INNER DERIVATIONS WITH CLOSED RANGE IN THE CALKIN ALGEBRA. II: THE NON-SEPARABLE CASE

Lawrence A. Fialkow and Domingo A. Herrero

1. INTRODUCTION.

In [1], C. Apostol characterized the Hilbert space operators which induce inner derivations having closed range. Let L(H) denote the algebra of all (bounded linear) operators acting on a complex Hilbert space H of infinite dimension h. An operator T in L(H) induces an inner derivation $\delta_{\rm T}$: $L(H) \longrightarrow L(H)$ defined by $\delta_{\rm T}({\rm X}) = {\rm TX-XT}$. Apostol's results give necessary and sufficient conditions on an operator T so that ${\rm ran}(\delta_{\rm T})$, the range of $\delta_{\rm T}$, is norm closed in L(H):

THEOREM 1 [1, Theorem 3.5]. For T in L(H), the following are equivalent:

(i) $ran(\delta_{\pi})$ is closed in L(H).

(ii) p(T) = 0 for some monic polynomial p and ran q(T) is closed in H for each polynomial q dividing p.

(iii) T is similar to a Jordan operator J.

(By Jordan operator, we mean that $J = \prod_{j=1}^{m} [\lambda_j + \prod_{i=1}^{m} q_{k_{ij}}^{(\alpha_{ij})}]$, where $0 < m < \infty$, $1 \le m_j < \infty$, for each j, $1 \le j \le m$, $\lambda_1, \lambda_2, \ldots, \lambda_m$ are distinct complex scalars, q_k denotes the Jordan nilpotent cell in C^k , $q_k^{(\alpha)}$ denotes the orthogonal direct sum of α copies of q_k acting in the usual fashion on $(C^k)^{(\alpha)}$, the orthogonal direct sum of α copies of C^k , and $\alpha_{ij} \ge 1$ for all i and j).

In [4], the authors proved the analogues of Apostol's results for the quotient Calkin algebra A(H) = L(H)/K(H), where K(H) denotes the ideal of all compact operators acting on H: If $\pi: L(H) \longrightarrow A(H)$ is the canonical projection, then ran $\delta_{\pi(T)}$ is closed in A(H) if and only if T = A+K, where $A \in L(H)$ has the property that ran δ_A is closed, and $K \in K(H)$.

This research was partially supported by Grants of the National Science Foundation.

The purpose of this note is to extend the results of [4] to the case when dim $H = h > \underset{o}{\aleph}_{o}$ and A(H) is replaced by the quotient C*-algebra $A_{\alpha}(H) = L(H)/J_{\alpha}$, where J_{α} denotes some closed bilateral ideal of L(H), strictly larger than K(H).

The (not too surprising) answer is the same as in the case of A(H): if J_{α} is a closed bilateral ideal in L(H) and π_{α} : $L(H) \longrightarrow A_{\alpha}(H)$ is the canonical projection, then ran $\delta_{\pi_{\alpha}(T)}$ is closed in $A_{\alpha}(H)$ if and only if ran δ_{A} is closed in L(H) for some A in $\pi_{\alpha}^{-1}[\pi_{\alpha}(T)]$; i.e., the range of δ_{A} is closed for some A of the form T-K, with $K \in J_{\alpha}$. However, some subtleties concerning the two possible types of cardinals involved in the definition of J_{α} make it difficult to extrapolate the proofs given for the case when $J_{\alpha} = K(H)$. The necessary modifications will be explained in the next section.

