ON THE ANNIHILATOR IDEAL OF AN INJECTIVE MODULE

Yasuji Takeuchi

1. INTRODUCTION.

Let A be a noetherian local ring and N a finitely generated A-module. In general it doesn’t hold that a N-regular element is A-regular. However a N-regular element may be A/a-regular for some ideal a of A. So we shall consider the following problem: Characterize a minimal ideal a of A having the property that any N-regular element is A/a-regular.

First we shall determine the annihilator ideal of an injective module which has a finite set of associated prime ideals. Using this result the above problem will be solved. Finally a slight application to non-zero divisors will be given.

In the following discussion, (A,m,k) is a noetherian local ring and modules are always unitary. The unlabeled Hom means always Hom$_A$. For an A-module N $E(N)$ denotes an injective envelope of N.

2. THE ANNIHILATOR IDEAL OF AN INJECTIVE MODULE.

Let a be an ideal of A and N an A-module. Annih(a), Annih$_N(a)$ denote the ideal of elements a in A with $aa = 0$, the submodule of elements z of N with $za = 0$, respectively.

PROPOSITION 2.1. Let E be an injective A-module and x an element of A. Then $xE = E$ iff Annih$(x) \subseteq$ Annih(E).

Proof. The "only if" part is obvious. Assume Annih$(x) \subseteq$ Annih(E). From the exact sequence: $0 \to$ Annih$(x) \to A \to xA \to 0$, we obtain the exact sequence: Hom$(xA,E) \to$ Hom$(A,E) \to$ Hom(Annih$(x),E)$. This second map is zero by the hypothesis. So the map: Hom$(xA,E) \to$ Hom(A,E) is surjective. The multiplication map by x: Hom$(A,E) \to$ Hom(A,E) factorizes into two epimorphisms: Hom$(A,E) \to$ Hom(xA,E) and Hom$(xA,E) \to$ Hom(A,E), and so $xE = E$.

COROLLARY 2.2. Let E be an injective A-module with Annih$(E) = 0$. Then, for $x \in A$, $xE = E$ iff x is non-zero divisor.
COROLLARY 2.3. For \(x \in A \), \(xE(k) = E(k) \) iff \(x \) is a non-zero divisor.

Proof. If is obvious from the following well-known lemma.

LEMMA 2.4. \(\text{Annih}(E(k)) = 0. \)

Proof. \(E(k) \) may be regarded as the injective envelope of the residue field \(\mathbb{A}/mA \) as an \(\mathbb{A} \)-module where \(\mathbb{A} \) is the \(m \)-adic completion of \(A \) [c.f., 4]. So it is sufficient to show this lemma when \(A \) is complete. In this case, by Matlis duality, we have \(\text{Hom}(\text{Hom}(A/a, E(k)), E(k)) \cong A/a \) for any ideal \(a \) of \(A \). If \(a = \text{Annih}(E(k)) \), \(\text{Hom}(A/a, E(k)) \cong E(k) \) and so \(\text{Hom}(\text{Hom}(A/a, E(k)), E(k)) \cong A \) [c.f., 4]. Hence we obtain \(\text{Annih}(E(k)) = 0. \)

PROPOSITION 2.5. Let \(p \) be a prime ideal of \(A \). If \(xE(A/p) = E(A/p) \) for \(x \in A \), then there is an element \(t \) in \(A - p \) with \(t\text{Annih}(x) = 0. \)

Proof. If \(\text{Annih}(x) = 0 \), it is trivial. Assume \(\text{Annih}(x) \neq 0. \) Set \(a = \text{Annih}(x) \). Then we have \(aE(A/p) = 0. \) Since the injective envelope \(E(A/p) \) of the \(A_p \)-module \(A_p/pA_p \) has a zero annihilator ideal, we obtain \(a = 0. \) So there is an element \(t \) in \(A - p \) with \(ta = 0. \)

PROPOSITION 2.6. The annihilator ideal of a non-zero injective module consists of zero divisors.

Proof. Let \(E \) be a non-zero injective module. For any non-zero divisor \(x \), we have \(xE = E \) and so \(xE \neq 0. \)

COROLARIO 2.7. For any injective \(A \)-module \(E \), \(\text{Annih}(E) \) is contained in an associated prime ideal of \(A \).

LEMA 2.8. Let \(p \) be a prime ideal of \(A \). Then \(\text{Annih}(t)E(A/p) = 0 \) for any \(t \in A - p \).

Proof. It follows from \(tE(A/p) = E(A/p) \) for any \(t \in A - p \).

