Let G be a connected complex semisimple Lie group and G_0 an inner real form of G. In this paper we study the space \mathfrak{g} of all orbits in G/G_0 of the totality of unipotent maximal subgroups of G.

INTRODUCTION

Let G, G_0, \mathfrak{g} be as above. In this paper we provide a cross section of the action of G in \mathfrak{g} (Theorem 4). We also prove that the orbits of a unipotent maximal subgroup of G in G/G_0 are closed (Proposition 6) and an analogous of the Bruhat decomposition for G (Proposition 1).

STATEMENTS AND PROOFS

Let G be a complex, connected, semisimple, Lie group. G_0 an inner real form of G, and B a Borel subgroup of G, such that $H_0 = B \cap G_0$ is a compact, Cartan subgroup of G_0. Let H be the complexification of H_0. Lie groups will always be denoted by capital Roman letters. The corresponding Lie algebra will be denoted by the corresponding lower case german letter. The complexification of a real vector space, will be denote by adding the upperscript C.

Let $\Phi(g,h)$ denote the root system of the pair (g,h). Fix K a maximal compact subgroup of G_0, such that $H_0 \cap K$ is a maximal torus of K. K determines a Cartan decomposition of $g_0 = k \oplus p$. If α is a root of the pair (g,h) its corresponding root space lies in k^C or p^C. In the former case α is called compact and in the second case noncompact. Let σ or $\overline{\sigma}$ denote the conjugation of g with respect to g_0. Then for each α in $\Phi(g,h)$ it is possible to find root vectors Y_α, $\overline{Y_\alpha}$ such that:

Supported by CONICET, CONICOR and FAMAF.
Y_{\alpha} lies in k^C, \sigma(Y_{\alpha}) = -Y_{\alpha}, [Y_\alpha, Y_{-\alpha}] = Z_\alpha and \alpha(Z_\alpha) = 2 for \alpha compact.

Y_{\alpha} lies in p^C, \sigma(Y_{\alpha}) = Y_{\alpha}, [Y_\alpha, Y_{-\alpha}] = Z_\alpha and \alpha(Z_\alpha) = 2 for \alpha noncompact.

Two roots are called strongly orthogonal if neither their sum nor their difference is a root. Let \Psi denote the system of positive roots in \Phi(g, h) determined by the Lie algebra n of the unipotent radical N of B. For each noncompact root \alpha in \Psi, let

\[c_\alpha = \exp(\frac{t}{2} (Y_{-\alpha} - Y_{\alpha})) \]

the inner automorphism associated to \(c_\alpha \) is usually called "The Cayley transform associated \(\alpha \)." In [S] it is proved that if two positive noncompact roots are strongly orthogonal, then the associated Cayley transform commutes. Thus, if \(S \) denotes a subset of \(\Psi \) consisting of noncompact strongly orthogonal roots, then, the product

\[c_S = \prod_{\alpha \in S} c_\alpha \]

is well defined.

For any two Lie groups \(G \supset H \), let

\[W(G, H) \] "The Weyl group of H in G"

denote the normalizer of \(H \) in \(G \) divided by \(H \). Keeping in mind the notation written from the beginning we state and prove the first result of this paper.

PROPOSITION 1. \(G = \cup G_{\alpha} c_S W B. \)

Here, the union runs over a set of representatives of \(W(G, H) \) and all the subsets \(S \) of \(\Psi \), such that \(S \) consists of strongly orthogonal noncompact roots.

