A CHARACTERIZATION OF PRÜFER RINGS

Angel V. Oneto

ABSTRACT. Let \(R \) be a domain. In this paper we prove the following result: \(R \) is a Prüfer ring if and only if, for every finitely generated \(R \)-module \(M, t(M) \) (the torsion submodule) is a pure submodule of \(M \). This has as corollary a theorem of Kaplansky characterizing Prüfer rings.

Throughout this paper we assume \(R \) is a commutative ring with identity 1. We recall first, for reference, the definition and a characterization of pure submodules ([1], 2, ex. 24. a.) ([2], th. 2.4.).

DEFINITION. An exact sequence of \(R \)-modules:
\[
0 \longrightarrow M' \twoheadrightarrow M \rightarrowtail M'' \longrightarrow 0
\]
is called pure exact (also we say that \(M' \) is a pure submodule of \(M \)) iff for every \(R \)-module \(N \), the following sequence is exact:
\[
0 \longrightarrow N \otimes_R M' \longrightarrow N \otimes_R M \longrightarrow N \otimes_R M'' \longrightarrow 0
\]

LEMMA. Every direct summand is a pure submodule.

THEOREM 1. Let \(M \) be an \(R \)-module and \(M' \) a submodule of \(M \). \(M' \) is a pure submodule of \(M \) if and only if, for every finite family \((a'_j)_{j=1}^n \subseteq M' \) such that \(a'_j = \sum_{i=1}^{m} r_{ij} a_i \) (\(a_i \in M, r_{ij} \in R, j = 1, \ldots, n \)), there exist a family \((b'_i)_{i=1}^m \subseteq M' \) such that:
\[
a'_j = \sum_{i=1}^{m} r_{ij} b'_i \quad j = 1, \ldots, n
\]

In this paper we give the following characterization of Prüfer rings.

THEOREM 2. Let \(R \) be a domain. \(R \) is Prüfer if and only if for every \(R \)-module \(M \) of finite type, the torsion submodule \(t(M) \) is a pure submodule of \(M \).

Before proving theorem 2, let us show that it has as corollary the following theorem ([3]):

THEOREM 3. Let \(R \) be a domain. \(R \) is a Prüfer ring if and only if, for
every R-module \(M \) of finite type, \(t(M) \) is a direct summand of \(M \).

Proof. The non trivial part (the implication for the left) follows from the lemma and theorem 2.

Proof of theorem 2. If \(R \) is Prüfer, \(\frac{M}{t(M)} \) is projective, then the exact sequence:

\[
0 \longrightarrow t(M) \longrightarrow M \longrightarrow \frac{M}{t(M)} \longrightarrow 0
\]

splits, so is pure exact.

For the converse we use the fact that \(R \) Prüfer is equivalent to say that every finitely generated ideal \(I \neq 0 \) of \(R \) is invertible. Let \(I \neq 0 \) an ideal of \(R \) generated by \(a_1, \ldots, a_n \) with, say, \(a_1 \neq 0 \). Put:

\[
M = R^n / (a_1(a_2, \ldots, a_n))
\]

We have \((a_1, \ldots, a_n) \in t(M) \), and \((a_1, \ldots, a_n) = \sum_{i=1}^{n} a_i e_i \) where \((e_i) \) is the canonical base of \(R^n \). Being, by hypothesis, \(t(M) \) a pure submodule of \(M \), by theorem 1 there exist \(p_{ij} \in R \) with \((p_{i1}, \ldots, p_{in}) \in t(M) \), such that:

\[
(a_1, \ldots, a_n) = \sum_{i=1}^{n} a_i (p_{i1}, \ldots, p_{in})
\]

In particular:

(1) \[
a_1 = \sum_{i=1}^{n} a_i p_{i1} + r a_1 a_1 \quad (r \in R)
\]

We have \((p_{i1}, \ldots, p_{in}) \in t(M) \), \(i = 1, \ldots, n \), then there must exist \(r_i, s_i \in R \), \(r_i \neq 0 \), \(s_i \neq 0 \), \(i = 1, \ldots, n \), such that:

(2) \[
r_i p_{ij} = s_i a_1 a_j \quad i, j = 1, \ldots, n
\]

Replacing \(p_{i1} = \frac{s_i a_1 a_1}{r_i} \) in (1) and using the fact that \(a_1 \neq 0 \), we obtain:

\[
1 = (r + \frac{s_i a_1}{r_i}) a_1 a_1 + \sum_{i=2}^{n} \frac{s_i a_1}{r_i} a_i
\]

To conclude the proof we only have to verify that:

\[
\frac{s_i a_1}{r_i} a_j \in R \quad i, j = 1, \ldots, n
\]

but this is clear from (2).
REFERENCES

Recibido en febrero de 1981.