COROLARY 2.9. For any \(t \in A - p \), \(\text{Annih}(t) \subseteq \text{Annih}(E(A/p)). \)

LEMA 2.10. Let \(a = \text{Annih}(E(A/p)) \) with \(p \) a prime ideal of \(A \). Then there exists an element \(t \) in \(A - p \) with \(a = \text{Annih}(t) \) and so \(a = \max\{\text{Annih}(t) : t \in A - p\}. \)

Proof. Since the injective envelope \(E(A/p)_p \) of an \(A_p \)-module \(A_p/pA_p \) has a zero annihilator ideal, there is an element \(t \) in \(A - p \) with \(ta = 0 \) and so \(a \subseteq \text{Annih}(t) \). The statement follows from the above corollary. The following corollary is immediate from the above lemma:
COROLLARY 2.11. Let \(p,q \) be two prime ideals of \(A \) with \(p \subseteq q \). Then \(\text{Annih}(E(A/p)) \) contains always \(\text{Annih}(E(A/q)) \).

COROLLARY 2.12. Let \(0 \rightarrow N \rightarrow E^0 \rightarrow E^1 \rightarrow \ldots \) be a minimal injective resolution for a finitely generated \(A \)-module \(N \). If \(\text{Annih}(E^1) \neq 0 \), then \(\text{Annih}(E^{i-1}) \supseteq \text{Annih}(E^i) \), where \(E^{-1} = N \).

Proof. It is trivial if \(i=0 \). Assume \(i > 0 \). Put \(a = \text{Annih}(E^i) \). Let \(p \) be any prime ideal of \(A \) with \(\mu^{i-1}(p,N) > 0 \). Then we have \(\text{ht}(p) < n-2 \) where \(n = \dim A \). For, if \(\text{ht}(p) > n-2 \), then \(\mu^i(m,N) > 0 \) [c.f., 2, 3], which is a contradiction to \(a
eq 0 \). So there is a prime ideal \(q \) of \(A \) such that \(p \subset q \) are distinct with no prime ideal between them. In this case, we have \(\mu^i(q,N) > 0 \) [c.f., 2] and so \(aE(A/p) = 0 \). This completes the proof.

PROPOSITION 2.13. Let \(E \) be an injective \(A \)-module. If there is an associated prime ideal \(p \) of \(A \) which is not contained in the union of the associated prime ideals of \(E \), then \(\text{Annih}(E) \neq 0 \).

Proof. For \(t \in p - \bigcup_{q \in \text{Ass}(E)} q \), we have \(tE = E \), and so \(\text{Annih}(t) \subseteq \text{Annih}(E) \).

THEOREM 2.14. Let \(E \) be an injective \(A \)-module such that \(\text{Ass}(E) = \{p_1, p_2, \ldots, p_n\} \) is a finite set. Then \(\text{Annih}(E) = \max(\text{Annih}(t) : t \in A - \bigcup_{i} p_i) \).

Proof. Put \(a = \max(\text{Annih}(t) : t \in A - \bigcup_{i} p_i) \). Then we have obviously \(a \subseteq \text{Annih}(E(A/p_i)) \) for \(i = 1,2,\ldots,n \) and so \(a \subseteq \text{Annih}(E) \). Let \(x \) be any element of \(\text{Annih}(E) \). Then \(xE(A/p_i) = 0 \) for \(i = 1,2,\ldots,n \). So we may take elements \(t_i \) in \(A - p_i \) with \(t_ix = 0 \) for \(i = 1,2,\ldots,n \) [c.f., (2.4)]. Let us denote \(\{p_1, p_2, \ldots, p_m\} \) the set of associated prime ideals of \(E \) except those contained in another of them.

Choose any element \(u_i \) of \(p_i - \bigcup_{j \neq i} p_j \) for \(i = 1,2,\ldots,m \) and set \(v_i = u_1 \ldots u_{i-1}t_iu_{i+1} \ldots u_m \). Then we have \(v_i \in p_k \) for \(i \neq k \) and \(v_i \notin p_i \), and so \(v_1 + v_2 + \ldots + v_m \notin p_i \) for \(i = 1,2,\ldots,m \). Since \(x(v_1 + v_2 + \ldots + v_m) = 0 \), we obtain \(x \in \text{Annih}(v_1 + v_2 + \ldots + v_m) \subseteq a \) and so \(\text{Annih}(E) \subseteq a \). This completes the proof.

COROLLARY 2.15. Let \(E \) be as above. Then there exists a principal ideal \(I \) of \(A \) such that \(E \) is faithfull over \(I \).

Proof. We have \(\text{Annih}(x) = \text{Annih}(E) \) for some \(x \in A - \bigcup_{i} p_i \).

