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SPIN STRUCTURES ON PSEUDO-RIEMANNIAN MANIFOLDS

H.R.Alagia and C.U.Sénchez

ABSTRACT. The notion of Spin-structures on Riemannian manifolds is
generalized to manifolds M with an indefinite metric of signature
(p,q). The concept of (p,q) -orientability of such manifolds is de-
fined and the group Spin(p,q) is introduced. Then, a Spin(p,q)-
structure over M is defined as a principal Spin(p,q)-bundle over

M satisfying certain conditions. It is proved that the existence of
such a structure is equivalent to the vanishing of the second
Stieffel-Whitney classes of two complementary subbundles of the tan
gent bundle. Examples are provided by manifolds of the form G/T, G
compact Lie group, T maximal torus.

INTRODUCTION.

Let M be an n-dimensional oriented Riemannian manifold. A Spin-struc
ture on M is a principal Spin(n)-bundle over M which is also a dou-
ble covering of the principal SO(n)-bundle of oriented frames. This
double covering is such that fibers cover fibers and the correspon-
ding restrictions are equivalent to the universal covering of
Spin(n) over SO(n). The existence of a Spin-structure on an orien-
table manifold is equivalent to the vanishing of the second Stief-
fel-Whitney class of M ([121). This structure has been studied and
applied in connection with several problems ([11,[2],131). ‘

The main objective of this paper is to give a suitable generaliza-
tion of the above notion for manifolds with an indefinite metric.
The special case of dim M = 4 and signature (1,3), the so called
gravitational fields, is of interest in Physics and has been pre-
viously studied ([4],[5]1).

Assume that dim M = n and that the metric has signature (p,q). For
technical reasons it is assumed that p,q > 2 (see §4). The orienta-
bility of M is replaced by the stronger condition of (p,q)-orienta-
bility (Definition 1). (p,q) -orientability is somewhat weaker than
space-time orientability, as defined in [16], p.341.

For (p,q)-orientable manifolds, the notion of Spin(p,q) -structure
is defined in §1. Necessary and sufficient conditions for the exis-



65

tence of such a structure are obtained; the main result being Theo-
rem 2. These conditions are stated in terms of the vanishing of the
second Stieffel-Whitney classes of two complementary subbundles of
the tangent bundle of M (Corollary 2).

Interesting examples of Spin(p,q)-manifolds are provided by spaces
of the form G/T, with G compact connected Lie group and T a maximal
torus (§3).

1. (p,q) -ORIENTABLE MANIFOLDS AND SPIN(p,q)-STRUCTURES.

M will denote a connected n-dimensional C~ manifold with an indefi-
nite metric g of signature (p,q), p+tq = n > 3. Consider the princi-
pal O(p,q)-bundle of orthogonal frames over M, denoted by F'.

DEFINITION 1. M <s (p,q)-orientable if the structure group of F' ad-

mits a reduction to <ts identity commected component SO(p,q)o.

For instance, the pseudo-Riemannian sphere Sg+q is (p,q)-orientable

since it is space-time orientable ([16], p.341). This follows easily
from the Reduction Theorem ([11], p.83). Another example of (p,q)-
orientable manifolds is given by Q = Mx N where M,N are oriented
Riemannian manifolds of dimensions p and q respectively and Q has
the obvious metric of signature (p,q). Indeed, the structure group
of the bundle of linear frames over Q admits a reduction to
GL(p,R) x GL(q,R) and hence to SO(p) x SO(p) because of the orienta-
tion of M and N. Since SO(p) x SO(q) < SO(p,q)
is (p,q)-orientable.

0’ it follows that Q

The group SO(p,q)0 is homeomorphic to SO(p) x SO(q) x RPY. Therefore

its fundamental group is, for p > 2:

'Z2 if q = 0,1

]
[38)

I,(s0(p,a)y) = | z,xZ if q
Z,xZ, if q > 2.

