1. INTRODUCTION.

Let M be a (connected) surface in a Euclidean m-space E^m. For any point p in M and any unit vector t at p tangent to M, the vector t and the normal space T_pM of M at p determine an $(m-1)$-dimensional vector subspace $E(p,t)$ of E^m through p. The intersection of M and $E(p,t)$ gives rise a curve γ in a neighborhood of p which is called the normal section of M at p in the direction t. The surface M is said to have planar normal sections if normal sections of M are planar curves. In this case, for any normal section γ, we have $\gamma' \wedge \gamma'' = 0$ identically. A surface M is said to have pointwise planar normal sections if, for each point p in M, normal sections at p satisfy $\gamma' \wedge \gamma'' = 0$ at p (i.e., normal sections at p have "zero torsion" at p). It is clear that if a surface M lies in a linear 3-space E^3 of E^m, then M has planar normal sections and has pointwise planar normal sections.

We shall now define the Veronese surface. Let (x,y,z) be the natural coordinate system in E^3 and (u^1,u^2,u^3,u^4,u^5) the natural coordinate system in E^5. We consider the mapping defined by

\[
\begin{align*}
 u^1 &= \frac{1}{\sqrt{3}} \ yz, \\
 u^2 &= \frac{1}{\sqrt{3}} \ zx, \\
 u^3 &= \frac{1}{\sqrt{3}} \ xy, \\
 u^4 &= \frac{1}{2\sqrt{3}} (x^2 - y^2), \\
 u^5 &= \frac{1}{6} (x^2 + y^2 - 2z^2).
\end{align*}
\]

This defines an isometric immersion of $S^2(\sqrt{3})$ into the unit hypersphere $S^4(1)$ of E^5. Two points (x,y,z) and $(-x,-y,-z)$ of $S^2(\sqrt{3})$ are mapped into the same point of $S^4(1)$, and this mapping defines an imbedding of the real projective plane into $S^4(1)$. This real projective plane imbedded in E^5 is called the Veronese surface (see, for instance, [4].)

In [2], we have proved the following.
THEOREM A. Let M be a surface in E^m. If M has pointwise planar normal sections, then, locally, M lies in a linear 5-subspace E^5 of E^m.

The classification of surfaces in E^m with planar normal sections was obtained in [3].

THEOREM B. Let M be a surface in E^m. If M has planar normal sections, then, either, locally, M lies in a linear 3-subspace E^3 or, up to similarity transformations of E^m, M is an open portion of the Veronese surface in E^5.

In view of Theorems A and B, it is an interesting problem to classify surfaces in E^5 with pointwise planar normal sections. As we already mentioned, every surface in E^3 has pointwise planar normal sections. A surface M in E^5 is said to lie essentially in E^m if, locally, M does not lie in any hyperplane E^{m-1} of E^m. According to Theorem A, the classification problem of surfaces in E^m with pointwise planar normal sections remains open only for surfaces which lie essentially either in E^5 or in E^4.

In this paper, we will solve this problem completely for surfaces which lie essentially in E^5. Furthermore, we will obtain three classification theorems for surfaces in E^4. As biproducts some new geometric characterizations of the Veronese surface and standard flat tori are then obtained.

2. PRELIMINARIES.

Let M be a surface in E^m. We choose a local field of orthonormal frame (e_1, \ldots, e_m) in E^m such that, restricted to M, the vectors e_1, e_2 are tangent to M and e_3, \ldots, e_m are normal to M. We denote by $(\omega^1, \ldots, \omega^m)$ the field of dual frames. The structure equations of E^5 are given by

\begin{align*}
(2.1) & \quad \omega^A = -\sum \omega^B A B^B \omega^B, \quad \omega^A + \omega^B = 0, \\
(2.2) & \quad \omega^A B = \sum \omega^C A B C \omega^B, \\
& \quad A, B, C, \ldots = 1, 2, \ldots, m.
\end{align*}

Restricting these forms on M, we have $\omega^r = 0$, $r, s, t, \ldots = 3, \ldots, m$. Since

\begin{equation}
(2.3) \quad 0 = \omega^i = -\sum \omega^r i^r \omega^i, \quad i, j, k \ldots = 1, 2,
\end{equation}
Cartan's Lemma implies

\[\omega_i^2 = \sum\ h_{ij}^r \ \omega_j^j, \quad h_{ij}^r = h_{ji}^r. \]

From these formulas we obtain

\[d\omega_i^j = -\sum\ \omega_j^k \wedge \omega_j^j, \]

\[\omega_j^j + \omega_i^i = 0, \]

\[d\omega_j^i = -\sum\ \omega_k^i \wedge \omega_j^k + \Omega_j^i, \quad \Omega_j^i = \frac{1}{2} \sum\ R_{jkl}^r \ \omega_k^l \wedge \omega_j^j, \]

\[R_{jkl}^r = \sum (h_{lk}^r h_{jk}^r - h_{lj}^r h_{jk}^r), \]

\[d\omega_s^r = -\sum\ \omega_t^r \wedge \omega_s^t + \Omega_s^r, \quad \Omega_s^r = \frac{1}{2} \sum\ R_{sij}^r \ \omega_i^j \wedge \omega_s^s, \]

\[R_{sij}^r = \sum_k (h_{ki}^s h_{kj}^s - h_{kj}^s h_{ki}^s). \]

The Riemannian connection of \(M \) is defined by \((\omega_i^j) \). The form \((\omega_i^j) \) defines a connection \(D \) in the normal bundle of \(M \). We call \(h = \sum h_{ij}^r \omega_i^j e_r \) the second fundamental form of the surface \(M \). We call \(H = \frac{1}{2} \text{tr} h \) the mean curvature vector of \(M \). We take exterior differentiation of (2.4) and define \(h_{ijk}^r \) by

\[\sum h_{ijk}^r \omega_i^k = dh_{ij}^r - \sum h_{ik}^r \omega_j^i - \sum h_{ij}^r \omega_i^k + \sum h_{ij}^s \omega_s^r. \]

Then we have the following equation of Codazzi,

\[h_{ijk}^r = h_{ikj}^r. \]

If we denote by \(\nabla \) and \(\hat{\nabla} \) the covariant derivatives of \(M \) and \(E^m \), respectively, then, for any two vector fields \(X, Y \) tangent to \(M \) and any vector field \(\xi \) normal to \(M \), we have

\[\nabla_X Y = \nabla_X h(X,Y), \]

\[\hat{\nabla}_X \xi = -A_{\xi} X + D_X \xi, \]

where \(A_{\xi} \) denotes the Weingarten map with respect to \(\xi \). If \(\langle , \rangle \) denotes the inner product of \(E^m \), then

\[\langle A_{\xi} X, Y \rangle = \langle h(X,Y), \xi \rangle. \]

If we define \(\tilde{\nabla} h \) by

\[(\tilde{\nabla}_X h)(Y,Z) = D_X (h(Y,Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z), \]
then equation (2.12) of Codazzi becomes

\[(2.17) \quad (\nabla_X h)(Y, Z) = (\nabla_Y h)(X, Z).\]

It is well-known that \(\nabla h\) is a normal-bundle-valued tensor of type
\((0,3)\).