Proof. Since every Borel subgroup of \(G \) is equal to its own normalizer, the coset space \(G/B \) can be identified with the set of maximal solvable subgroups of \(G \) via the map \(xB \rightarrow xBx^{-1} \). It follows that this map is equivariant. Now if \(B_1 \) is any Borel subgroup of \(G \), \(B_1 \) contains a \(\sigma \)-invariant Cartan subgroup. Because \(\sigma(B_1) \) is another Borel subgroup of \(G \) and by Bruhat's lemma \(B_1 \cap \sigma(B_1) \) contains a Cartan subgroup. Fix a regular element \(h \) in \(B_1 \cap \sigma(B_1) \) since, in [F] pag.479 is proved that for any regular element \(h \), \(zh + z\sigma(h) \) is regular for suitable \(z \) in \(C \), we have that \(B_1 \) contains a \(\sigma \)-invariant regular element. Thus, \(B_1 \) contains a \(\sigma \)-invariant Cartan subgroup \(T \). In [S] it is proved that if \(T \) is any \(\sigma \)-invariant Cartan
subgroup of G, there exists a strongly orthogonal subset S of the set of noncompact roots in Φ, such that T is G_o-conjugated to $c_S H c_S^{-1}$. Therefore B_1 is G_o-conjugated to a Borel subgroup containing $c_S H c_S^{-1}$, for some strongly orthogonal set of noncompact roots in Φ. Since any two Borel subgroups of G containing H are $W(G,H)$ conjugated, we conclude that

$$B_1 = g c_S w B w^{-1} c_S^{-1} g^{-1}$$

($g \in G_o$, $w \in W(G,H)$ and c_S a Cayley transform)

Now, if x is in G, $B_1 = x B x^{-1}$ is a Borel subgroup, hence, via the map between G/B and the set of maximal solvable subgroups of G described above, we have that $x = g c_S w b$.

Q.E.D.

COROLLARY. If A is any Borel subgroup of G, then A contains a σ-invariant Cartan subgroup.

Towards the uniqueness of the decomposition in proposition 1 we prove

LEMMA 2. Let a be any Borel subalgebra of g and h_1, h_2 two σ-invariant Cartan subalgebras of g contained in a. Then, there exists $x \in A \cap G_o$ such that $h_2 = \text{Ad}(x) h_1$. Here, A stands for Borel subgroup of G, corresponding to a.

Proof. Let n be the nilpotent radical of a. Since $a = h_1 \oplus n$ and that a Cartan subalgebra of g, is a Cartan subalgebra of a ([F] 17.7), and any two Cartan subalgebras of a are A-conjugated ([F] 17.8) we have that $h_2 = \text{Ad}(n) h_1$, where n is an element of the unipotent radical of A. Because h_1 and h_2 are σ-invariant we have that

$$h_2 = \sigma(h_2) = \sigma(\text{Ad}(n) h_1) = \text{Ad}(\sigma(n)) \sigma(h_1) = \text{Ad}(n) h_1$$

Hence, $\text{Ad}(n^{-1} \sigma(n)) h_1 = h_1$, so if H_1 is the Lie group with Lie algebra h_1, we have that $n^{-1} \sigma(n) = w$ is in $W(G,H)$.

If $z \in h_1$, in [F] is proved, for any n in the unipotent radical of a that

$$\text{Ad}(n) Z = Z + n(Z)$$

where $n(Z)$ is an element of n, which depends on Z and n.

Therefore, for any $Z \in h_1$, since $n = \sigma(n) w$ we have that

$$Z + n_1(Z) = \text{Ad}(w) Z + n_2(Z)$$

where $n_1(Z)$ is in n and $n_2(Z)$ is an element of n plus its opposite, Lie algebra. Because g is the direct sum of a plus the opposite Lie
algebra to \(n \), we have that
\[\text{Ad}(w)Z = Z \quad \text{for any } Z \text{ in } h_1. \]
This allows us to conclude that
\[n = \sigma(n)h_0 \quad \text{with } h_0 \text{ in } H_1. \]
The equality \(h_0 = \sigma(n)^{-1}n \) implies \(\sigma(h_0) = h_0^{-1} \), and because \(H_1 \) is abelian connected and \(\sigma \)-invariant, we can find \(h_1 \) in \(H_1 \) such that
\[h_0 = h_1^2; \quad \sigma(h_1) = h_1^{-1}. \]
Let \(n_1 = nh_1^{-1} \), then \(n_1 \) is in \(B \). On the other hand,
\[\sigma(n_1) = \sigma(n)\sigma(h_1^{-1}) = \sigma(n)h_1 = \sigma(n)h_0h_1^{-1} = \sigma(n)\sigma(n)^{-1}nh_1^{-1} = nh_1^{-1} = n_1. \]
Thus \(n_1 \) is in \(A \cap G_0 \). Also \(\text{Ad}(n_1)k_1 = \text{Ad}(n)\text{Ad}(h_1^{-1})k_1 = \text{Ad}(n)k_1 = h_2. \)

Q.E.D.