We shall be concerned with the case p,q > 2 (see §4 for signature
(2,n-2)). First we introduce some notations. The universal covering
space of SO(p,q)O with its natural Lie group structure will be de-
noted by Spin(p,q). If K = z, xZ2, then Spin(p,q) is a principal

K-bundle over SO(p,q)o. It is well known that Hl(SO(p,q)O,K) clas-
sifies the principal K-bundles over SO(p,q), ([91); A will denote

the cohomology class corresponding to the universal covering.
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If M is (p,q)-orientable, N: F — M will denote a fixed subbundle
of the linear bundle as given by Definition 1.

DEFINITION 2. 4 Spin(p,q)-structure on the (p,q) ~orientable mani-
fold M is a patr (P,6) where P is a principal Spin(p,q)-bundle over
M and ©: P — F g principal K-bundle such that the following dia-

gram is commutative:

P x Spin(p,q) —2L— Fx50(p,q),

| |

where o: Spin(p,q) — SO(p,q)O i8 the covering homomorphism and the
vertical arrows are the group actions on the total spaces of the
respective bundles.

If follows that if P_and F are the respective fibers over a point
m € M, then OIPm: Pm>-+ Fo is equivalent to the universal covering
of F.- This is the key point of the above definition as shown in

the following theorem. Put H = SO(p,q)o, H' = Spin(p,q) -

THEOREM 1. Let ©: P — F be a principal K-bundle such that for eve-
ry m € M, 0: O—I(Fm) — F_ is equivalent (aé a princeipal K-bundle)

to the universal covering of Fm' Then P can be made into a princi-
pal Spin(p,q)-bundle over M, such that (P,0) <s a Spin(p,q)-struc-

ture on M.

Proof. Choose a co&ering of M by open sets W together with local
trivializations ¢: N 1(W) — WxH. Then y(u) = (m(w),(u)), where
¢ u'l(W) — H is a differentiable mapping satisfying ¢(u.h) =

= p(y)h, pu € n'l(W), h € H. Moreover assume that the sets W are
simply connected.

For each m € M there is a homeomorphism o s such that the following
diagram is commutative:

. [¢}

o7l (r) —2— H'
el 10 4D
Fm e —— } |

Let ' = MTo®. We construct a local trivialization for H"I(W) as
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follows., Let e' denote the identity element of H' and define
S: W— 1'"1(W) by S(m) = o7’ (e'), m € W. We claim that S is a dif-

ferentiable section. Indeed, let 4: W — H_l(W) be the section sa-
tisfying ¢(4(m)) = e, the identity element of H, for every m € W,
Then the following diagram

m o
s l 0
W—— ntw

is commutative by (1). On the other hand, since W is simply connec-
ted, S must be the unique differentiable mapping making the diagram

commutative and satisfying S(m) = a—lm(e‘) for some fixed m € W.
Clearly T'oS = idw.
For v € H'—l(W), set o(v) = an,(v)(v). It follows that (d0S)(m) = e'
for every m € W and that the diagram

-1 ¢

w) —— H!

I |

m (W) ———H

]'Il

is commutative. Since 0 and ¢ are differentiable and o is a local
diffeomorphism, it follows that & is differentiable. Define

v: L) — WxH' by y(v) = (I'(v),e(v)), v € 'L (W),

We have the following commutative diagram

Ty —¥ s wxn

91 Iidxc | (2)

-1
n (W) —y WxH

and can easily check that ¢ is a diffeomorphism.

Hl

It ‘remains to define a right action of H' on P so that II': P — M
is an H'-bundle. For v € H'_I(W) and h' € H' let

v.h' = w_l(n’(v),é(ﬁ)h'). To check that this is well defined, let
W' be another open set with W N W' # @ and corresponding sections

4', S'. Denote by x the action defined on H"l(W').

Let B: W — H' be the mapping such that S'(m) = S(m).B(m), and let
y(m) = o(B(m)).

Then we have

s'(m) = 0(S'(m)) = ©(S(m).g(m)) = ™ (m,0(B(m)) = 5(m).y(m) by (2)
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Using this, we obtain:

0(S'(m) xh')

_e(S'@D).o(h') = 4'(m).o(h') =
s(m).y(m).o(h') = ©(S(m)).y(m).o(h') =
0(Sm)).o(B(m)).o(h') = ©(S'(m).h').