We need the following theorems for the proof of Theorem 1.

THEOREM C. (Chen [1]). A surface \(M\) of \(E^m\) has pointwise planar normal sections if and only if
\((\nabla_t h)(t, t) \wedge h(t, t) = 0\) for any \(t \in TM\).

THEOREM D. (Chen [2]). Let \(M\) be a surface in \(E^m\) with pointwise planar normal sections. Then \(\text{Im} h\) is parallel.

3. CLASSIFICATION OF SURFACES IN \(E^5\).

In this section we shall prove the following.

THEOREM 1. Let \(M\) be a surface which lies essentially in \(E^5\). Then, up to similarities of \(E^5\), \(M\) is an open portion of the Veronese surface in \(E^5\) if and only if \(M\) has pointwise planar normal sections.

Proof. Let \(M\) be a surface in \(E^5\) with pointwise planar normal sections. We choose a local field of orthonormal frame \(\{e_1, e_2, e_3, e_4, e_5\}\) such that, restricted to \(M\), \(e_3\) is in the direction of the mean curvature vector \(H\), \(e_1, e_2\) are the principal directions of \(A_3 = A e_3\). Then \(e_3\) is perpendicular to \(h(e_1, e_2)\). We further choose \(e_5\) so that \(e_5\) is in the direction of \(h(e_1, e_2)\). Then, with respect to \(\{e_1, e_2, e_3, e_4, e_5\}\), we have

\[
A_3 = \begin{bmatrix} a & 0 \\ 0 & \beta \end{bmatrix}, \quad A_4 = \begin{bmatrix} \gamma & 0 \\ 0 & -\gamma \end{bmatrix}, \quad A_5 = \begin{bmatrix} \eta & \delta \\ \delta & -\eta \end{bmatrix}
\]

Thus, we have

\[(3.1) \quad h(e_1, e_1) = ae_3 + \gamma e_4 + \eta e_5, \quad h(e_1, e_2) = \delta e_5,
\]

\[h(e_2, e_2) = \beta e_3 + \gamma e_4 + \eta e_5.\]

It is easy to see that \(\dim \text{Im} h = 3\) if and only if
\(h(e_1, e_1) \wedge h(e_1, e_2) \wedge h(e_2, e_2) \neq 0\). Therefore, \(\dim \text{Im} h = 3\) if and only if \((\alpha + \beta)\gamma \delta \neq 0\). We put

\[(3.2) \quad M_3 = \{p \in M \mid \dim \text{Im} h = 3\}.
\]

Then \(M_3\) is an open subset of \(M\). If \(M_3\) is empty, then Theorem D implies
that M does not lie essentially in E^5. From now on, we assume that M lies essentially in E^5. Then M_3 is not empty. We denote by N a component of M_3. On N, we have

\[(\alpha + \beta)\gamma \delta \neq 0.\]

From (2.16) and (3.1) we find

\[(\overline{\nabla}_{e_1} h)(e_1,e_1) = [e_1(\alpha) + \gamma \omega_4^3(e_1) + \eta \omega_5^3(e_1)]e_3 + \]
\[+ [\alpha \omega_3^4(e_1) + e_1(\gamma) + \eta \omega_5^4(e_1)]e_4 + \]
\[+ [\alpha \omega_3^5(e_1) + \gamma \omega_5^5(e_1) + e_1(\eta) - 2\delta \omega_1^2(e_1)]e_5,\]

\[(\overline{\nabla}_{e_2} h)(e_2,e_1) = [e_2(\alpha) + \gamma \omega_4^3(e_2) + \eta \omega_5^3(e_2)]e_3 + \]
\[+ [\alpha \omega_3^4(e_2) + e_2(\gamma) + \eta \omega_5^4(e_2)]e_4 + \]
\[+ [\alpha \omega_3^5(e_2) + \gamma \omega_5^5(e_2) + e_2(\eta) - 2\delta \omega_1^2(e_2)]e_5,\]

\[(\overline{\nabla}_{e_1} h)(e_1,e_2) = [\delta \omega_5^3(e_1) + (\alpha - \beta)\omega_1^4(e_1)]e_3 + \]
\[+ [\delta \omega_5^4(e_1) + 2\gamma \omega_1^2(e_1)]e_4 + \]
\[+ [e_1(\delta) + 2\eta \omega_1^2(e_1)]e_5,\]

\[(\overline{\nabla}_{e_2} h)(e_2,e_2) = [e_2(\beta) - \gamma \omega_4^3(e_2) + \eta \omega_5^3(e_2)]e_3 + \]
\[+ [\beta \omega_3^4(e_2) - e_2(\gamma) - \eta \omega_5^4(e_2)]e_4 + \]
\[+ [\beta \omega_3^5(e_2) - \gamma \omega_5^5(e_2) - e_2(\eta) - 2\delta \omega_1^2(e_2)]e_5,\]

Because M has pointwise planar normal sections, Theorem C implies

\[(\overline{\nabla}_{e_1} h)(e_1,e_1) = \lambda_1 h(e_1,e_1), \quad (\overline{\nabla}_{e_2} h)(e_2,e_2) = \lambda_2 h(e_2,e_2),\]

for some local functions λ_1, λ_2. Combining (3.1), (3.4), (3.9) with (3.10) we obtain
(3.11) \[e_1(\alpha) = \alpha \lambda_1 + \gamma \omega_3^4(e_1) + \eta \omega_5^5(e_1) \]

(3.12) \[e_1(\gamma) = \gamma \lambda_1 - \alpha \omega_3^4(e_1) + \eta \omega_5^5(e_1) \]

(3.13) \[e_1(\eta) = \eta \lambda_1 - \alpha \omega_3^5(e_1) - \gamma \omega_4^5(e_1) + 2\delta \omega_1^2(e_1) \]