2. INNER DERIVATIONS WITH CLOSED RANGE IN QUOTIENT ALGEBRAS OF L(H)FOR A NON-SEPARABLE HILBERT SPACE H.

Throughout this article, # will be a complex Hilbert space of (topological) dimension $h > \aleph_o$. Let α be an infinite cardinal such that $\aleph_o \leq \alpha \leq h$. Then $I_{\alpha} = \{T \in L(\#): \dim(\operatorname{ran} T)^- < \alpha\}$ is a bilateral ideal of L(#) and $J_{\alpha} = (I_{\alpha})^-$ is a closed bilateral ideal of L(#). Moreover, it is well known that every non-trivial closed bilateral ideal of L(#) is equal to J_{α} for some α , $\aleph_o \leq \alpha \leq h$ (see [2], [5], [9]). (In the sequel the term "ideal" always refers to a non-trivial closed bilateral ideal bilateral ideal of L(#). In particular, if $\alpha = \aleph_o$, then I_{α} is the (non-closed) bilateral ideal of all finite rank operators and $J_{\alpha} = K(\#)$ is the ideal of all compact operators.

Let J_{α} be an ideal of L(H). If $\pi_{\alpha}: L(H) \longrightarrow A_{\alpha}(H)$ is the canonical projection of L(H) onto $A_{\alpha}(H) = L(H)/J_{\alpha}$, and $T \in L(H)$, then $\pi_{\alpha}(T)$ will all so be denoted by t_{α} and $\sigma(t_{\alpha}) = \sigma_{\alpha}(T)$ will denote the spectrum of $t_{\alpha} \in A_{\alpha}(H)$, the α -weighted spectrum of T [3]. The reader is also referred to [2], [6], and [8] for the analysis of weighted spectra. The principal result of this article is the following analogue of Theoremen 1.2 of [4]:

THEOREM 2. The following are equivalent for $t_{\alpha} \in A_{\alpha}(H)$: (i) $ran(\delta_{t_{\alpha}})$ is closed;

(ii) $ran(\delta_{T}) + J_{\alpha}$ is closed in L(H);

(iv) $ran(\delta_{T+K})$ is closed in L(H) for some K in J_{α} ;

(v) T is similar to a J_{α} -perturbation of a Jordan operator;

(vi) $t_{\alpha} \sim j_{\alpha}$ for some Jordan operator J;

(vii) $\rho(t_{\alpha})$ is similar to a Jordan operator for all unital *-representations ρ of the C*-algebra C*(t_{α}) generated by t_{α} and l_{α} ;

(viii) $\rho(t_{\alpha})$ is similar to a Jordan operator for some isometric unital *-representation ρ of C*(t_{α});

(ix) $\rho(t_{\alpha})$ is similar to a Jordan operator for all unital *-representations ρ of $A_{\alpha}(H)$;

(x) $p(T) \in J_{\alpha}$ for some monic polynomial p, and 0 is an isolated point of $\sigma[q(t_{\alpha})*q(t_{\alpha})]$ for all polynomials q dividing p; (xi) $p(T) \in J_{\alpha}$ for some monic polynomial p, and ran q(T) is the alge braic direct sum of a (closed) subspace H_{q} and the range R_{q} of an ope rator $R_{q} \in J_{\alpha}$ for all polynomials q dividing p. Moreover, (i) implies that

(iii) $[ran(\delta_T)] \subset ran(\delta_T) + J_{\alpha}$, and (i) is equivalent to (iii) for the case when α is a countably cofinal cardinal (in particular, for $\alpha = \aleph_0$).

(An infinite cardinal α is *countably cofinal* if α is the supremum of a countable collection of cardinals less than α ; e.g., $\alpha = \aleph_{0}$. If α is countably cofinal, then $I_{\alpha} \neq J_{\alpha}$; if α is not countably cofinal, then I_{α} is closed and therefore $I_{\alpha} = J_{\alpha}$ [3]).

The implications $(v) \Rightarrow (i) \iff (ii) \Rightarrow (iii)$ and $(iv) \iff (v) \Rightarrow (vi) \Rightarrow \Rightarrow (xi) \Rightarrow (x) \iff (vii) \iff (viii) \iff (ix)$ follow exactly as in the proof of [4, Theorem 1.2]. Thus, in order to complete the proof it only remains to show that $(viii) \Rightarrow (v)$, $(i) \Rightarrow (v)$ (if α *is not* count<u>a</u> bly cofinal) and $(iii) \Rightarrow (v)$ (if α *is* countably cofinal).