Since O is a local diffeomorphism, this implies that S'(m).h' =
= §'(m) xh' if h' is in a suitable neighborhood of e'. But H' is
connected, hence the equality holds for every h' € H'. This implies

that both definitions agree on W N W', Q.E.D.

COROLLARY 1. M admits a Spin (p,qlstructure if and only if there is
an element ¢ € Hl(F,K) such that, if im: Fm — F is the inclusion

map, i*(t) = A for every m € M.

Proof. Assume that the conditions of Definition 1 are satisfied and
let T € Hl(F,K) be the cohomology = class representing the bundle
©: P — F. Then for each m € M, i;(c) is the class corresponding to

the bundle 0: O_I(Fm) — Fm, induced by im. But this bundle is equi
valent, as a K-bundle, to the universal covering o: H' — H, with
representative A € HI(H,K). Hence i*(z) = A for every m € M, This
proves that the condition is necessary. Sufficiency is simply a re-

statement of Theorem 1. Q.E.D.

2. SPIN(p,q)-STRUCTURES AND CHARACTERISTIC CLASSES.

In this section we obtain a characterization of manifolds with a
Spin(p,q) -structure, in terms of the Stieffel-Whitney classes of
certain bundles.

Consider the cohomology spectral sequence of the principal H-bundle
I: F — M (see [14], p.495). From its second term one can obtain
the following exact sequence:

(3) 0 — mlo,0) I ul(r,x) i nla,o) S H2M,K)

where i: H — F is the inclusion of the fiber F = H for each

m €M, and § is the transgression (see [8], Th.5.1.2, p.328). Noti-
ce that since we are dealing with bundles with pathwise connected
structure groups, no orientability questions arise (131, 91
p.270).

We can now state our main theorem.

THEOREM 2. 4 (p,q)-orientable manifold M admits a Spin(p,q) -struc-
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ture if and only if the mapping i} in the sequence (3) is surjecti-
te for every m € M,

Before proving this theorem we draw its main consequences. Let

T = SO(p) x SO(q); this is a maximal compact subgroup of H = SOQ%q)O.
Then the structure group H of the bundle I: F — M has a reduction
to T; let v:.Q — M be the reduced bundle. Let ET Y BT be the uni-
versal T-bundle and f: M — BT the classifying map of Q, i.e.:
f*(ET) = Q. (For details and notations on universal bundles see
[6] ). Since BT = BSO(p) x BSO(q), we can write f(x) = (£, (x),£4 (X))

where fj is the classifyihg map of the principal SO(j)-bundle
f; (ESO0(j)), j = p,q. For each m € M, we have

£%(ET), = £5(ESO(p)), x £X(ESO(a)),

Since T is a matrix group there is a natural representation of T on

RP*9, Let AT be the corresponding bundle associated with f*(ET).

Since this is a subbundle of the bundle of linear frames of M, we
have AT = TM, the tangent bundle of M.

Similarly let ASO(j) be the bundle associated with £*(ESO(j))

through the natural representation of SO(j) on Rj, j =p,q.
Hence TM = AT = ASO(p) ® ASO(q).

Now consider the cohomology ring of BSO(j) with coefficients in Zz;
it is well known ([6]) that it is a polynomial ring:

(4) H*(BSO(3),2,) = Z, lw,y,...,w]
with degree w; o= i. The universal Stieffel-Whitney class wz(j) is

the nonzero element of HZ(BSO(j),ZZ). Hence the second Stieffel-

Whitney classes of the bundles just introduced are
Wy = W, (ASO(§)) = £%(w,(3))

On the other hand Hl(BSO(j)),Z ) = 0 and an application of the
Kinneth formula yields:

(5) H (BT,2,) = H*(BSO(p),Z,) @ HZ (BSO(q) ,Z,)

For the bundies Q and ET one obtains exact sequences analogous to
(3). The three sequences can be related in the following commutati-
ve diagram: :
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0 — vl k) 25 i) 25 ) S wZM,K)
- I 1 -
6) 0 — mlM,K) 25 HlgQ,x) 25 i) &5 H2Z(M,K)
1f* If* 1: Tf*
0 — BT, 5 HErn 5 wlr, 25 HAEnK

Since H and T are homotopically equivalent it follows that h is an
isomorphism; g is also an isomorphism because of the Five Lemma.

