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In [1], C. Apostol characterized the Hilbert space operators which in­
duce inner derivations. having closed range. Let L!H) denote the alge­
bra of all (bounded linear) operators acting on a complex Hilbert spa­
ce H of infinite dimension h. An operator T in L!H) induces an inner 
derivation 0T: L!H) -->- L!H) defined by 0T(X) = TX-XT. Apostol's re-

sults give necessary and suffici~nt conditions on an operator T so 

that ran(oT)' the range of 0T' is norm closed in L!H): 

THEOREM 1 [1, Theorem 3.5]. For T in L!H), the foZZowing are equiva­

Zent: 

(i) ran(oT) is cZosed in L!H). 

(ii) p(T) = O for some monia poZynomiaZ p and ran q(T) is aZosed in 

H for eaah poZynomiaZ q dividing p. 

(iii) T is simiZar to aJordan operator J. 

m mj (a .. ) 
(By Jordan operator, we mean that J = .e 1 [A. + e q 1 J ], where 

J = J i= 1 k ij 

O < m < -, 1 < mj < -, for each j, 1 < j < m, A1,A 2, ... ,Am are dis­

tinct complex scalars, qk denotes the Jordan nilpotent cell in Ck , 

qk (a) denotes the orthogonal direct sum of a copies of qk acting in 

the usual fashion on (Ck) (a) , the orthogonal direct sum of a copies of 

and a .. 
1J 

~ 1 for all i and j). 

In [4], the authors proved the analogues of Apostol's results for the 
quotient Calkin algebra A!H) : L!H)/K(H), where K!H) denotes the ideal 
of all compact operators acting on H: If TI: L!H) -->- A!H) is the cano­
nical projection, then ran o¡¡(T)is closed in A!H) if and only if T 

A+K, where A E L!H) has the property that ran 0A is closed, and 
K E K!H). 

This research was partially supported by Grants of the National Scien­
ce Foundation. 
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The purpose of this note is to extend the results of [4] to the case 
when dim H = h > ~o and A!HI is replaced by the quotient C*-algebra 

Aa!HI = L!H)IJa , where Ja denotes sorne closed bilateral ideal of L!HI, 

strictly larger thanK!HI. 

The (not too surprising) answer is the same as in the case of A!HI: 

if J a is a closed bilateral ideal in L!HI and TIa: L!H) --+ Aa!HI is 

the canonical projection, then ran 0TI (T) is closed in Aa!H) if and 
a 

only if ran 0A is closed in L!HI for sorne A in TIa-1[TIa(T)]; i.e., the 

range of 0A is closed for sorne A of the form T-K, with K E J a . 

However, sorne subtleties concerning the two possible types of cardi­
nals involved in the definition of J a make it difficult to extrapola-

te the proofs given for the case when Ja K!H). The necessary modifi­
cations will be explained in the next section. 

2. INNER DERIVATIONS WITH CLOSED RANGE IN QUOTIENT ALGEBRAS OF L!H) 
FOR A NON-SEPARABLE HILBERT SPACE H. 

Throughout this article, H will be a complex Hilbert space of (topol~ 

gical) dimension h > ~o. Let a be an infinite cardinal such that 

~ ,¡;; a'¡;; h. Then l = {T E L(HI: dim(ran T)- < a} is a bilateral ideal o a 

of L!HI and Ja (lal- is a closed bilateral ideal of L(HI. Moreover, 

it is well known that every non-trivial closed bilateral ideal of 
L!HI is equal to J a for sorne a, ~o ,¡;; a'¡;; h (see [2], [5], [9]). (In 

the sequel the term "ideal" always refers to a non-trivial closed bila 

teral ideal of L!HI). In particular, if a = ~o' then la is the (non-

closed) bilateral ideal of all finite rank operators and Ja = K(HI is 

the ideal of all compact operators. 