COROLLARY. If \(A \) is any Borel subgroup of \(G \) and \(H_1, H_2 \) are \(\sigma \)-invariant Cartan subgroups of \(G \) which are in \(A \), then \(H_1 \) is \(G_0 \cap A \) conjugated to \(H_2 \).

We keep the hypothesis and notation as in proposition 1 and lemma 2.

LEMMA 3. We write
\[G_0 \ c_s \ w \ B = G_0 \ c_s \ w' \ B \quad (*) \]
Here \(c_s, c_s' \) are Cayley transforms and \(w, w' \) are in \(W(G,H) \).
Then, the equality (*) holds if and only if there exists \(w_3 \) in \(W(G_0,H) \) such that \(w_3(S \cup (-S)) = S' \cup (-S') \) and there exists \(w \) in \(W(G,H) \) which is \(c_s \)-conjugated to an element of \(W(G_0,(c_sHc_s^{-1}) \cap G_0)) \),
and if \(w_4 \) is in \(W(G,H) \) satisfying
\[c_s^{-1} = w_3 c_s w_4 c_s^{-1} \]
them \(w' = w_3 w_4 w_5 w \) in \(W(G,H) \).

Proof. If the equality holds, then, there are \(g \) in \(G_0 \) and \(b \) in \(B \), such that
\[g \ c_s \ w \ b = c_s', \ w' \]
Hence, \(A = g \ c_s \ w \ b \ B \ b^{-1}w^{-1}c_s^{-1}g^{-1} = c_s', \ w' \ B \ w^{-1}c_s^{-1}, \) or
\[A = g \ c_s \ w \ B^{-1}w^{-1}c_s^{-1}g^{-1} = c_s', \ w' \ Bw'^{-1}c_s^{-1}. \]
Thus \(g \ c_s \ w \ H \ w^{-1}c_s^{-1}g^{-1} = g \ c_s \ H \ c_s^{-1}g^{-1} \) and \(c_s, \ w' \ H \ w'^{-1}c_s^{-1} = c_s, \ c_s^{-1}, \) are \(\sigma \)-invariant Cartan subgroups of \(A \) [S]. Because of
lemma 2, there exists \(b_1 \in A \cap G_0 \) which carries \(g c_s H c_s^{-1} g^{-1} \) onto \(c_s' H c_s' \). Thus, \(c_s H c_s^{-1} \) and \(c_s' H c_s'^{-1} \) are \(G_0 \)-conjugated. [S] implies that there exists \(w_3 \in W(G_0, H) \) such that

\[
w_3(S \cup (-S)) = S' \cup (-S').
\]

Now, if \(\beta \) is any noncompact root \(c_\beta^2 \) is equal to "the reflection about \(\beta \". Thus, \(c_\beta \) is equal to \(c_\beta \) times an element of \(W(G, H) \). Moreover, in \([V]\) is proven that, if \(w \in W(G_0, H) \), then \(c_\beta w \) is equal to \(w c_\beta w^{-1} \) or \(w c_\beta'^{-} w^{-1} \) (\(c_\beta = "reflection about \beta\") depending on whether \(\text{Ad}(w) Y_\beta = Y_w(\beta) \) or \(\text{Ad}(w) Y_\beta = -Y_w(\beta) \).