Finally, HY(ET,K) = 0 ([15], p.102). Thus §" is injective.
But

2 2 2 .
(7) H? (BT,K) = H®(BT,Z,)  H*(BT,Z,) ;

hence by (4) and (5), HZ(BT,K) = Zze Z,0Z,9 z,.

An application of the Kiinneth formula shows that
1

H* (T,K) = Zze Zze Z,0 z,.

Therefore 8" is an isomorphism,

We can now prove the following

COROLLARY 2. 4 (p,q)-orientable manifold M admits a Spin(p,q)-struc

ture 1if and only <f Wg =0, J =p,q.

Proof. By Theorem 2.-and the exactness of (3), M admits a Spin(p,q) -
structure if and only if § = 0. But this is equivalent to the

vanishing of f*: HZ(BT,K) — HZ(M,K), because of the diagram (6).

Now by (5) and (7) an element in HZ(BT,K) can be written

c Wy (p) + cowy(q) + cwy (p) + ¢ w,(q) = aw,(p) + a, (q)

with ¢; €2, , a; € K.

Hence f* = 0 if and only if

0 = f*(a;w,(p) + ayw,(q)) = alf (wy(p)) + azf*(W2(Q))

for arbitrary a,,a, € K. This is equivalent to

2

W% = f;g(wz(j)) =0 for j =p,q. Q.E.D.

COROLLARY 3. If a (p,q)-orientable manifold M admits a Spin(p,q)-

structure, then wz(M) =0

Proof. wz(M) = wz(TM) = wZ(ASO(p)e ASO(q)) =
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=1v wg + w? v w? + wg v 1

But W] = W (ASO(§)) = £4(w;(3)) = £5(0) = 0, by (4)

The preceding corollaries show that Definition 2 is a natural gene-
ralization for pseudo-Riemannian manifolds of the concept of Spin-
structure.

We now turn to the proof of the main theorem.

Proof of Theorem 2. Assumefthat i; is onto for every m € M. Then
for each m there is Tn € Hl(F,K) such that i;(cm) = Zm(X) where
ﬁm: HI(H,K) -— Hl(Fm,K) is an isomorphism.

Let U C M such that Flﬁ = H_I(U) =~ UxH. The projection

. . 1 1
Py, u’ F|U — H induces a mapping £; = : H (H,X) ——»PI(FhVK),

*
Pu,u’
which is a monomorphism, by the Kunneth formula. If U = {m} theén
KU = £ . For each m € U, the inclusion i

m m

vt By — FIU induces

i; - and we have a commutative diagram
s .
Hl(r_,x)
m’

(*) i%

m,U /
HY (F |, %0 Y

If W C U then we have a similar diagram.
Let V be another subset of M with FIV trivial and U nV # 9.
By (*), KU(A) and LV(X) coincide in U N V; that is the inclusions

of F|Unv into FIU and FIV satisfy
Py, 0By = 1%y00 vy ()

Take m € M and the corresponding = Hl(F,K) and let m be any

other point and o a curve with o(0) = m, a(1) = m. Cover the ima-

ge of o with open sets Ul""’Un such that F]U' is trivial and assu-
1

me that m € U1 and Ui is homeomorphic to the unit ball in RPHY.

By the Kiinneth formula we have isomorphisms

£y BYH,K) — HY(F| LK)
i i

moreover all mappings in (*) are isomorphisms.

We also have



72

u' (H)

where all mappings in the lower right corner are isomorphisms.
Thus,

) = 2y (D)

° 1

n

Therefore, for all m; € U, i*ml(to)

lm (A); in particular for
1

m, € U NnU,. Repeating the process we obtain i*mz(co) = lmz(A).

Continuing along a, we reach m and obtain i*m(;o) = tm(x). Now we
can apply Corollary 1 to obtain the sufficient part of the Theorem.
Conversely, assume that M has a Spin(p,q)-structure and let

y: H'" — H be a principal K-bundle, represented by a class

w € HI(H,K). We will find and element T € HI(F,K) (i.e.: principal
a K-bundle over F) such that i;(r) = w for every m € M. We proceed
in several steps.