(3.14) \[e_2(\beta) = \beta \lambda_2 - \gamma \omega_3^4(e_2) - \eta \omega_5^5(e_2) \]

(3.15) \[e_2(\gamma) = \gamma \lambda_2 + \beta \omega_3^4(e_2) + \eta \omega_5^5(e_2) \]

(3.16) \[e_2(\eta) = \eta \lambda_2 + \beta \omega_3^5(e_2) - \gamma \omega_4^5(e_2) + 2\delta \omega_1^2(e_2) \]

Moreover, from (3.5), (3.6), (3.7), (3.8) and equation (2.17) of Coda-

(3.17) \[e_2(\alpha) = \gamma \omega_3^4(e_2) - \delta \omega_3^5(e_2) + \eta \omega_5^5(e_2) + (\alpha - \beta) \omega_1^2(e_2) \]

(3.18) \[e_1(\beta) = -\gamma \omega_3^4(e_1) - \delta \omega_3^5(e_2) - \eta \omega_5^5(e_1) + (\alpha - \beta) \omega_1^2(e_2) \]

(3.19) \[e_1(\delta) = \eta \lambda_2 + (\alpha + \beta) \omega_3^5(e_2) - 2\eta \omega_1^2(e_1) \]

(3.20) \[e_2(\delta) = -\eta \lambda_1 + (\alpha + \beta) \omega_3^5(e_1) - 2\eta \omega_1^2(e_2) \]

(3.21) \[\lambda_1 \gamma - (\alpha + \beta) \omega_3^4(e_1) - \delta \omega_4^5(e_2) + 2\gamma \omega_1^2(e_2) = 0 \]

(3.22) \[\lambda_2 \gamma + (\alpha + \beta) \omega_3^4(e_2) + \delta \omega_4^5(e_1) - 2\gamma \omega_1^2(e_1) = 0 \]

Let \(t = e_1 + ke_2 \). Then, from Theorem C, we have

(3.23) \[(\overline{h}_{e_1+ke_2})(e_1+ke_2) = 0 \]

for any \(k \). Because \(e_3 \land e_4 \), \(e_3 \land e_5 \), and \(e_4 \land e_5 \) are linearly independent,

(3.1), (3.3), (3.4) - (3.10), and (3.23) imply

(3.24) \[-\gamma \delta \omega_3^5(e_1) + a \delta \omega_4^5(e_1) - (\alpha + \beta) \gamma \omega_1^2(e_1) = 0 \]

(3.25) \[(\alpha + \beta) \gamma \lambda_1 + 3 \gamma \delta \omega_3^5(e_2) - 3a \delta \omega_4^5(e_2) + 3(\alpha + \beta) \gamma \omega_1^2(e_2) = 0 \]

(3.26) \[(\alpha + \beta) \gamma \lambda_2 + 3 \gamma \delta \omega_3^5(e_1) + 3 \delta \omega_4^5(e_1) - 3(\alpha + \beta) \gamma \omega_1^2(e_1) = 0 \]

(3.27) \[\gamma \delta \omega_3^4(e_2) + (\alpha + \beta) \gamma \omega_1^2(e_2) = 0 \]

(3.28) \[2 \gamma \delta \lambda_1 - 3 \gamma \eta \lambda_2 - 3(\alpha + \beta) \gamma \omega_3^5(e_2) + 3 \delta \omega_4^5(e_1) + 6 \gamma \omega_1^2(e_1) = 0 \]

(3.29) \[-3 \gamma \eta \lambda_1 - 2 \gamma \delta \lambda_2 + 3(\alpha + \beta) \gamma \omega_3^5(e_1) + 3 \delta \omega_4^5(e_2) - 6 \gamma \omega_1^2(e_2) = 0 \]

From (3.25) and (3.27) we find
From (3.24) and (3.26) we find

\[(3.31) \quad \gamma \lambda_2 + 3 \delta \omega_4^5(e_2) - 6 \gamma \omega_1^2(e_2) = 0.\]

Similarly, from (3.21), (3.28) and (3.29), we also have

\[(3.32) \quad 2 \gamma \delta \lambda_1 + 3(\alpha + \beta) \gamma \omega_3^5(e_2) - 3(\alpha + \beta) \gamma \omega_1^5(e_2) = 0.\]

\[(3.33) \quad -2 \gamma \delta \lambda_2 - 3(\alpha + \beta) \gamma \omega_3^5(e_1) + 3(\alpha + \beta) \gamma \omega_1^5(e_1) = 0.\]

From (3.22) and (3.24) we find

\[(3.34) \quad -\alpha \gamma \lambda_2 - \alpha(\alpha + \beta) \omega_3^4(e_2) - \gamma \delta \omega_3^5(e_1) + (\alpha - \beta) \gamma \omega_1^2(e_1) = 0.\]

Similarly, from (3.21) and (3.27) we get

\[(3.35) \quad 2 \gamma \delta \lambda_1 - \beta(\alpha + \beta) \omega_3^4(e_1) + \gamma \delta \omega_3^5(e_2) - (\alpha - \beta) \gamma \omega_1^2(e_2) = 0.\]

From (3.21), (3.30) and (3.31), we obtain, respectively,

\[(3.36) \quad (\alpha + \beta) \omega_3^4(e_1) - 2 \delta \omega_4^5(e_2) + 4 \gamma \omega_1^2(e_2) = 0,\]

\[(3.37) \quad (\alpha + \beta) \omega_3^4(e_2) - 2 \delta \omega_4^5(e_1) + 4 \gamma \omega_1^2(e_1) = 0.\]

From (3.21) and (3.36), we obtain

\[(3.38) \quad 2 \gamma \lambda_2 + 3(\alpha + \beta) \omega_3^4(e_2) = 0.\]

Similarly, from (3.22) and (3.37), we obtain

\[(3.39) \quad 2 \gamma \lambda_1 + 3(\alpha + \beta) \omega_3^4(e_1) = 0.\]

Combining (3.21) and (3.38) we have

\[(3.40) \quad \gamma \lambda_1 - 3 \delta \omega_4^5(e_2) + 6 \gamma \omega_1^2(e_2) = 0.\]

Equations (3.22) and (3.39) imply

\[(3.41) \quad \gamma \lambda_2 + 3 \delta \omega_4^5(e_1) - 6 \gamma \omega_1^2(e_1) = 0.\]

From (3.34) and (3.39) we find

\[(3.42) \quad \alpha \lambda_2 + 3 \delta \omega_4^5(e_1) - 3(\alpha - \beta) \omega_1^2(e_1) = 0.\]