Therefore, we conclude that the equality \(gc_3 wb = c_3' w' \) implies that there exist \(w_3 \in W(G_0, H) \), \(w_4 \) product of reflections about roots in \(S \), such that

\[
g c_s w b = w_3 c_3 w_4 w_3^{-1} w'
\]

Set \(g_1 = w_3^{-1} g \), and \(w_6 = w_4 w_3^{-1} w' \) then we have that \(g_1 \) is in \(G_0 \), \(w_6 \) is in \(W \) and

\[
g_1 c_s w b = c_s w_6
\]

Thus, \(w b B b^{-1} w^{-1} = w B w^{-1} \) is a Borel subgroup containing \(w H w^{-1} = H \), hence \((w B w^{-1}) \cap G_0 = H_0 \) \((G_0 \) is inner!).

Now, \(c_\beta^{-1} g_1 c_\beta^{-1} w H w_6^{-1} c_\beta^{-1} g_1^{-1} c_\beta^{-1} = c_\beta^{-1} g_1 c_\beta^{-1} H c_\beta^{-1} g_1 c_\beta = w b H b^{-1} w^{-1} \) is a \(\sigma \)-invariant Cartan subgroup of \(w B w^{-1} \). By lemma 2, there exists \(h \) in \((w B w^{-1}) \cap G_0 = H_0 \) such that \(w b H b^{-1} w^{-1} = h H h^{-1} = H \). Therefore, \(b \) lies in the normalizer of \(H \) in \(G \) and in \(B \), which implies \(b \) is in \(H \). Thus \(w \) and \(w b \) represent the same element of \(W(G, H) \). Finally, let \(w_5 = c_\beta^{-1} w_3 g c_\beta \). Because \(w_5 = w_4 w_3^{-1} w' w b \), we have that \(w_5 \in W(G, H) \).

Hence \(w_5 \) is in \(W(G, H) \cap c_\beta^{-1} W(G_0, (c_\beta H c_\beta^{-1}) \cap G_0) c_\beta \). In words, \(w_5 \) is conjugated to an element of the Weyl group of \(c_\beta H c_\beta^{-1} \) in \(G_0 \).

Therefore we have proven

\[
G_0 c_s w B = G_0 c_s w' B \quad \text{implies that there are} \quad w_3 \text{ in } W(G_0, H_0), \ w_5 \text{ in } W(G, H) \text{ such that} \quad w_3(S \cup (-S)) = S' \cup (-S') \]

\(w_5 \) is in \(W(G, H) \) and is conjugated by \(c_s \) to an element of \(W(G_0, (c_\beta H c_\beta^{-1}) \cap G_0); \) and if \(w_4 \) is in \(W(G, H_0) \) such that

\[
c_s' = w_3 c_\beta w_4 w_3^{-1}
\]

then

\[
w' = w_3 w_4 w_5 w.
\]
Conversely. Let \(w, w_3, w_4, w_5 \) and \(w' \) as in the hypothesis of the lemma. Then

\[
G_0 c_{w_3} w'B = G_0 w_3 c_{w_4} w_5^{-1} w_3 w_4 w_5 wB = \\
= G_0 c_{w_5} wB = G_0 c_{w} c^{-1}_{w_5} c_{w} B = G_0 c_{w} B.
\]

Q.E.D.

Lemmas 2 and 3 allow us to parametrize in a useful manner the space of orbits of \(G_0 \setminus G \) by the action of the maximal unipotent subgroup of \(G \).

Let \(N_1 \) be any maximal unipotent subgroup of \(G \). The orbit of \(N_1 \) by \(G_0 \times \) in \(G_0 \setminus G \) is the set \(\{ G_0 x n : n \in N_1 \} \).

Let \(\theta \) be the set of all orbits of the totality of maximal unipotent subgroups of \(G \). Since the conjugated of a maximal unipotent subgroup of \(G \) is a maximal unipotent subgroup of \(G \), we have that \(G \) acts on \(\theta \) by the rule

\[
(G_0 \times N_1)g = G_0 x g^{-1}(g N_1 g^{-1}) (x, g \in G).
\]

From now on, we will only consider this action of \(G \) in \(\theta \). Let \(G_0, H, B \) as in the beginning of the paper. Let \(N \) be the unipotent radical of \(B \). If \(N_1 \) is any maximal unipotent subgroup of \(G \), there is \(g \) in \(G \) such that \(N_1 = g N g^{-1} \). Thus, \(G_0 \times N_1 = G_0 x g N g^{-1} = \\
= (G_0 \times g N).g.
\]

Therefore we conclude:

Any element of \(\theta \) is the translate by the action of \(G \) to an orbit of \(N \) (\(N \) being the unipotent radical of \(B \)).