(i) First define a left action of H' on H". Notice that H" can have
either two or four connected components. Assuming that w # O we can
restrict ourselves to the case of two components; they are diffeo-
morphic by right multiplication by some k € K.

Let Hg be one of the two components of H" and choose
x, € y_l(e) n Hy, where e is the identity element of H, Then
Y: (Hg,xo) — (H,e) is a covering space. If o: H' — H ig the
universal covering of H, define

oy : H' xH" —— H
by (oy) ((a,b)) = o(a)y(b), (product in the group H).

Then, we have the following commutative diagram

— (H,o"xo)
(O'Y)'/ — - )
— Y
— -
/
' xH, (e ,x ) (H,e)
o’ ) oy

The mapping (oy)' is given by the "lifting criterion'" since
(ov) * (m (H' xHY,(e',x)) = vu (M (HY,x D).
Now define @o(g,h") = (oy)'(g,h"), g € H' , h" € Ho. Then,
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(a) @o(e',h") = h" for every h" € Hg .
(®) o, (g;,2,(gy,h") = o (g,g,,h")

In fact, @o(e',xo) = ¢ and the following diagram

(H",x )
idHS 1k°
(e’ ng,(e',xo)) v (H,e)

is commutative. Hence (a) follows by uniqueness.

On the other hand
o (g,,2,(e",h") =0 (g e',h")
for every h" € H;. Let a: I —— H" be a continuous curve such that

a(0) =e' , a(l) = g, and

F(t’glﬁh”)
G(t,g,,h")

2 (g,,% (a(t),h")
o, (g, a(t),h")

F and G both make the following diagram commute

i DL (g),x,))
//' l
§

(Ix{g}xH",(0,g,,% (g,x))) : (H,0(g,))
1 o 1’70 o o(g,0(t))y 1

Indeed, F(O,g,xo) = ¢o(gl,xo) = G(O,gl,xo) and

Y(E(t,g,hM) = y(o,(g;,0,(a(t),hM)) = (g,)v(s, (a(t),h") =
o(g,) ola(t))y(h™) ; |

v(G(t,g,h")) = o(g,a(t))y(h")

i

Therefore F = G and for t = 1 we obtain (b).
Now let HY be the other connected component of H'" and let k € K be

such that k Hg = HY. Put x, = k X, and define

1
2, (g,h") = k(2_(g,kn"))

Notice that if X, is fixed beforehand then k is uniquely determined.

For fixed X, X define

®: H' xH' — H"

by &(g,h") = @i(g,h"), for h" e HY , geH , 1=0,1.
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It is clear that ¢ satisfies the group action properties.

(ii) Now we show that the action of H' on H" just defined, commutes
with the action of K. Let K = {i,k,jl,jz} where i = identity,

Jp = ki, , dp = kig. It is clear that &(g,kx) = ké(g,x).
Let j, be the element leaving both H and H{ invariant. Set
£,(g,x) = ¢ (g,3,x) , £,(g,x) = j;(2,(g,x))
and let o be a continuous curve joining e' with g.
Then Y(tl(a(t)),x)) = o(a(t))y(x) = Y(tz(a(t),x)) and the following
diagrams are commutative:
(Hy,x )

Y

(IxHy,(0,x)) (H,e)

o(a(t))y

Thus Ll = £,. This also holds for ¢, and jz = kjl’ proving our claim.

2"
(iii) H' acts on the right on P and on the left on H", while K acts
on the right on H". Then there is a right action of K on Px H H"

defined by [x,ylt = [x,yt] , x € P, y € H", t € K (see Bredon's
"Introduction to Compact Transformation Groups", p.73). This action
is free, as it can be easily verified. Then P x H,H" is a principal

K-bundle over the K-orbit space PxH,H”/H (again, see Bredon's book
p.88).
But [[x,yl]l, = [x, [yl ;1. , so that by (ii)

WH

PXw“”gff“w(WV” = Pxy

Using the homomorphism fném'H' onto H we obtain PxH. H = F.

(iv) Hence we have a principal K-bundle Px,, H" —X F.