Similarly, we have
From (3.32) and (3.39) we find

\[(3.44) \quad 2\delta \lambda_1 - 2\eta \lambda_2 - 3(\alpha + \beta)\omega_3^5(e_2) = 0.\]

Similarly, we also have

\[(3.45) \quad 2\eta \lambda_1 + 2\delta \lambda_2 - 3(\alpha + \beta)\omega_3^5(e_1) = 0.\]

Now, we want to claim that \(N \) is pseudo-umbilical in \(E^5 \), i.e., \(a = \beta \) on \(N \). Assume that \(\alpha \neq \beta \) at a point \(p \in N \). Then there is an open neighborhood \(U \) of \(p \) in \(N \) such that \(a \neq \beta \) everywhere on \(U \). From (3.38) - (3.45), we obtain the following expression of \(\omega_1^2 \) and \(\omega_3^8 \) on \(U \),

\[(3.46) \quad \omega_1^2 = \left\{ \frac{2\delta \eta \lambda_1 + [\alpha(\alpha + \beta) + 2\delta^2]\lambda_2}{3(\alpha^2 - \beta^2)} \right\} \omega_1 + \left\{ \frac{2\delta \lambda_1 - 2\eta \lambda_2}{3(\alpha + \beta)} \right\} \omega_3^2,

\[(3.47) \quad \omega_3^8 = \left\{ \frac{2\gamma}{3(\alpha + \beta)} \right\} \omega_1 + \left\{ \frac{2\gamma \lambda_2}{3(\alpha + \beta)} \right\} \omega_3^2,

\[(3.48) \quad \omega_5^8 = \left\{ \frac{4\gamma \delta \eta \lambda_1 + \gamma \gamma [(\alpha + \beta)^2 + 4\delta^2]\lambda_2}{3\delta(\alpha^2 - \beta^2)} \right\} \omega_1 + \left\{ \frac{\gamma [(\alpha + \beta)^2 + 4\delta^2]\lambda_2}{3\delta(\alpha^2 - \beta^2)} \right\} \omega_3^2.

Now, we shall make a careful study of the integrability condition to obtain a contradiction. In order to do so, we need to compute the exterior derivatives of \(\omega_3^8 \).

From (3.47) we have

\[(3.50) \quad d\omega_3^8 = d\left(\frac{2\gamma}{3(\alpha + \beta)} \right) (\lambda_1 \omega_1 - \lambda_2 \omega_2) + \left(\frac{2\gamma}{3(\alpha + \beta)} \right) d(\lambda_1 \omega_1 - \lambda_2 \omega_2).

Thus, by applying (3.11) - (3.18), (3.46) and a direct long computation, we may find

\[(3.51) \quad d\omega_3^8 = -\frac{2\gamma}{3(\alpha + \beta)} (e_2(\lambda_1) + e_1(\lambda_2) - \frac{\lambda_1 \lambda_2}{5}).\]
Similarly, we may also obtain

\[
\begin{align*}
(3.52) & \quad \omega_3^5 = \frac{1}{96(\alpha^2 - \beta^2) (\alpha - \beta)} \left\{ 6(\alpha^2 - \beta^2) \delta^2 [e_1(\lambda_1) - e_2(\lambda_2)] - \\
& \quad - 6(\alpha^2 - \beta^2) \delta \eta [e_2(\lambda_1) + e_1(\lambda_2)] - \\
& \quad - 2\{ \delta^2 - \gamma^2 \} [(\alpha + \beta)^2 + 4\delta^2] + 2\delta^2 \eta \} (\lambda_1^2 + \lambda_2^2) + \\
& \quad + 2\delta^2 [\beta(\alpha + \beta) + 2\delta^2] \lambda_1^2 + 2\delta^2 [\alpha(\alpha + \beta) + 2\delta^2] \lambda_2 + \\
& \quad + 2\delta(\alpha^2 - \beta^2) \eta \lambda_1 \lambda_2 \} \omega^1 \wedge \omega^2,
\end{align*}
\]

\[
(3.53) \quad \omega_4^5 = \frac{1}{96(\alpha^2 - \beta^2) (\alpha - \beta)} \left\{ 3(\alpha^2 - \beta^2) \gamma [(\alpha + \beta)^2 + 4\delta^2] [e_1(\lambda_1) - e_2(\lambda_2)] - \\
\right.
\]

\[
\left. \begin{align*}
& \quad - 12\gamma \delta [\alpha^2 - \beta^2] [e_1(\lambda_1) + e_2(\lambda_2)] - \\
& \quad - [(\alpha + \beta)^2 (\alpha^2 - \beta^2) \gamma + \\
& \quad + 2\gamma \delta^2 (5\alpha^2 + 5\beta^2 + 4\eta + 4\delta^2)] (\lambda_1^2 + \lambda_2^2) + \\
& \quad + \gamma [(\alpha + \beta)^2 + 4\delta^2] (\beta^2 \lambda_1^2 + \alpha^2 \lambda_2^2) + \\
& \quad + 4\gamma \delta [\alpha^2 - \beta^2] \lambda_1 \lambda_2 \} \omega^1 \wedge \omega^2.
\end{align*}
\]

On the other hand, by using (2.10) and (3.1), we have

\[
(3.54) \quad R^4_{312} = 0,
\]

\[
(3.55) \quad R^5_{312} = (\beta - \alpha) \delta,
\]

\[
(3.56) \quad R^5_{412} = -2\gamma \delta.
\]

Therefore, by equation (2.9) of Ricci, equations (3.47) - (3.49) and (3.54) - (3.56), we also have

\[
(3.57) \quad \omega_3^4 = -\frac{2\gamma \delta}{96(\alpha^2 - \beta^2) (\alpha + \beta)} (\lambda_1^2 + \lambda_2^2) \omega^1 \wedge \omega^2
\]

\[
(3.58) \quad \omega_4^5 = \frac{1}{96(\alpha^2 - \beta^2) (\alpha + \beta)} \left\{ 2\gamma^2 [(\alpha + \beta)^2 + 4\delta^2] (\lambda_1^2 + \lambda_2^2) - \\
\right.
\]

\[
\left. \begin{align*}
& \quad \left. - 9\delta^2 (\alpha^2 - \beta^2) \right\} \omega^1 \wedge \omega^2,
\end{align*}
\]

\[
(3.59) \quad \omega_5^5 = \frac{-2\gamma \delta}{9(\alpha + \beta)^2} \left\{ 2(\lambda_1^2 + \lambda_2^2) \right\} (\alpha + \beta)^2 \omega^1 \wedge \omega^2.
\]