Now, lemma 2 says that any \(N \) orbit is equal to an orbit of the type \(G_0 c_{S} c_{w} h N \) (where, \(h \in H, c_{S} \) is a Cayley transform and \(w \) is in \(W(G,H) \)). Thus, we have proved

Theorem 4. A family of representatives of the set \(\theta \) of all the orbits of the totality of maximal unipotent subgroups of \(G \) in \(G_0 \setminus G \) by the action of \(G \) in \(\theta \) is given by

\[
\{ G_0 c_{S} c_{w} h N : c_{S}, ..., w \in W(G,H), h \in H \} \text{ and } G_0 c_{S} c_{w} h N = G_0 c_{S'} c_{w'} h' N
\]

if and only if \(S, S', w, w' \) are related as in lemma 3.

Lemma 5. Let \(V \) be a real finite dimensional vector space and \(N \) a unipotent subgroup of \(GL(V) \). Let \(V_C \) be a complexification of \(V \) and \(N_C \) the Zariski closure of \(N \) in \(GL(V_C) \) (we think of \(GL(V) \) included in \(GL(V_C) \) in the usual way). Then

i) For every \(x \) in \(V \), \(N_C x \) is equal to the Zariski closure of \(N.x \).
ii) \((N^C, x) \cap V = N.x\).

Proof. Since \(N^C\) is a unipotent subgroup of \(Gl(V_C)\), we have that \(N^C x\) is closed in \(V_C\) [H], therefore \(N^C x\) contains the Zariski closure of \(N.x\). On the other hand, the map \(T + T(x)\) is a polynomial map from \(N^C\) to \(V_C\), hence, it is continuous if we set the Zariski topology in both \(N^C\) and \(V_C\).

Besides in [B] is proved that the Zariski closure of \(N\) is \(N^C\), thus \(N^C x\) is contained in the Zariski closure of \(N.x\), and we have proved i).

In order to prove ii) we need to verify that \((N^C x) \cap V\) is contained in \(N.x\). We do it by induction on dimension of \(V\). If \(\dim V = 1\), the unipotent subgroup of \(Gl(V)\) is \(\{1\}\).

If \(\dim V > 1\). Since, \(N\) is a unipotent subgroup of \(Gl(V)\), Engel's theorem implies that there exists a non zero \(v\) in \(V\) such that \(n(v) = v\) for every \(n\) in \(N\).

Since \(N^C\) is the Zariski closure of \(N\), we have that \(n(v) = v\) for every \(n\) in \(N^C\). By the inductive hypothesis, we conclude that if \(T\) is in \(N^C\), \(a\) in \(V\), \(c\) in \(C\) and \(Tx = a + cv\), then there exists \(S\) in \(N\) such that \(Tx = Sx + dv\), \((d\) in \(C)\).

Now, let \(T\) be in \(N^C\), such that \(Tx\) belongs to \(V\). Owing to the inductive hypothesis, there exist \(S\) in \(N\), \(d\) in \(C\) such that \(Tx = Sx + dv\). Since \(Tx\) and \(Sx\) belong to \(V\), we have that \(d\) is real. If \(d = 0\), we are done.

If \(d \neq 0\), let \(M\) be \(M = \{n \in N^C: n(x) \equiv x (C_v)\}\). It is clear that \(M\) is a Zariski closed subgroup of \(N^C\) and that \(S^{-1}T\) belongs to \(M\) \((S^{-1}T(x) = S^{-1}(Sx + dv) = x + dS^{-1}(v) = x + dv, S^{-1}(v) = v \equiv x)\).

