

supp (A+B) = supp A + supp B and

supp (AA) =

Finally we will need a closedness property .

A supp A

(Q.E.D.)

LEMMA 6. If A and B have compact supports and are continuous there

on N >0, then A + B and NA are continuous on their supports.

Proof. The result holds for M since it is the composition of two
continuous mappings on supp(MAA). On the other hand, the remaining
conclusion follows from the fact that (A+B)(z) can be obtained by
considering the supremum on X € supp B of the composition of the

following continuous functions:

supp (A+B) x supp B — supp A + supp B

given by (x,2)
supp A + supp B

given by (x,y)
and [0,11°%
given by (r,s)

>

—_

—
—
—

(z-x,x) ,
0,12
(A(x),B(¥))
(0,1

min(r,s).

Similarly one can obtain the fdllowing:

)

(Q.E.D.)

LEMMA 7. If A has compact support and it is continuous there on,

then A + Xg ig continuous on its support.

All the above material together with the theorems 1 and 2 of [2]

is condensed in the next result.



41

THEOREM. If X is a real normed linear space and E C D <s such that
all its members have compact supports, themn E can be embedded as
a cone in a real normed linear space.
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