LEMMA 3. If $p(t_{\alpha})$ is similar to a Jordan operator for some isometric unital *-representation ρ of C*(t_{α}), then T ~ J+K, where J is a Jordan operator and K $\in J_{\alpha}$ (i.e., (viii) \Rightarrow (v) in Theorem 2).

Proof. We proceed exactly as in the proof of [4, Proposition 2.8] except that, in this case, we have to apply C.L. Olsen's theorem for the ideals J_{α} [10, Theorem 4.3] in order to conclude that S = T+J (a suitable J_{α} -perturbation of T) admits a matrix of the form

Continuing as in the proof of [4, Proposition 2.8], with s_{α} , J_{α} ... in tead of s, K(H) ..., we may reduce our problem to the case when $A = \rho(t_{\alpha})$ satisfies $A^{k} = 0$, $A^{k-1} \neq 0$.

As in the proof of [4, Lemma 2.7], let n > 0 be such that $(0,n) \cap (\sigma(A^{*j}A^j) = \emptyset, j = 1, 2, \dots, k-1$. We claim that, after perhaps replacing n by a suitable number in the interval [n/2,n], we may assume that $n \notin \bigcup_{j=0}^{k} \sigma(T^{*j}T^j)$. Observe that $\sigma_{\alpha}(T^{*j}T^j) = \sigma(t_{\alpha}^{*j}t_{\alpha}^{j}) = \sigma(A^{*j}A^j)$, so that if $E_j(.)$ denotes the spectral measure of $T^{*j}T^j$, then rank $[E_j([n/2,n])] = \beta_j < \alpha$ for all $j = 1, 2, \dots, k-1$. It follows from the analysis of weighted spectra [3], [8] that either 0 is an isolated point of $\sigma_{\aleph_0} (T^{*j}T^j) = \sigma(t^{*j}t^j)$ and $[n/2,n] \cap [\bigcup_{j=0}^{k} \sigma(T^{*j}T^j)]$ is finite (in which case the validity of the claim is clear), or there exists a subspace H_{γ} of dimension γ , $\beta_j < \gamma < \alpha$, such that H_{γ} reduces T and such that if P_{γ} is the orthogonal projection of H onto H_{γ} , then $\sigma_{\alpha}([(1 - P_{\gamma})T^*]^j]((1 - P_{\gamma})T^*]^j) \cap [n/2,n] = \emptyset$ for all $j = 1, 2, \dots, k-1$.

Now the proof continues to follow that of [4, Lemma 2.7], with K(H) replaced by J_{α} (namely, $(L_{j} - L_{j-1}) - R_{j} \in J_{\alpha}$, etc.) and π replaced by π_{α} , until the point where we show that $\rho \circ \pi_{\alpha} (1 \oplus [\bigoplus_{j=2}^{k} T_{j,j+1} * T_{j,j+1}]) = 1 \oplus [\bigoplus_{j=2}^{k} A_{j,j+1} A_{j,j+1}]$ is invertible in C*(A). If $\alpha = \aleph_{0}$, the proof may be completed exactly as in the proof of [4, Lemma 2.7]. In the remaining case $(\alpha > \aleph_{0})$, it is still true that $T_{j,j+1}$: $H_{j+1} \longrightarrow \operatorname{ran}(T_{j,j+1})$ has closed range in H_{j} and "small" nullity, i.e., nul $(T_{j,j+1}) = 0$ during subspace $H_{j+1,\beta}$ of $T_{j,j+1} * T_{j,j+1}$ such that $\dim(H_{j+1,\beta}) = \beta = N_{0}$ nul $(T_{j,j+1}) < \alpha$ and such that the restriction of $T_{j,j+1}$ to $H_{j+1} \oplus H_{j+1,\beta}$ is bounded below. It is easy to check that $\dim[\operatorname{ran}(T_{j,j+1}) \oplus T_{j,j+1}(H_{j+1,\beta})]$ is equal to h and $\dim[\operatorname{T}_{j,j+1}(H_{j+1,\beta})]^{-} = \beta$; thus, we can find an operator $K_{j,j+1} * K_{j,j+1}$.