Since \(x\) and \(v\) are in \(V\), it follows that \(M\) is invariant under the conjugation of \(N^C\) with respect to \(N\). Therefore \(M\) has a real form \(M_1\). In other words, \(M_1 = M \cap N\) is a real form of \(M\). Now the map \(n + n(x) - x\) from \(M\) into \(Cv\) is non constant, because \(S^{-1}T\) goes to \(dv\), which is nonzero. Besides it is a polynomial map. Since the unique non trivial Zariski closed subgroup of \(Cv\) is itself, we have that the map \(n + n(x) - x\) is onto. Since, for \(n\) in \(M_1\), \(n(x) - x\) is a real multiple of \(v\) we conclude that there exists \(R\) in \(N\) such that \(R(x) - x = -dv\) \((d\) is real!).

Therefore \(-dv = S^{-1}Tx - x = R(x) - x\), hence \(Tx = SR(x)\). Since \(SR\) belongs to \(N\) we conclude the proof of the lemma.
PROPOSITION 6. Let \(N \) be any maximal unipotent subgroup of \(G \). Then the orbit \(G_0 \times N \) of \(G_0 \times N \) by \(N \) in \(G_0 \backslash G \) is closed in \(G_0 \backslash G \).

Proof. Think of \(G \) as a real Lie group and let \(G^C \) be its complexification. Since \(G \) is a linear Lie group ([W] Wallach) \(G \) is contained in \(G^C \). Let \(G^C_0 \) be the complexification of \(G_0 \) in \(G^C \). Since \(G^C \) and \(G^C_0 \) are semisimple Lie groups, the complex homogeneous manifold \(G^C_0 \backslash G^C \) is a non-singular affine variety. Since \(G^C_0 \cap G = G_0 \), we have that \(G_0 \backslash G \) is a real submanifold of \(G^C_0 \backslash G^C \). Let \(N^C_0 \) be the complexification of \(N_1 \) in \(G^C \). Then ([H], page 125) the orbit \(G^C_0 \times N^C_0 \) is closed in \(G^C_0 \backslash G^C \). Since, for \(x \) in \(G \), the orbit \(G_0 \times N_1 \) is equal to \((G^C_0 \times N^C_0) \cap G \), we have that the orbit \(G_0 \times N_1 \) is closed in \(G_0 \backslash G \).

PROPOSITION. Let \(N_1 \) be any maximal unipotent subgroup of \(G \) and let \(G_0 \times N_1 \) be an orbit of \(N_1 \) in \(G_0 \backslash G \). Let \(\sigma_x \) be the conjugation of \(G \) with respect to the real form \(x^{-1}G_0 x \). Then: 1) The isotropy subgroup of \(N_1 \) at \(G_0 \times N_1 \) is the real form of \(N_1 \cap \sigma_x(N_1) \) determined by \(\sigma_x \). 2) The isotropy subgroup of \(N_1 \) at \(G_0 \times N_1 \) is connected.

Proof. \(\{ n \in N_1 : G_0 \times n = G_0 \times x \} = \{ n \in N_1 : x n x^{-1} \in G_0 \} = \{ n \in N_1 : n \in x^{-1}G_0 x \} = N_1 \cap (x^{-1}G_0 x) \).

Thus, if \(n \in N_1 \) and \(G_0 \times n = G_0 \times x \), then \(\sigma_x(n) = n \).

Hence \(\sigma_x(N_1 \cap (x^{-1}G_0 x)) = N_1 \cap (x^{-1}G_0 x) \). Therefore

\[
N_1 \cap (x^{-1}G_0 x) = (N_1 \cap (x^{-1}G_0 x)) \cap (\sigma_x(N_1 \cap (x^{-1}G_0 x))) = (N_1 \cap (x^{-1}G_0 x) \cap \sigma_x(N_1) \cap (x^{-1}G_0 x)) = (N_1 \cap \sigma_x(N_1)) \cap (x^{-1}G_0 x).
\]

Which proves 1. Let's prove the second affirmation. Since, [H], \(N_1 \cap \sigma_x(N_1) \) is a unipotent algebraic group, it is connected. Moreover, because of a theorem of [B], the group of real points of the algebraic group \(N_1 \cap \sigma_x(N_1) \) has finitely many connected components. Hence, if \(n \) belongs to \(N_1 \cap \sigma_x(N_1) \cap (x^{-1}G_0 x) \), then some power is in the connected component of \(N_1 \cap \sigma_x(N_1) \cap (x^{-1}G_0 x) \).