Comparing (3.51) with (3.57), we find
Comparing (3.52) with (3.58), we find

\[
\delta [e_1(\lambda_1) - e_2(\lambda_2)] - \eta [e_2(\lambda_1) + e_1(\lambda_2)] = \frac{\delta}{3(\alpha^2 - \beta^2)} \left(\lambda_1^2 + \lambda_2^2 \right) - \frac{3}{2} (\alpha^2 - \beta^2) \delta.
\]

Combining (3.53) with (3.59), we get

\[
\frac{1}{3(\alpha^2 - \beta^2)} \left\{ (\alpha + \beta)^2 (\lambda_1^2 + \lambda_2^2) + 2 \gamma^2 \lambda_1 \lambda_2 \right\} = \frac{1}{3(\alpha^2 - \beta^2)} \left\{ (\alpha + \beta)^2 (\lambda_1^2 + \lambda_2^2) - \gamma^2 \lambda_1 \lambda_2 \right\} - \frac{4}{3} \delta \eta \lambda_1 \lambda_2 - 6 \delta^2 (\alpha^2 - \beta^2).
\]

Substituting (3.60) into (3.61), we obtain

\[
e_1(\lambda_1) + e_2(\lambda_2) = \frac{1}{\lambda_1^2 + \lambda_2^2} \left\{ (\alpha + \beta)^2 + 2 \gamma^2 \lambda_1 \lambda_2 \right\} + \frac{1}{\lambda_1^2 + \lambda_2^2} \left\{ (\alpha - \beta)(\alpha + \beta) \right\} - \frac{4}{3} \delta \eta \lambda_1 \lambda_2 - 6 \delta^2 (\alpha^2 - \beta^2).
\]

Substituting (3.60) and (3.63) into (3.62), we may obtain

\[
\alpha^2 - \beta^2 = 0.
\]

This contradicts to (3.3) because we assume that \(\alpha \neq \beta \).

Therefore, we have proved that \(\alpha = \beta \) identically on \(N \), i.e., \(N \) is pseudo-umbilical in \(\mathbb{E}^5 \). Because \(\alpha = \beta \), (3.42), (3.43), (3.44) and (3.45) reduce to

\[
\lambda_2 + 3 \delta \omega_3^5 = 0,
\]

\[
(\alpha + \beta) \lambda_1 = -2 \delta^2 \lambda_1 + 2 \delta \eta \lambda_2,
\]

\[
(\alpha + \beta) \lambda_2 = -2 \delta \eta \lambda_1 - 2 \delta^2 \lambda_2.
\]
From (3.67) and (3.68) we obtain

\begin{equation}
\lambda_1 = \lambda_2 = 0 \, .
\end{equation}

Thus, from (3.30) and (3.31), we have

\begin{equation}
\delta \omega_4^5 = 2\gamma \omega_1^2 \, .
\end{equation}

From (3.38), (3.39), (3.42) and (3.43), we find

\begin{equation}
\omega_3^4 = \omega_3^5 = 0 \, .
\end{equation}

Substituting (3.69) and (3.71) into (3.11), (3.14), (3.17) and (3.18), we find

\begin{equation}
\alpha = \beta = \text{constant on } N \, .
\end{equation}

From (3.12), (3.15), (3.69) and (3.71), we obtain

\begin{equation}
d\gamma = \eta \omega_4^5 \, .
\end{equation}

From (2.9), (2.10), (3.1) and (3.71), we find

\begin{equation}
d\omega_4^5 = -2\gamma \delta \omega_1^1 \wedge \omega_2^2 \, .
\end{equation}

Using (3.13), (3.16), (3.69), (3.70) and (3.71), we have

\begin{equation}
d\eta = (\delta^2 - \gamma^2) \omega_4^5 \, .
\end{equation}

Taking exterior differentiation of (3.73) and applying (2.9), (2.10), and (3.74), we obtain

\begin{equation}
0 = d^2 \gamma = -2 \gamma \delta \eta \omega_1^1 \wedge \omega_2^2 \, .
\end{equation}

From (3.76) we get

\begin{equation}
\eta = 0 \, .
\end{equation}

Since (3.74) shows that \(\omega_4^5 \neq 0 \), (3.75) and (3.77) give \(\delta^2 = \gamma^2 \). Without loss of generality, we may assume that

\begin{equation}
\delta = -\gamma \, .
\end{equation}

From (3.70) and (3.78), we find

\begin{equation}
\omega_4^5 = -2 \omega_1^2 \, .
\end{equation}
From (3.73) and (3.77), we see that $\delta = -\gamma$ is a nonzero constant on N. Thus, by the definition of N and continuity, we conclude that N is the whole surface M.

From (2.7), (2.9), (3.1), (3.74), (3.78) and (3.79) we find

\begin{equation}
\alpha^2 = 3\gamma^2 .
\end{equation}

Consequently, we may assume that $\alpha = -\sqrt{3} \gamma$. Therefore, by combining (3.71), (3.77), (3.79) and (3.80), we conclude that the connection form (ω^a_k), restricted to N, is given by

\[
\begin{pmatrix}
0 & \omega_1^2 & \sqrt{3} \gamma \omega_1 & -\gamma \omega_1 & \gamma \omega_2 \\
\omega_2 & 0 & \sqrt{3} \gamma \omega_2 & 2\gamma \omega_1 & \gamma \omega_1 \\
-\sqrt{3} \gamma \omega_1 & -\sqrt{3} \gamma \omega_2 & 0 & 0 & 0 \\
\gamma \omega_1 & -\gamma \omega_2 & 0 & 0 & 2\omega_1 \\
-\gamma \omega_2 & -\gamma \omega_1 & 0 & 2\omega_2 & 0
\end{pmatrix}
\]

This shows that, up to similarity transformations of E^5, M coincides locally with the Veronese surface [4].

Conversely, if, up to similarity transformations of E^5, M is an open portion of the Veronese surface, then M has parallel second fundamental form, i.e., $\bar{V}_h = 0$. Thus, by Theorem C of Chen [1], we conclude that M has pointwise planar normal sections. This completes the proof of Theorem 1.

4. SURFACES IN E^4 WITH CONSTANT MEAN CURVATURE.

In this and the next two sections, we will study surfaces in E^4. Assume that M is a surface in E^4 with pointwise planar normal sections.