$$\begin{split} & \ker(K_{j,j+1}) \supset \#_{j+1} \ \Theta \ \#_{j+1,\beta}, \text{ and } T'_{j,j+1} = T_{j,j+1} + K_{j,j+1} \text{ is an inver} \\ & \text{tible mapping from } \#_{j+1} \text{ onto } \operatorname{ran}(T_{j,j+1}) \ (= \operatorname{ran}(T'_{j,j+1})). \text{ It is apparent that } \operatorname{rank}(K_{j,j+1}) \leqslant \beta \text{ and therefore } K_{j,j+1} \in J_{\alpha}. \text{ Thus,} \\ & T'_{j,j+1} : \#_{j+1} \longrightarrow \operatorname{ran}(T'_{j,j+1}) \text{ is an invertible } J_{\alpha}\text{-perturbation of} \\ & T_{j,j+1}. \text{ It now follows from Apostol's criterion [1, Lemma 3.2, Corollows] lary 3.4 and Theorem 3.5] that some } J_{\alpha}\text{-perturbation of T is similar to a Jordan operator, and the result follows.} \end{split}$$

COROLLARY 4. Suppose dim(H₀) > \aleph_0 , H₁ is separable, $\alpha > \aleph_0$ is a countably cofinal cardinal, and H = H₀ \oplus H₁^(α). Let A \in L(H₀), T \in L(H₁), K \in J_{α}(H), and L = A \oplus T^(α) + K. If ran $\delta_{\rm T}$ is not closed, then [ran($\delta_{\rm L}$)]⁻ is not contained in ran($\delta_{\rm L}$) + J_{α}.

Proof. The proof is based on suitable modifications of the proof of [4, Lemma 2.10], which we now outline. As in that proof, we can find $Y \in L(H_1)$ and $\{X_n\}_{n=1}^{\infty} \subset L(H_1)$ such that $\|(TX_n - X_nT) - Y\| \longrightarrow 0$, but $Y \notin ran(\delta_T)$ and $f(n) = \|X_n\| + \infty$ "very slowly". For each β , $1 \leq \beta \leq \alpha$, clearly,

 $\| (T^{(\beta)}X_n^{(\beta)} - X_n^{(\beta)}T^{(\beta)}) - Y^{(\beta)} \| \longrightarrow 0 \quad (n \to \infty) \text{ and } Y^{(\beta)} \notin \operatorname{ran}(\delta_{T^{(\beta)}}).$ Modifications of the proof of [4, Lemma 2.10] permit us to construct an increasing sequence $\{\alpha_n\}_{n=1}^{\infty}$ of infinite cardinals such that $\alpha = \sum_{n=1}^{\infty} \alpha_n = \sup_n \alpha_n \text{ and } H = H_0 \oplus H_1^{(\alpha)} = H_0 \oplus [\max_{n=1}^{\infty} H_1^{(\alpha_n)}].$ If P_n de- (α_n)

notes the orthogonal projection of H onto $H_0 \oplus \begin{bmatrix} \alpha_j \\ j=1 \end{bmatrix}$, then we may also assume that $\|K(L - P_n)\| + \|(1 - P_n)K\| < 2^{-n}/([1 + f(n+1)]]$, $n \ge 1$.