Say \(x^k \) is in the connected component of \(N_1 \cap \sigma_x(N_1) \cap (x^{-1}G_0 x) \).

Since the exponential map on any real nilpotent connected group is onto, there exists \(y \) in the Lie algebra of \(N_1 \cap \sigma_x(N) \cap (x^{-1}G_0 x) \) such that \(x^k = \exp(y) \). On the other hand, because of Engels theo-
rem and [F] any unipotent algebraic subgroup of $\text{GL}(n, \mathbb{C})$ is simply connected, and hence, [F] the exponential map of $N_1 \cap \sigma_x(N_1)$ is bijective. Thus, the equality $x^k = \exp(y) = (\exp(1/k y))^k$ implies that $x = \exp(1/k y)$. Hence the group $N_1 \cap \sigma_x(N_1) \cap (x^{-1}G_o x)$ is connected.

The following fact is useful.

Proposition. Let K be a complex Lie group, such that the exponential map of K is bijective (for example, K unipotent and connected). Let σ be an involutive real automorphism of K; let K_0 be the fixed point set of σ and K_0 the subset of those elements of G that are taken by σ into its inverse. Then $K = K_0 K_0$.

Proof. We want to prove that for a given y in K, there exist x in K_0 and z in K_0 such that $y = xz$.

Let $b = b = \sigma(y)^{-1}y$. It is clear that $\sigma(b) = b^{-1}$. Since the exponential map is onto, there exists Y in k such that $b = \exp(Y)$. Since $\sigma(b) = \exp(\sigma(Y)) = b^{-1} = \exp(-Y)$, and the exponential map is injective, we have that $\sigma(Y) = -Y$. Thus $z = \exp(1/2 Y)$ belongs to K. Let $x = yz^{-1}$. Then $\sigma(x) = \sigma(y)\sigma(z)^{-1} = \sigma(y)\sigma(z)^{-1} = yb^{-1}\sigma(z)^{-1} = yb^{-1}z = yz^{-1} = x$.

Q.E.D.

Proposition. Let $B \subset G$ be any Borel subgroup (G as usual). Let H be a σ-invariant, Cartan subgroup of B. Let H_o be the set of real points of H. Then $B \cap G_o = H_o (N \cap G_o) (N$ being the unipotent radical of B).

Proof. If hn belongs to $B \cap G_o$ then $hn = \sigma(hn) = \sigma(h)\sigma(n)$.

Therefore $\sigma(n) = \sigma(h)^{-1}hn$ belongs to B. Since H is σ-invariant, we have that $\sigma(h)^{-1}h$ is in H. Thus (the decomposition $B = H N$) says that $n = \sigma(n)$ and $\sigma(h)^{-1}h = 1$. Hence $\sigma(h) = h$.

Q.E.D.

The next step is to compute the normalizer of an orbit of N in G/G_o. Because of the equality $N \times G_o = x(x^{-1}N)x_0$, we have that any orbit in G/G_o is the translate of an orbit through the coset G_o. Thus, we conclude.

The normalizer of any N-orbit in G/G_o is conjugated (in G) to the
normalizer of an orbit of the type $N.0$ ($0 = \text{coset } G_0$).

Now for a fixed unipotent maximal subgroup N of G, if B denotes the unique Borel subgroup containing N, it is clear that $(B \cap G_0) N$ normalizes the orbit $N.0$. We would like to prove the equality. We have been able to prove this only in particular cases.

REFERENCES

[H] Humphreys, Linear Algebraic Groups, Springer Verlag.

FAMAF-CIEM
Ciudad Universitaria
5000 Córdoba, Argentina

Recibido en julio de 1987.
Versión final diciembre de 1988.