Let T € HI(F,K) be its representative. Considering the diagram

;=1
1m (PXH’ H") —— PXH' H"

| .

F - F
m 1
m

one sees that i;(r) = w. Q.E.D.
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3. A CLASS OF EXAMPLES.

In this section we discuss the existence of Spin(p,q)-structures on
manifolds of the form G/T, where G is a compact Lie group and T a
maximal torus.

Let G-denote the Lie algebra of G. The adjoint representation of T
in G is fully reducible, so that there is a direct sum decomposition

G = L1@L2® ...®Lk$L(T)

into AdG T-invariant subspaces. L(T) is the largest subspace on
which T operates trivially and dim Li =2,1i=1,...,k.

The tangent space (G/T)o of G/T at o = [T] can be identified with
the subspace '

M = L199L2€f9...@>Lk

In particular dim G/T = 2k.

One can put several invariant indefinite metrics on G/T by choosing
an invariant subspace of (G/T)o and translating it by 6. (see [15],
p.207).

Thus consider a decomposition

(G/T) = (L, e...®L, )o (L. ®...9L. )
° »Jl Jr Jr+1 Jk

and the subbundles of the tangent bundle T(G/T)

g

r

L. oo .
G ( Jle ® LJr)

= L. .
Blemry T O By @0 by
obtained by translation by G. The signature of the metric so defined
is (p,q) = (2r,2(k-r)) and the Whitney sum of gr and E(k—r) is the
whole tangent bundle.

Let T denote the linear isotropy group. Since T is connected we ha-
ve ?_c SO(p,q)o. But the structure group of the bundle of linear

frames over G/T admits a reduction to T. This shows that G/T is
(p,q)-orientable.

According to Corollary 2, G/T admits a Spin(p,q)-structure if and
only if wz(gr) =0 = wz(g(k_r)). By Corollary 3, a necessary condi-

tion is satisfied, since w, (G/T) =0 ([71, 1I1)).

The second Stieffel-Whitney c¢lasses can be computed as follows. Let
el,...,ek be the positive roots for a suitable ordering. G/T can be

given an almost complex structure having roots Ol,...,@k cl7, 1,
12.3).
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Then T(G/T), Er and Ek-r are U(k), U(r) and U(k-r)-bundles respec-
tively and wz(gr), wz(g(k_r)) are the mod 2-reductions of the Chern
classes‘cl(gr), cl(gk_r) respectively ([7], I, (13.4)).

Moreover, without loss of generality, we may assume that G is simply

connected and semisimple and thus identify H2(G/T,Z) with the
weights of G ([7], I, pp.489-90). Then we have:

”wz(Er) =0 = wz(Ek_r)if and only <f % cl(Er) and % cl(Ek_r) are

weights".
The Clern classes can be computed by the formulas ([7], II, p.322)

r k
ci(g) = izl 0, 5 cylg )= 1 o

i i=r+j i
Therefore the problem of whether G/T admits a Spin(p,q)-structure
. r

reduces to the problem of whether % ) Gj is a weight or not.
i=1 “i
For instance, consider the case G = SU(L+1). The Lie algebra of G

is of type Al’ with simple roots o;,...,0,. The positive roots can

be written n
) = J o, n>m,mn=1,...,£8

The space M = (G/T)o can be written

M= 7
m,n
m2n

L(m,n)

Let 51 = G(L(l,l)e L(2,2)$ .. ® L(Z,(_)€B L(l,z)) and let EZ be the
sum of the remaining L(m ) This defines a metric of signature

(p,q) = (2(£+1),2(£-1)-2). Since

2
D N I Y LR W'

N =

0. But

which is clearly a weight, we obtain wz(il)
0 = wz(G/T) = wz(El) + wz(Ez). Hence wz(zz) = 0 and G/T admits a
Spin(p,q) -structure.

Notice that taking n; = G(L(1 1)9 .. ® L(£ 2)) and n, its obvious
complement one has

2<61,£/2 y 0>

- 1
c;(n;) =0, and <, ap 2

which shows that wz(nl) #0.
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L. SIGNATURE (2,n-2).