We choose a local field of orthonormal frame (e_1, e_2, e_3, e_4) so that, restricted to M, e_3 is in the direction of H, e_1, e_2 are the principal directions of A_3. Then e_3 is perpendicular to $h(e_1, e_2)$. With respect to (e_1, e_2, e_3, e_4), we have

\[
A_3 = \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix}, \quad A_4 = \begin{pmatrix} \eta & \delta \\ \delta & -\eta \end{pmatrix}
\]

Thus we have

\begin{equation}
(4.1) \quad h(e_1, e_1) = \alpha e_3 + \eta e_4, \quad h(e_1, e_2) = \delta e_4, \quad h(e_2, e_2) = \beta e_3 - \eta e_4.
\end{equation}
It is easy to find that the mean curvature, the normal curvature and the Gauss curvature of M in E^4 are given respectively by

\[|H| = \frac{1}{2} |\alpha + \beta| , \quad K^N = 2(\alpha - \beta)^2 \delta^2 \quad \text{and} \quad K = \alpha \beta - \pi^2 - \delta^2. \]

Since M has pointwise planar normal sections, Theorem C implies

\[
(\nabla_{e_1} h)(e_1, e_2) = \lambda_1 h(e_1, e_2), \quad (\nabla_{e_2} h)(e_2, e_2) = \lambda_2 h(e_2, e_2)
\]

for some local functions λ_1, λ_2. Using the same method as before, we have the following

\[
\begin{align*}
(4.3) \quad e_1(a) &= \alpha \lambda_1 + \eta \omega_3^4(e_1), \\
(4.4) \quad e_1(\beta) &= -\eta \omega_3^4(e_1) - \delta \omega_3^4(e_2) + (\alpha - \beta) \omega_1^2(e_2), \\
(4.5) \quad e_1(n) &= \eta \lambda_1 - \alpha \omega_3^4(e_1) + 2 \delta \omega_1^2(e_1), \\
(4.6) \quad e_1(\delta) &= \eta \lambda_2 + (\alpha - \beta) \omega_3^4(e_2) - 2 \eta \omega_1^2(e_1), \\
(4.7) \quad e_2(a) &= -\delta \omega_3^4(e_1) + \eta \omega_3^4(e_2) + (\alpha - \beta) \omega_1^2(e_1), \\
(4.8) \quad e_2(\beta) &= \delta \lambda_2 - \eta \omega_3^4(e_2), \\
(4.9) \quad e_2(n) &= \eta \lambda_2 + \beta \omega_3^4(e_2) + 2 \delta \omega_1^2(e_2), \\
(4.10) \quad e_2(\delta) &= -\eta \lambda_1 + (\alpha - \beta) \omega_3^4(e_1) - 2 \eta \omega_1^2(e_2), \\
(4.11) \quad 2 \delta \lambda_1 - 3 \alpha \lambda_2 - 3 \eta \delta \omega_3^4(e_1) - 3 \alpha (\alpha - \beta) \omega_1^2(e_1) + 3 (\alpha - \beta) \eta \omega_1^2(e_1) &= 0, \\
(4.12) \quad (2 \alpha - \beta) \eta \lambda_1 - 3 \alpha^2 \omega_1^2(e_1) - 3 \pi \omega_1^2(e_2) + 3 (\alpha - \beta) \eta \omega_1^2(e_1) &= 0, \\
(4.13) \quad (\alpha - 2 \beta) \eta \lambda_2 + 3 \eta \delta \omega_3^4(e_1) - 3 \alpha (\alpha + \beta^2 + 2 \delta^2) \omega_3^4(e_2) - 3 (\alpha - \beta) \eta \omega_1^2(e_1) + 6 (\alpha - \beta) \delta \omega_1^2(e_2) &= 0, \\
(4.14) \quad 3 \beta \eta \lambda_1 + 2 \beta \delta \lambda_2 - 3 (\alpha + \beta) \beta \omega_3^4(e_1) + 3 \eta \delta \omega_3^4(e_2) - 3 (\alpha - \beta) \eta \omega_1^2(e_2) &= 0.
\end{align*}
\]

THEOREM 2. Let M be a surface which lies essentially in E^4. Then M is an open portion of the product surface of two planar circles if and only if M has pointwise planar normal sections and constant mean curvature.
Proof. If M is an open portion of the product surface of two planar circles, then it is easy to check that M has constant mean curvature and pointwise planar normal sections.

Now, let M be a surface which lies essentially in E^4. Assume that M has constant mean curvature and pointwise planar normal sections. Then, by using Theorem 4 of [2], we see that $\alpha + \beta \neq 0$. We want to claim that $(\alpha - \beta) \delta = 0$. Assume that $(\alpha - \beta) \delta \neq 0$. If $\eta \neq 0$, then by eliminating $\omega_1^2(e_1)$, $\omega_1^2(e_2)$ from (4.12) and (4.13) with the help of (4.11), (4.14), we have

\begin{align*}
(4.15) & \quad 2[(\alpha + \beta) \eta^2 - 2\alpha \delta^2] \lambda_1 + 2(3\alpha + \beta) \eta \delta \lambda_2 - \\
& \quad - 3(\alpha + \beta)^2 \eta \omega_3^4(e_1) + 6\alpha(\alpha + \beta) \delta \omega_3^4(e_2) = 0, \\
(4.16) & \quad -2(\alpha + 3\beta) \eta \delta \lambda_1 + 2[(\alpha + \beta) \eta^2 - 2\delta^2] \lambda_2 + \\
& \quad + 6(\alpha + \beta) \beta \delta \omega_3^4(e_1) + 3(\alpha + \beta)^2 \eta \omega_3^4(e_2) = 0.
\end{align*}

Combining (4.15) and (4.16), we have

\begin{align*}
(4.17) & \quad [\frac{(\alpha + \beta)^2 \eta^2 - 4\alpha \delta^2}{(\alpha - \beta)^2}] [2\eta \lambda_1 + 2\delta \lambda_2 - 3(\alpha + \beta) \omega_3^4(e_1)] = 0.
\end{align*}

If $(\alpha + \beta)^2 \eta^2 + 4\alpha \delta^2 \neq 0$. We have from (4.11) - (4.17)

\begin{align*}
(4.18) & \quad \omega_1^2 = \frac{2\eta \delta \lambda_1 + (\alpha^2 + \alpha \beta + 2\delta^2) \lambda_2 - 3(\alpha + \beta)^2 \eta \omega_3^4(e_1)}{5(\alpha - \beta)^2}, \\
& \quad + \frac{(\alpha + \beta)^2 \eta \lambda_1 - 2\eta \delta \lambda_2}{3(\alpha - \beta)^2} \omega_2^2.
\end{align*}