Proceeding as in [4, Lemma 2.10], we define

 $Z_{m} = 0_{\mathcal{H}_{0}} \oplus [X_{1}^{(\alpha_{1})} \oplus X_{2}^{(\alpha_{2})} \oplus \dots \oplus X_{m}^{(\alpha_{m})}] \oplus [\bigoplus_{j=m+1}^{\infty} X_{m}^{(\alpha_{j})}];$

$$LZ_{m} - Z_{m}L = \left(0_{\mathcal{H}_{0}} \oplus \begin{bmatrix}m \\ \oplus \\ j=1 \end{bmatrix} (TX_{j} - X_{j}T)^{(\alpha_{j})} \oplus \begin{bmatrix}m \\ \oplus \\ j=m+1 \end{bmatrix} (TX_{m} - X_{m}T)^{(\alpha_{j})} + KZ_{m} - Z_{m}K.$$

Exactly as before, both the terms in parentheses and $\{KZ_m - Z_mK\}_{m=1}^{\infty}$ are Cauchy sequences, and the Cauchy sequence $\{\delta_L(Z_m)\}_{m=1}^{\infty}$ converges to $B = 0_{H_0} \oplus [j_{j=1}^{\infty} Y^{(\alpha_j)} - j_{j=1}^{\infty} A_j] + C$, where $C = (C_{ij})_{i,j=0}^{\infty} \in J_{\alpha}$. Similarly, the assumption that B = LZ - ZL + R for some Z in L(H) and R in J_{α} leads to the contradiction that Y is $ran(\delta_{T})$. Hence $B \in [ran(\delta_{L})]^{-1}$ but $B \notin ran(\delta_{L}) + J_{\alpha}$.

COROLLARY 5. If a is countably cofinal and $L \in L(H)$ is not similar to a J_{α} -perturbation of a Jordan operator, then $[ran(\delta_{L})]^{-}$ is not contained in $ran(\delta_{L}) + J_{\alpha}$.

Proof. If $\alpha = \aleph_{0}$, this is the result of [4, Corollary 2.11]. If $\alpha > \aleph_{0}$, we proceed exactly as in the proof of that result, except that in the present case, we have to use the results of [6] and [7] instead of [11, Theorem 1.3] in order to show that $L \cong L \oplus T^{(\alpha)} + K$ for some $K \in J_{\alpha}$ and some separably acting operator T such that $ran(\delta_{T})$ is not closed. Now the result follows from Corollary 4.

LEMMA 6. If $A \in L(H_0)$, T acts on a separable space H_1 , $ran(\delta_T)$ is not closed, α is not countably cofinal, and $L = A \oplus T^{(\alpha)} + K \in L(H)$ (where $H = H_0 \oplus H_1^{(\alpha)}$ and $K \in J_{\alpha}$), then $[ran(\delta_L)]^-$ is not contained in $ran(\delta_L) + J_{\alpha}$.

Proof. Assume that $Y \in [ran(\delta_T)]^{-1} \setminus ran(\delta_T)$; then as in the proof of [4, Lemma 2.10], $Y \stackrel{(\aleph_0)}{\longrightarrow} \in [ran(\delta_T(\aleph_0)]^{-1} \setminus ran(\delta_T(\aleph_0))$. Since $dim[ran(K)]^{-1} = \beta < \alpha$, it easily follows that $L = B \oplus T^{(\alpha)}$ with respect to a decomposition $H = H_B \oplus H_\gamma$, where $dim(H_B) = dim(H_0) + \beta$ and $H_\gamma \simeq H_1^{(\alpha)}$.

Clearly, $[ran(\delta_{L})]$ contains an operator of the form 0 \circledast N, where $N \in L(H_{\gamma})$ is unitarily equivalent to $Y^{(\alpha)}$. Assume that 0 \circledast N = LZ -- ZL + R for some $Z \in L(H)$ and some $R \in J_{\alpha}$; then dim $[ran(R)]^{-} = \beta' < \alpha$ and H_{γ} contains a separable subspace H' reducing L, Z, and R such that R|H' = 0, $L|H' \cong T^{(\aleph_0)}$, and $N|H' \cong Y^{(\aleph_0)}$. Therefore $T^{(\aleph_0)}_{-}Z' - Z'T^{(\aleph_0)}_{-} = Y^{(\aleph_0)}_{-}$ for a suitable operator $Z' \cong Z|H'$, whence we conclude that $Y^{(\aleph_0)}_{-} \in ran(\delta_{T}(\aleph_0))$, a contradiction.