Let Ja be an ideal of L(H). If TIa: L(HI --+ Aa!H) is the canonical pr~ 

jection of L(H) onto A !H) = L!H)IJ , and T E L!H), then TIN(T) will al a a ~ 

so be denoted by ta and o(ta) = 0a(T) will denote the spectrum of 

ta E Aa(H), the a-weighted speetrum of T [3]. The reader is also refe~ 

red to [2], [6], and [8] for the analysis of weighted spectra. The 
principal result of this article is the following analogue of Theore­
men 1. 2 o f [4] : 

THEOREM 2. The fotZowing are equivatent for t E A !H): 
a a 

(i) ran(Ota ) is eZosed; 

(ii) ran(oT) + Ja is eZosed in L(H); 
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(iv) ran(oT+K) is closed in L(H) for some K in J a; 

(v) T is similar to a Ja-perturbation of aJordan operator; 

(vi) ta - ja for some Jordan operator J; 

(vii) peta) is similar to aJordan operator for all unital ~-represe~ 

tations p of the C*-algebra C*(ta ) generated by ta and la; 

(.viii) peta) is similar to aJordan operator for some isometric uni­

tal *-representation p of C*(ta ); 

(ix) peta) is similar to aJordan operator for all unital *-represe~ 

tations p of Aa(H); 

(x) p(T) E J a for some monic polynomial p, and O is an isolated 

point of cr[q(ta)*q(ta )) for all polynomials q dividing p; 

(xi) p(T) E J a for some monic polynomial p, and ran q(T) is the alg~ 

braic direct sum of a (closed) subspace H and the range R of an op~ q q 

rator Rq E J a for all polynomials q dividing p. 

Moreover, (i) impUes that 

(iii) [ran(oT)) - e ran(oT) + J a , and (i) is equivalent to (iii) for 

the case when a is a countably cofinal cardinal (in particular, for 

a = ~o). 

(An infinite cardinal a is countably cofinal if a is the supremum of 

a countable collection of cardinals less than a; e.g., a = ~o. If a 

is countably cofinal, then la # J a ; if a is not countably cofinal, 

then la is closed and therefore la = J a [3)). 

The implications (v) '* (i) - (ii) '* (iii) and (iv) _ (v) '* (vi) '* 
'* (xi) '* (x) - (vii) - (viii) - (ix) follow exactly as in the 
proof of [4, Theorem 1.2). Thus, in order to complete the proof it 

only remains to show that (viii) '* (v), (i) '* (v) (if a is not counta 
bly cofinal) and (iii) '* (v) (if a is countably cofinal). 

LEMMA 3. If peta) is similar to aJordan operator for some isometric 

unital *-representation p of C*(ta ), then T - J+K, where J is a Jor-

dan operator and K E J a (i.e., (viii) '* (v) in Theorem 2). 

Proof. We proceed exactly as in the proof of [4, Proposition 2.8) 
except that, in this case, we have to apply C.L. Olsen's theorem for 
the ideals J a [10, Theorem 4.3) in order to conclude that S = T+J (a 

suitable Ja-perturbation of T) admits a matrix of the form 
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o 

Cont'duing as in the proof of [4, Proposition 2.8], with so.' Jo. ••. 

in,tead of s, K(H) ••• , we may reduce our problem to the case when 

A = peta) satisfies Ak = O, Ak- 1 ~ O. 

As in t"he proof of [4, Lemma 2.7], let Tl > O be such that (O,Tl) n 

n a(A*jAj) = 0, j = 1,2, ••• ,k-1. We claim that, after perhaps repla­
cing Tl by a suitable number in the interval [Tl/2,Tl], we may assume 

that Tl ~ 5 a(T*jTj ). Observe that a (T*jTj) = a(t *jt j) = a(A*jAj), 
j=O a a a 

so that if Ej (.) denotes the spectral measure of T*jTj, then 

rank[Ej ([Tl/2,Tl])] = aj < a for all j = 1,2, ••• ,k-1. It follows from" 

the analysis of weighted spectra [3], [8] that either O is an isolated 

point of aN (T*jTj) = a(t*jt1) and [Tl/2,Tl] n [ 5 d(T*jTj)] is finite 
o j=O 

(in which case the validity of the claim is clear), or there exists a 
subspace Hy of dimension y, aj < y < a, such that Hy reduces T and 

such that if Py is the orthogonal projection of H onto Hy ' then 

aa([(1 - Py)T*]j[(1 - Py)T]j) n [Tl/2,Tl] = 0 for all j = 1,2, •.. ,k-1. 