If $(\alpha + \beta)^2 \eta^2 + 4\alpha \delta^2 = 0$, differentiating this relation, we have, with the help of (4.3) - (4.10),

\begin{align*}
(4.19) & \quad \omega_3^2 = \frac{2(\eta \lambda_1 + \delta \lambda_2)}{3(\alpha + \beta)} \omega_1^1 + \frac{2(\delta \lambda_1 - \eta \lambda_2)}{3(\alpha + \beta)} \omega_2^1.
\end{align*}

If $(\alpha + \beta)^2 \eta^2 + 4\alpha \delta^2 = 0$, differentiating this relation, we have, with the help of (4.3) - (4.10),

\begin{align*}
(4.20) & \quad [a(\alpha + \beta) \eta^2 - 2\alpha \delta^2] \lambda_1 + 4\alpha \beta \eta \delta \lambda_2 - \\
& \quad - [a(\alpha + \beta)^2 + 2(\alpha - \beta) \delta^2] \eta \omega_3^4(e_1) + \\
& \quad + [4 \alpha \beta (\alpha + \beta) - (\alpha + \beta) \eta^2 - 2 \alpha \delta^2] \delta \omega_3^4(e_2) + 2(\alpha - \beta) \eta \omega_3^2(e_1) + \\
& \quad + (\alpha - \beta)[(\alpha + \beta) \eta^2 + 2\alpha \delta^2] \omega_3^2(e_2) = 0.
\end{align*}

\begin{align*}
(4.21) & \quad -4\alpha \beta \eta \delta \lambda_1 + [8 (\alpha + \beta) \eta^2 - 2 \alpha \delta^2] \lambda_2 + \\
& \quad + [4 \alpha \beta (\alpha + \beta) - (\alpha + \beta) \eta^2 - 2 \delta^2] \delta \omega_3^2(e_1) + \\
& \quad + 2(\alpha - \beta) \eta \omega_3^2(e_1) + 2(\alpha - \beta) \omega_3^2(e_2) = 0.
\end{align*}
\[
\begin{align*}
&+ \left[\beta(\alpha+\beta)^2 - 2(\alpha-\beta)\delta^2 \right] \eta \omega_3^4(e_2) + \\
&+ (\alpha-\beta)(\alpha+\beta)\eta^2 + 2\beta\delta^2 \omega_1^2(e_1) + \\
&+ 2(\alpha-\beta)^2 \eta \omega_1^4(e_2) = 0.
\end{align*}
\]

From (4.11) - (4.14) and (4.20), (4.21), we still have (4.18), (4.19). Because \(|H|\) is constant, differentiating the relation \(\alpha+\beta = \text{constant},\) we have

\[
(4.22) \quad \alpha \lambda_1 - \delta \omega_3^4(e_2) + (\alpha-\beta)\omega_1^2(e_2) = 0
\]

\[
(4.23) \quad \beta \lambda_2 - \delta \omega_3^4(e_1) + (\alpha-\beta)\omega_1^2(e_1) = 0.
\]

Substituting (4.18), (4.19) into (4.22), (4.23), we get

\[
(4.24) \quad (3\alpha+\beta)\lambda_1 = 0.
\]

\[
(4.25) \quad (3\beta+\alpha)\lambda_2 = 0.
\]

Thus we have (i) \(\lambda_1 = \lambda_2 = 0,\) or (ii) \(3\alpha+\beta = 0, 3\beta+\alpha = 0,\) or (iii) \(3\alpha+\beta = 0, \lambda_2 = 0,\) or (iv) \(3\beta+\alpha = 0, \lambda_1 = 0.\) If case (i) occurs, (4.18) and (4.19) imply \(\omega_1^2 = \omega_3^4 = 0.\) In particular, we have \(H = 0.\) Thus, by applying Theorem 5 of Chen [2], we see that \(M\) is an open portion of the product surface of two planar circles. In particular, we have \(\delta = 0.\) This is a contradiction. If case (ii) occurs, we have \(\alpha+\beta = 0.\) This contradicts to \(\alpha+\beta \neq 0.\) For case (iii), differentiating \(3\alpha+\beta = 0,\) we have

\[
(4.26) \quad 3\omega_2(a) + \omega_2(\beta) = 0.
\]

Since \(\lambda_2 = 0, (4.7), (4.8), (4.18), (4.19),\) and (4.26) imply

\[
(4.27) \quad \eta \delta \lambda_1 = 0.
\]

From this we may again obtain a contradiction. The last case is similar to case (iii). Consequently, we have \(\eta = 0.\)

If \((\alpha-\beta)\delta \neq 0\) and \(\alpha \beta \neq 0,\) then from (4.3) - (4.14) we have \(\alpha \beta + \delta^2 = 0\) and

\[
(4.28) \quad \omega_1^2 = \frac{\alpha \lambda_2}{3(\alpha+\beta)} \omega_1^4 - \frac{\beta \lambda_1}{3(\alpha+\beta)} \omega_2^4,
\]

\[
(4.29) \quad \omega_1^4 = \frac{26 \lambda_2}{3(\alpha+\beta)} \omega_1^4 + \frac{26 \lambda_1}{3(\alpha+\beta)} \omega_2^4.
\]

Differentiating \(\alpha+\beta = \text{constant},\) we have (4.22) and (4.23). By substituting (4.28) and (4.29) into (4.22) and (4.23), we obtain
Thus, (i) \(a_1^2 + a_2^2 + b^2 = 20^2 = 0 \) and
\[\lambda_1 = \lambda_2 = 0 , \]
(ii) \(3a^2 + 2a\beta + b^2 - 2\delta^2 = 0 \) and
\[\lambda_2 = 0 , \]
(iii) \(3a^2 + 2a\beta + b^2 - 2\delta^2 = 0 \) and
\[\lambda_1 = 0 , \]
(iv) \(a_1^2 + 2a\beta + b^2 - 2\delta^2 = 0 \).

Case (i) contradicts the assumption. Case (ii) implies \(a^2 = \beta^2 \) which contradicts the assumption too. For case (iii), since \(a\beta + \delta^2 = 0 \), we obtain
\[3a^2 + 4a\beta + \beta^2 = 0 . \]
This implies \(3a + \beta = 0 \). We know that this is impossible. The last case is similar to case (iii).

