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. Let K be a ring and let G be a totally ordered group whose elements 

act as automorphisms on K. We denote by K*G the skew group ring over 
K. The prime radical P (K*G) is a homogeneous ideal of K*G ([5], 
Theorem 1.2). From this, P (K*G) = S (K) *G, where S (K) is a G - ideal 
of K. In this paper we shall apply the same method as in [2] and 
[3] to study the prime radical of K*G. By this way, we shall obtain 
similar results to the one above for a sequence of ideals of K*G, 
beginning with the Noether radical of K*G. Furthermore, we shall 
give a characterization of S(K). Finally, we shall compare S(K) 
with the prime radical P(K). 

The authors are grateful to M.Ferrero for his valuable advice. 

1. INTRODUCTION. 

Throughout this paper we assume that K is a ring and G is a totally 

ordered group whose elements act as automorphisms on K. The skew 
group ring R K*G is the ring whose elements are the finite sums 

I aouo , a E K, with the multiplication defined by ucra cr(a)ucr , 
crEG a 
for every a E K and cr E G. An ideal I of K is said to be a G-ideal 

if 0(1) = I, for every cr E G. If I is a G-ideal of K, then I*G is 
an ideal of K*G. If H is an ideal of K*G, then H n K is a G-ideal 
of K. The prime radical of a ring T will be denoted by PCT). 

Following [3] and ([4], p. 194), for every ordinal a., we define an 

ideal NKCa.)and a G-ideal S(a) of K as follows 

C i) NK (0) = 0 and S (0) = O. 

(ii) Suppose that NK(a) (respectively S(a)) has been defined for 

ev~ry ordinal a less than the ordinal B. Then NK(B) (respectively 
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S(~) is defined as follows: 

If ~ = y+1 is not a limit ordinal, then NK (~) is th,e sum (that is, 
the union) of all ideals A of K (respectively G-ideals B of K) such 

that At £ NK(y) (respectively Bt £ S(y)) for some integer t). 

If ~ is a limit ordinal, then NK(~) = L NK(y) (respectively S(~.) = 
y<~ 

=" L S(y)). 
y<~ 

There exists an ordinal T (respectively p) such that NK(T) = ~(T+1) 

(respectively S(p) = S(p+1)).We write S(K) for S(p) = S(p+1). As it 

is known, NK(T) = NK(T+1) coincides with the intersection P(K) of 

all prime ideals of K. 

2. THE MAIN RES~LTS. 

THEOREM 2.1. For any ordinaZ a, NR(a) n K = Sea) and NR(a) = S(a)*G. 

Proof. For any a E S(1), there exists a G-ideal I of K which is nil 

potent and such that a E L Since I*G is nilpotent we have a E NR(1). 

On the other hand, since NR(1) is the union of all nilpotent ideals 

of R, we obtain that NR(1) n K = S(1). 

Suppose now that NR(a) nK = Sea) for every ordinal a less than the 

ordinal ~. 

Case I, in which ~ = y+1 is not a limit ordinal. Let a E S(~). Then 

there exists a G-ideal I of K such that a E I and It ~ S(y), .for 

some integer t. This shows that (I*G)t £ S(y)*G = (NR(y) n K)*G £ 

~ NR(y). Hence, a E I*G ~ NR(~)' On the other hand, since NR(~) 

= U {A: A is an ideal of R and A 8 ~ NR (y), for some integer s} , it 

follows that NR(~) n K = U {A n K: A n K is a G-ideal of K and 

(A n K)8 ~ S(y), for some integer s} £ S(~). 

Case II, in which ~ is a limit ordinal. Since NR(~) 

have NR(~) n K = L (NR(y) n K) = S(~). 
y<~ 

Next we shall show that NR(a) = S(a)*G by transfinite 

For any f = L aO'uO' in NR(1) there exists a nilpotent 
O'EG 

L NR(y) we 
y<~ 

induction. 

ideal I of 

R such that f E I. As G is a totally ordered group, among the 

0' E G with aO' ,; 0 there is a maximum T. Assume that 18 = o and put 



89 

A = {a E K: auT+h E I for some h = L bpup E R such that p < T if 
pEG 

bp ; OJ. It is easy to see that A is a nilpotent G-ideal of K and 

then aT E A ~ S(1) ~ NR(1). Thus we have f-aTuT E NR(1). Repeating 

this procedure we have f E S(1)*G. Hence NR(1) = S(1)*G. 

We now assume that NR(a) S(~)*G for every ordinal a less than 6. 

Then we can easily complete the proof by transfinite induction, 
using a similar argument. 

The following corollary is a direct consequence of Theorem 2.1. 
(see [5], Corollary 1.3.). 

Now we are going to give a characterization of S(K) (see 2, Theo­
rem 1.1.). A G-ideal Q of K is sai~ to be G-prime if A.B ~ Q f6r 
any G-ideals A and B implies that either A ~ Q or B ~ Q. It is easy 
to see that if P is a prime ideal gf R, then P n K is a G-prime 
ideal of K. Moreover, if Q is a G-prime ideal of K, then Q*G is a 
prime ideal of R. 

THEOREM 2.3. The G-ideal. S(K) is equal. to the foz.z.obJing 

(i) The interseation of al.Z theG-prime ideaZs of K. 

(ii) The interseation of aZl. the G-ideal.s I of K suah that K/I has 
no nil.potent G-ideaZs. 