Since PyT E Jo.' by replacing (if necessary) T by T-PyT and Tl by a sui-
k-l .. 

table number in [Tl/2,Tl], we can assume that Tl ~.u a(T*JTJ). 
J=O _ 

Now the proof continues to follow that of [4, Lemma 2.7], with K(H) r~ 

placed by J (namely, (L. - L. 1) - RJ. E J , etc.) and w replaced by 
a J J- a k 

wa ' unktil the point where we show that pow (1 ED [ ED T. ·+I*T .. +1]) a j~2 J,J J,J 
= 1 ED [ .ED2 A .. +*IA .. +1] is invertible in C* (A). If a = No' the proof J= J,J J,J 
may be completed exactly as in the proof of [4, Lemma 2.7]. In the re-

maining case (a > No)' it is still true that Tj ,j+l: Hj+l -ran(Tj .. j +1) 

has closed range in Hj and "small" nullity, Le., nul(T j • j +1) 

= dim ker Tj ,j+l < a (j = 1,2, .•. ,k-1). In this case, we can find a re 

ducing subspace Hj +1,a of Tj ,j+l*Tj ,j+l such that dim(Hj +1,a) = a 
= Nonul(Tj ,j+l) < a and such that the restriction of Tj ,j+l to 

Hj +1. e Hj +1,a is bounded below. It is easy to check that 

dim[ran(Tj ,j+1) e Tj ,j+1(Hj +1,a)] is equal to h and 

dim[Tj ,j+1(Hj +1,a)1- = a; thus,we can find an operator Kj ,i+1: 

Hj+l --+ ran(Tj ,j+l) such that Hj +1,a reduces Kj,j+l*Kj,j+l ' 
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ker(Kj ,j+1) ~ Hj+1 e Hj +1,S' and Tj,j+1 = Tj ,j+1 + Kj ,j+1 is an inver 

tibIe mapping from Hj+1 onto ran(Tj ,j+1) (= ran(Tj ,j+1))' It is ap­

parent that rank(Kj ,j+1) ~ S and therefore Kj ,j+1 E la' Thus, 

Tj ,j+1: Hj+1 --+ ran(Tj ,j+1) is an invertible la-perturbation of 

T. '+1' It now follows from Apostol's criterion [1, Lemma 3.2, Corol 
J ,J 

lary 3.4 and Theorem 3.5] that sorne la-perturbation of T is similar 

to aJordan operator, and the result follows. 

COROLLARY 4. Suppose dim(Ha ) > ~o' H1 is separabZe, a > ~o is a coun­

tabZy cofinaZ cardinaZ, and H = Ha e H1 (a). Let A E L(Hal, T E L(H 1 l, 

K E la(Hl, and L = A e r(a) + K. If ran 0T is not cZosed, then 

[ran(oL)]- is not contained in ran(oL) + la' 

Proof. The proof is based on suitable modifications of the proof of 

[4, Lemma 2.10], which we now outline. As in that proof, we can find 

y E L(H 1 l and {Xn }n:1 e L(H 1 l such that II(TXn - XnT) - YII -+ O, but 

y <t:. ran(oT) and f(n) = IIXnl1 too "very slowly". For each S, 1 ~ S ~ a, 

clearly, 

II(T(S)Xn (S) - Xn ([3)T([3») - y([3) 11 -+ O (n ->- (0) and y([3) <t:. ran(oT(S»)' 

Modifications of the proof of [4, Lemma 2.10] permit us to construct 

an increasing sequence {an}n:1 of infinite cardinal s suc~ that 

00 ( ) 00 (a) 
a = L a = sup an and H = Ha e H a = H e [ e H n]. If P de-

n=l n n 1 a n=l 1 n 
(a. ) 

notes the orthogonal projection of H onto Ha e [j~l H1 J ] , then we 

may also assume that IIK(L - Pn)1I + 11(1 - Pn)KII < Z-n/([1 + f(n+1)] , 

n ;;;. 1. 