If \((\alpha - \beta)\delta \neq 0\) and \(a\beta = 0\), then without loss of generality, we may assume \(\beta = 0 \). From (4.3) - (4.14), we have
\[e_1(\delta) = -\delta w_3^2(e_2) + \alpha w_1^2(e_2) = 0 , \]
(4.34)
\[e_2(\eta) = 2\delta w_1^2(e_2) = 0 , \]
(4.35)
\[2\delta \lambda_1 = 3\alpha w_3^2(e_2) = 0 . \]
These imply \(\lambda_1 = 0 \) and since \(\beta = \eta = 0 \), we have \(h(e_2, e_2) = 0 \). Thus, by (4.2), we may choose \(\lambda_2 = 0 \). From these we obtain a contradiction.
Consequently, we obtain \((\alpha - \beta)\delta = 0\). Thus, \(K^N = 0 \), from which we obtain Theorem 2 by applying Theorem 5 of Chen [2]. (Q.E.D.)

5. SURFACES IN \(\text{E}^4 \) WITH CONSTANT NORMAL CURVATURE.

In this section, we give the following classification result.

THEOREM 3. Let \(M \) be a surface which lies essentially in \(\text{E}^4 \). Then \(M \) is an open portion of the product surface of two planar circles if and only if \(M \) has pointwise planar normal sections and constant normal curvature.

Proof. Let \(M \) be a surface which lies essentially in \(\text{E}^4 \). Assume \(M \) has constant normal curvature and pointwise planar normal sections. As mentioned in the proof of Theorem 2 we may assume that \(a + \beta \neq 0 \). We want to claim that \((\alpha - \beta)\delta = 0\). Assume that \((\alpha - \beta)\delta \neq 0\). Because, \((\alpha - \beta)\delta = \text{constant} \), we have
Assume that \(\eta \neq 0 \). Using (4.3) - (4.10) and (4.18), (4.19), we obtain from (5.1),

\[
\delta \left[e_i (a) - e_i (b) \right] + (\alpha - \beta) e_i (\gamma) = 0 , \quad i = 1, 2 .
\]

\((5.1) \)

From these, we know that either \(\lambda_1 = \lambda_2 = 0 \) or \(\lambda_1^2 + \lambda_2^2 = 0 \) and

\[
\delta (5a - 3B) \lambda_1 - \eta (\alpha + \beta) \lambda_2 = 0 ,
\]

\((5.2) \)

\[
- \eta (\alpha + \beta) \lambda_1 + \delta (3a - 5B) \lambda_2 = 0 .
\]

\((5.3) \)

The first case implies that \(w_3 = 0 \) which gives \((\alpha - \beta) \delta = 0 \). In the second case, we differentiate (5.4) to obtain

\[
\delta \lambda_1 = \eta \lambda_2 , \quad \eta \lambda_1 = - \delta \lambda_2 ,
\]

\((5.5) \)

where we have used (4.3) - (4.10) and (4.18). From (5.5) we find \(n^2 + s^2 = 0 \) which contradicts to the assumption. Consequently, we have \(\eta = 0 \).

If \(\alpha \beta \neq 0 \) and \((\alpha - \beta) \delta \neq 0 \), then, from (4.3) - (4.14), we have (4.28) and (4.29) and \(\alpha \beta + s^2 = 0 \). Differentiating \(K^N \), we find

\[
\delta (3a - 3B) \delta e_i (a) + (\alpha - 3B) \delta e_i (b) = 0 , \quad i = 1, 2 .
\]

\((5.6) \)

Using (4.3), (4.4), (4.5), (4.8), (4.28) and (4.29), we have from (5.6),

\[
(5a - 3B) \lambda_1 = (3a - 5B) \lambda_2 = 0 .
\]

\((5.7) \)

Since \(\alpha \beta + s^2 = 0 \), \(5a - 3B \) and \(3a - 5B \) are nonzero. Thus, \(\lambda_1 = \lambda_2 = 0 \). This will give a contradiction. If \((\alpha - \beta) \delta = 0 \) and \(\alpha \beta = 0 \), then, by the same argument as given in section 4, we also have a contradiction. Thus, we have \((\alpha - \beta) \delta = 0 \), i.e., \(K^N = 0 \). Therefore, by Theorem 5 of Chen [2], \(M \) is an open portion of the product surface of two planar circles. The converse of this is clear. (Q.E.D.)

6. SURFACES IN \(E^4 \) WITH CONSTANT GAUSS CURVATURE.

THEOREM 4. Let \(M \) be a surface which lies essentially in \(E^4 \). If \(M \) has pointwise planar normal sections and constant Gauss curvature, then \(M \) has vanishing Gauss curvature.

Proof. Let \(M \) be a surface which lies essentially in \(E^4 \). Assume that \(M \)
has constant Gauss curvature K and pointwise planar normal sections. We may assume that $a+b \neq 0$ by Theorem 4 of [2]. If $(a-b)\delta \neq 0$, then, by differentiating K, we have

$$(6.1) \quad be_i(a) + ae_i(b) - 2ne_i(\delta) = 0, \quad i = 1, 2.$$

Using (4.3) - (4.10), (4.18), (4.19) and (6.1) we find

$$(6.2) \quad (a\delta - \eta^2 - \delta^2)\lambda_1 = (a\delta - \eta^2 - \delta^2)\lambda_2 = 0.$$

From this, we may conclude that $K = a\delta - \eta^2 - \delta^2 = 0$.

If $(a-b)\delta \neq 0$, $a\delta \neq 0$, but $\eta = 0$, then we have (4.28), (4.29) and $a\delta + \delta^2 = 0$. Differentiating $K = a\delta - \delta^2$ = constant, we have

$$(6.3) \quad be_i(a) + ae_i(b) - 2ae_i(\delta) = 0, \quad i = 1, 2.$$

From (4.3), (4.4), (4.6), (4.7), (4.8), (4.10), (4.28) and (4.29), we have

$$(6.4) \quad (a\delta - \delta^2)\lambda_1 = (a\delta - \delta^2)\lambda_2 = 0.$$

Thus, we have $a\delta - \delta^2 = 0$ which contradicts $a\delta + \delta^2 = 0$. If $(a-b)\delta \neq 0$ but $\eta = a\delta = 0$, then by a similar argument as given in section 4, we have a contradiction too.

When $(a-b)\delta = 0$, $K^N = 0$. In this case, Theorem 5 of [2] implies that M is an open portion of a flat torus. Thus, $K = 0$. (Q.E.D.)
REFERENCES

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824
U.S.A.

Recibido en marzo de 1984.