Set \(I = \mathfrak{a}A \). If \(\mathfrak{a}E = 0 \) for \(\mathfrak{a} \in A \), \(x \) belongs to \(\text{Annih}(E) \) since \(xE = E \), and so \(x = 0 \). This means that \(E \) is faithfull as an \(I \)-module.
3. NON-ZERO DIVISORS.

Lemma 3.1. Let N be an A-module with $\text{Annih}(E(N)) = 0$. Then a non-zero divisor on N is a non-zero divisor.

Proof. For any associated prime ideal p of A, there is an associated prime ideal q of $E(N)$ containing p. For, otherwise we have $\text{Annih}(E(N)) = \text{Annih}(t) \neq 0$ for $t \in p - \bigcup q \in \text{Ass}(E(N)) q$. Since $\text{Ass}(N) = \text{Ass}(E(N))$, our statement holds.

Theorem 3.2. Let N be an A-module, $a = \text{Annih}(E(N))$. Then any non-zero divisor on N is a non-zero divisor on A/a. If N is finitely generated, then a is the unique minimal ideal of A with respect to this property.

Proof. $E(N)$ may be considered as the injective envelope of N as an A/a-module. Moreover an A/a-module $E(N)$ has a zero annihilator ideal. From the above lemma, x is a non-zero divisor on A/a. Let b be an ideal of A such that any non-zero divisors on N are non-zero divisors on A/b. Now there is $t \in A$ such that $\text{Annih}(t) = \text{Annih}(E(N))$ and t is a non-zero divisor on N. Then t is a non-zero divisor on A/b. So we have $a \subseteq b$. For, if $a \not\subseteq b$, $ta = 0$ for $a \in a - b$, which is absurd.

Corollary 3.3. Let N be an A-module. Put $a = \text{Annih}(E(N))$. Then, if an element x of A is a non-zero divisor on N, $\text{inj.dim}_{A/a} N/xN = \text{inj.dim}_{A/a} N - 1$.

Proof. It is obvious from the fact that x is a non-zero divisor on A/a.

Corollary 3.4. Let N be a finitely generated A-module and x_1, x_2, \ldots, x_r an N-sequence. Then x_1, x_2, \ldots, x_r form an A-sequence if $\text{Annih}(\bigoplus_{i=0}^r x_i) = x_i$ for $i = 0, 1, \ldots, r$ where $0 \rightarrow N \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots$ is a minimal injective resolution of N and $x_0 = 0$.

Proof. By the hypothesis we have $\text{Annih}(E(N)) = 0$ and so x_i is a non-zero divisor. Assume x_1, x_2, \ldots, x_i is an A-sequence. Then $\text{Hom}(A/x_i, E^i)$ is the injective envelope of N/x_iN as an A/x_i-module [c.f., 1, Theorem 2.2]. By the hypothesis we obtain that the annihilator ideal of $\text{Hom}(A/x_i, E^i)$ as an A/x_i-module is zero. So x_{i+1} is a non-zero divisor on A/x_i.

Corollary 3.5. The following conditions are equivalent:

a) A is Cohen-Macaulay.

b) For a s.o.p. x_1, x_2, \ldots, x_n, for A there exists a finitely generated
A-module N such that x_1, x_2, \ldots, x_n is an N-sequence and $\text{Annih}(\text{Annih}_i x_i) = x_i$ $(i = 0, 1, \ldots, n)$ where $x_0 = 0, x_1 = (x_1, x_2, \ldots, x_i)$ and $0 \longrightarrow N \longrightarrow E^0 \longrightarrow E^1 \longrightarrow \ldots$ is a minimal injective resolution of N.

Proof. b) \Rightarrow a). It is obvious from the above corollary.

a) \Rightarrow b). Consider A as N. Then the condition b) is satisfied.

COROLLARY 3.6. Let N be a finitely generated A-module and $0 \longrightarrow N \longrightarrow E^0 \longrightarrow E^1 \longrightarrow \ldots$ a minimal injective resolution of N. Then any N-sequence forms an A-sequence iff $\text{Annih} (E^0) = 0$ and for any N-sequence $\text{Annih}(\text{Annih}_i x) = x$ where i is the length of the N-sequence and x is the ideal generated by the N-sequence.

Proof. The "if part" follows from the above corollary. We shall show the converse. We obtain $\text{Annih}(E^0) = 0$ from the above theorem. Moreover $\text{Hom}(A/x, E^i)$ is the injective envelope of N/xN as an A/x-module. By the hypothesis and the above theorem, the annihilator ideal of $\text{Hom}(A/x, E^i)$ as an A/x-module is zero and so $\text{Annih}(\text{Annih}_i x) = x$.

REFERENCES

Kobe University
Japan

Recibido en febrero de 1980.