Proof. We denote by II and 12 the ideals of K defined by (i) and 

(ii) respectively. If Q is a G-prime ideal of K, then K/Q has no 
nilpotent G-ideals. Hence 12 ~ II. 

Let Q be a G-ideal of K such that K/Q has no nilpotent G-ideals. If 

I is a G-ideal of K and In = 0, I+Q/Q is a nilpotent G-ideal of K/Q. 

Thus I ~ Q and then S(1) ~ Q. Using transfinite induction we have 
S(K) ~ 12 . 

Finally, using Coroliary 2.2. we have S(K) 
= n {I n K: I is a prime ideal of R} ~ II. 

The ideal S(K) is called the G-prime radical of K. It is not equal 
in general to P(K) as we will see in the following example. 

EXAMPLE 2.4. Let F be a field and X = (X.). a set of indetermina­
~ ~EZ 

tes. Put. A F[X] the polynomial ring over X and a ,the F-automor­
phism of A defined by a(X i ) = Xi +1' for all i E Z. On the ring 
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K = A/P, where P is the ideal generated by {X~: i E Z}, we define 

the automorphism induced by cr, which is denoted by cr again. Then K 
1S a local ·ring with the maximal ideal M genera ted by {Xi +P: i E Z}. 

Hence P(K) = M and S(k) = O. The validity of the example follows 
from the next lemma. We denote by xi the coset Xi+P. 

LEMMA 2.5. The ring K Alp is a G-prime ring. 

Proof. Let A and B be G-ideals of K such that A.B = O. If A is a 
non-zero ideal of K, it must contain an element of the type 

n-l n-l xn- l as 1·S S' . 'f ~ 0 h· xl x 2 .... t easy to see. 1m1larly, 1 B r t ere 

is an integer u such that x~-l x~-l 

Since A and Bare G-ideals, 

xn- l n-l n-l n-l n-l = xn-l n-l n-l t( n-l n-l I x2 .•• x t x t +l · .. xu+t I x2 .•. x t cr Xl ... xu ) E 

E A.B = 0 , which is a contradiction. 

3. ADDITIONAL REMARKS. 

It is natural to look for conditions under which P(K*G) = P(K)*G, 
that is, S(K) = P(K). We shall prove here that this is true when 
we assume some finiteness condition of G on P(K). 

Let V be a subset of K. We say that G satisfies the condition (F) 
on V if the following holds 

(F) For every v E V there exists a finite set H = {cr l ,cr 2 , ... ,crn} b 

b G such that T(V) E TH(v), for every T E G, where TH(v) is the 

ideal of K generated by }cr l (v),cr 2 (v), ... ,crn (v)}. 

EXAMPLE 3.1. (1) If K is a right Noetherian ring and G is any group, 

G satisfies (F) on K. 

(2) If G is represented by a finite set of automorphismsof K, then 

G satisfies (F) on K. 

If P is an ideal of K, rep) = {a E P: cr(a) E P for every cr E G} is 
the maximum G-ideal of K which is contained in P. If P is a prime 
ideal, then reP) is a G-prime as it can be easily verified. On the 
other hand, S (a.) b NK (a.) for any ordinal a. and we have S (K) ~ P(K). 

THEOREM 3.2. If (F) is satisfied on NK(a.), then NK(a.)· = S(a.) for 

every orainaZ a.. 



91 

Proof. Let a E NK(1) be and I a nilpotent ideal of K such that a E I. 

Consider the automorphisms 01,02, ... ,on of G such that Tea) ETH(a) 

for all T E G, where TH(a) is'the ideal generated by 
n 

{01(a),02(a), ... ,on(a)}. The ideal II L 0.(1) is a nilpotent 
, i= 1 1. 

ideal of K and a E r(11).(;; 5(1). Using transfinite induction we have 

NK(a) = Sea) for every ordinal a. 

The following corollary is a direct consequence: 

. 
COROLLARY 3.3. If (F) is satisfied on P{K), then S(K) P(K) and 

P(K*G) = P(K)*G. 

REMARK 3.4. Let us assume that (F),is satisfied on K and let Q be 
a G-prime ideal of K. By the Zorn lemma, the set of all the ideals 
I of K wich reI) = Q has a maximal member, say P. Then rep) = Q 
and it is easy to see that P is a prime. Then, in this case 
S(K) = n{Q: Q is a G-prime} = n {r(p): P is prime} = r(p(K)) = P(K). 
We have nearly Corollary 3.3 .. This remark makes it clear that the 
condition S(K) = P(K) hold~ when every G-prime ideal Q of K is of 
the type rep) for a prime P. 

An example of this was recently obtained by M.Ferrero [1]. He pro­
ves that if T is a liberal extension of a ring A, G is a group 
which is represented by A~automorphisms of T and K is an interme­
diate extension of A such that o(K) K for every ° E G, then Q is 
a G-prime ideal of K'if and only if Q = rep), for a prime P of K. 

Finally we have, 

EXAMPLE 3.5. Let A be a ring, K = A[Xl'X2"",Xn] a polynomial ring 

over A and G a group whose elements ar.t as A-automorphisms of K. 
Then S(K) = P(K). In fact, if Q is a G-prime ideal of K, then 
Q n A is a prime ideal of A, as is easy to see. Hence P (A) ~ Q n A ~ 
f;Q and so P(K) = P(A) [X 1,X2, ... ,Xn] .(;;Q. The result follows from 

Theorem 2.3 .. 
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