Proceeding as in [4, 

(al) 
Zm = 0Ha e [Xl e 

Lemma 2.10], 
(a2 ) 

X2 e 

we define 
(a ) (a.) 

ex m]e[e X J] 

then 
m 

(OH O
e [j:1 (TX j 

+ KZ - Z K. 
m m 

m j=m+l m 

(a.) 00 (a.) 
XJ.T) J e[ e (TX -XT) J]) + 

j=m+l m m 

Exactly as before, both the terms in parentheses and {KZm - ZmK}m=l 

are Cauchy sequences, and the Cauchy sequence {,\ (ZID) } ID: 1 converges 
(a. ) 

to B = O e [ . e y J~ 
Ha J=l 

larly, the assum'Ption tha1; B = LZ - ZL + R for sorne Z in L(Hl and R in 
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J a leads to the contradiction that Y is ran(~T)' Hence B E [ran(~L)] 

but B ~ ran(~L) + la' 

COROLLARY 5. If a is countabZy cofinaZ and L E L(HJ is not simiZa~ to 

a Ja-p-e~tu~bation of a Jo~dan ope~ato~. then [ran(~L)]- is not conta-

ined in ran(~L) + la' 

P~oof. If a = ~o' this is the result of [4, Corollary 2.11]. If' 

a > ~o' we proceed exactly as in the proof of that result, except 
that in the present case, we have to use the results of [6] and [7] 

instead of [11, Theorem 1.3] in order to show,that L ~ L e T(a) + K 

for some K E J a and some separably acting operator T such that ran(~T) 

is not closed. Now the result follows from Corollary 4. 

LEMMA 6. If A E L(HoJ, T acts on a sepa~abZe space H¡. ran(~T) is not 

cZosed. a is not countabZy cofinaZ. and L = A ~ T(a) + K E L(H~ (where 

H = HO e H¡ (a) and K E J a). then [ran(~L)]- is not contained in 

ran(~L) + J a . 

P~oof. Assume that Y E [ran(~T)]- \ ran(~T); then as in the proof of 
(~ ) 

[4, Lemma 2.10], Y o E [ran(~ (~ )]- \ ran(~ (~ »). Since 
T o T o 

dim[ran(K)]- = B < a , it easily follows that L = Be T(a)with res-

pect to a decomposition H = HB e Hy ' where dirn(HB) = dirn(HO) + B and 

H "" H (a) 
y - ¡ 

Clearly, [ran(~L)] -contains an operator of the forrn O e N, where 

N E L(Hyl is unitarily equivalent to y(a). Assurne that O e N = LZ -

- ZL + R for sorne Z E L(HJ and some REJa; then dirn[ran(R)]- = B'< 

< a and Hy contains a separable subspace H' reducing L, Z, and R such 
(~ ) (~ ) 

that RIH' = O, LIH' ~ T o, and NIH' ~ Y o . Therefore 
(~ ) (~ ) 

T o Z' _ Z'T o 
(~ ) 

y o for a sui tabl e opera tor Z' ~ ,Z I H', whence 
(~ ) 

we conclude that Y o E ran(~ (~ »), a contradiction. 
T o 

COROLLARY 7. If a is not eountabZy cofinaZ and L E L(HJ is not simiZa~ 

to a Ja-pe~tu~bation of a Jo~dan ope~ato~. then ran(~! ) is not cZosed. 
a 

P~oof. If L is not of the forrn W-¡JW + K, where W is invertible, J is 
aJordan operator, and KE J a , then (by Lemma 3) there exists 

T E L(H¡1 (where H¡ is a'separable Hilbert space), not similar to a 
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Jordan operator, such that pela) = T for some unital *-representation 

of C*(la). Now it follows from [6] and [7] that the closure of the uni 

tary orbit U(L) - {U*LU: U is unitary} of L contains an operator 

M ~ L $ T(a). 

Since ran(oT) is not closed [ 1], it follows from Lemma 6 that 

[ran(oM)] - cannot be contained in ran(oM) + la' and thus ran(o is 
ma 

not closed. 

Now, if ran(ol ) is closed, then we can proceed exactly as in the 
a 

proof of [1, Proposition 2.1] in order to show that U(la) e S(la) 

= {wa-1la wa : wa is invertible in Aa(H)}; thus ma - la' whence we con­

clude that ran(om ) is closed too, a contradiction. 
a 

Now we are in a position to complete the proof of Theorem 2: 
(viii) ~ (v) is the content of Lemma 3. If a is countably cofinql, 
then it follows from Corollary S that (iii) ~ (v), completing the proof 

in this case. Finally, if a is not countably cofinal, then it follows 
from Corollary 7 that (i) ~ (v). 
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