COROLLARY 7. If a is not countably cofinal and $L \in L(H)$ is not similar to a J_{α} -perturbation of a Jordan operator, then $ran(\delta_{\ell_{\alpha}})$ is not closed.

Proof. If L is not of the form $W^{-1}JW + K$, where W is invertible, J is a Jordan operator, and $K \in J_{\alpha}$, then (by Lemma 3) there exists $T \in L(H_1)$ (where H_1 is a separable Hilbert space), not similar to a

Jordan operator, such that $\rho(\ell_{\alpha}) = T$ for some unital *-representation of C*(ℓ_{α}). Now it follows from [6] and [7] that the closure of the un<u>i</u> tary orbit $U(L) = \{U*LU: U \text{ is unitary}\}$ of L contains an operator $M \cong L \oplus T^{(\alpha)}$. Since ran(δ_T) is not closed [1], it follows from Lemma 6 that $[ran(\delta_M)]^-$ cannot be contained in ran(δ_M) + J_{α} , and thus ran(δ_m_{α}) is not closed. Now, if ran($\delta_{\ell_{\alpha}}$) is closed, then we can proceed exactly as in the proof of [1, Proposition 2.1] in order to show that $U(\ell_{\alpha})^- \subset S(\ell_{\alpha}) =$ $= \{w_{\alpha}^{-1}\ell_{\alpha}, w_{\alpha}: w_{\alpha} \text{ is invertible in } A_{\alpha}(H)\}$; thus $m_{\alpha} \sim \ell_{\alpha}$, whence we con-

clude that ran(δ_m) is closed too, a contradiction.

Now we are in a position to complete the proof of Theorem 2: $(viii) \Rightarrow (v)$ is the content of Lemma 3. If α is countably cofinal, then it follows from Corollary 5 that (iii) \Rightarrow (v), completing the proof in this case. Finally, if α is not countably cofinal, then it follows from Corollary 7 that (i) \Rightarrow (v).

REFERENCES

- [1] C. APOSTOL, Inner derivations with closed range, Rev. Roum. Math. Pures et Appl. 21(1976), 249-265.
- [2] L.A. COBURN and A. LEBOW, Components of invertible elements in quotient algebras of operators, Trans. Amer. Math. Soc. 130(1966), 359-366.
- [3] G. EDGAR, J. ERNEST and S.-G. LEE, Weighing operator spectra, Indiana Univ. Math., J. 21(1971), 61-80.
- [4] L.A. FIALKOW and D.A. HERRERO, Inner derivations with closed range in the Calkin algebra, Indiana Univ. Math. J. (To appear).
- [5] B. GRAMSCH, Eine Idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. (Crelle's Journal) 225(1967), 97-115.
- [6] D.W. HADWIN, Nonseparable approximate equivalence, Trans. Amer. Math. Soc. 266(1981), 203-231.
- [7] D.W. HADWIN, Approximate equivalence and completely positive maps, (Preprint).
- [8] D.A. HERRERO, Norm limits of nilpotent operators and weighted spectra in non-separable Hilbert spaces, Rev. Un. Mat. Argentina 27(1975), 83-105.
- [9] E. LUFT, The two-sided closed ideals of the algebra of bounded li near operators on a Hilbert space, Czekoslovak Math. J. 18(1968), 595-605.
- [10] C.L. OLSEN, A structure theorem for polynomially compact operators, Amer. J. Math. 93(1971), 688-698.
- [11] D. VOICULESCU, A non-commutative Weyl-von Neumann theorem, Rev. Roum. Math. Pures et Appl. 21(1976), 97-113.

Lawrence A. Fialkow Western Michigan University Kalamazoo, MI 49104, USA Domingo A. Herrero Arizona State University Tempe, AZ 85287, USA

and

Adelphi University Garden City, NY 11530, USA