We conclude with a few observations concerning the case of a metric
of signature (2,n-2). The maximal compact subgroup of SO(Z,n-Z)0

is S0(2) x SO(n-2) which is not semisimple, unlike the case p,q > 2.
Because of this we shall not define Spin(2,n-2) = U, the universal

covering of SO(Z,n-Z)o but rather proceed as follows.

Let p: U — SO(Z,n—Z)o be the covering homomorphism; then
Ker p = Z x 22 and we define

Spin(2,n-2) = U/Z

Clearly o: Spin(2,n-2) — SO(Z,n-Z)o is a double covering and
Hl(Spin(z,n-Z)) = Z. We make this choice taking into consideration

that Spin(2,n-2) contains the universal covering of the maximal
semisimple connected compact subgroup of SO(Z,n-Z)O, as in the case
of Spin(p,q), p,q > 2. '

Now the group K is Z2 and if H = SO(Z,n-Z)o, there is an exact se-
quence

* .
0 — u'M,z,) 1o wl(r,z,) 2 i,z 4o Hiv,z,).
Thus Theorem 2 is clearly valid in this case. Let T denote the maxi
mal compact subgroup of H,

Then H?(BT,Z,) = H%(BSO(2),Z,) ® H?(BSO(n-2),Z,) and Corollary 2 al-
so holds for p = 2, q = n-2.

The authors gratefully acknowledge Prof. L. Santald for suggesting
this problem.

REFERENCES

[l1] M.F.ATIYAH and R.BOTT, A Legschetz §ixed point formula fonr

elliptic complexes. 11: Applications, Ann.of Math.88, (1968),
451-491.

[2] M.F.ATIYAH and F.HIRZEBRUCH, Spin manifolfds and group agtionb,
Essays on Topology and related topics, Mémoires dé&diés a Geor-
ges de Rham, Springer, 1970.

[3] M.F.ATIYAH and I.M.SINGER, The Andex 0§ elliptic operatorns.I1I,
Ann.of Math.87, (1968), 546-604.



78

[4] BATELLE Rencontres, 1967 Lectures in Mathematics and Physics,
W.A. Benjamin, New York, (1968).

[5] K.BICHTELER, GRobal Exdisitence of Spin Structures gon Gravita-
tional Fields, Journal of Mathematical Physics, Volume 9, Num-
ber 6, (1968), 813-815.

[6] A.BOREL, Topics £in the HomolLogy Theory of Fibre Bundles, Lec-
ture Notes in Mathematics, 36, Springer Verlag, 1967.

[7] A.BOREL and F.HIRZEBRUCH, Characteristic CLasses and Homoge-
neous 4spaces, I, II, III, Amer.J.of Math.,80, (1958), 458-538;
81, (1959), 315-382; 82, (1960), 491-504.

[8] H.CARTAN and S.EILENBERG, flomoLogical Algebra, Princeton (1956).

[9] F.HIRZEBRUCH, Topological Methods <in Algebraic Geometry, Third
Edition, Springer Verlag, (1966).

[10] S.T.HU, Homotopy Theory, Academic Press, (1959).

[11] S.KOBAYASHI and K.NOMIZU, Foundations of Differential Geometnry,
Vols. I, II, Interscience, (1963, 1969).

[12] J.W.MILNOR, Spin-Structures on Manifofds, L'Enseignement Math.
9, (1963), 198-203.

[13] J.P.SERRE, Homologie Singuliire des espaces §ibnds, Ann. of
Math.54, (1951), 425-505.

[14] E.SPANIER, Algebraic Topology, Mc Graw Hill, (1966) .
[L5] N.STEENROD, The Topology of Fibre Bundlfes, Princeton, (1951).

[16] J.A.WOLF, Spaces of Constant Cunrvature, Mc Graw Hill, (1967).

AMS (MOS) subject classifications (1970):
Primary: 53 C 50, 57 D 15; Secondary 55 F 20

Key words and phrases: Spin manifolds; Group Spin(p,q); (p,q)-
orientability; Stieffel-Whitney classes.

Instituto de Matem&tica, Astronomfa y Fisica (I.M.A.F.)
Universidad Nacional de Cdrdoba, Repidblica Argentina.

Recibido en marzo de 1982,
Versién final marzo de 1985,



