A regular quadratic form ψ over a field K of characteristic $\neq 2$ is called round if either it is hyperbolic or it is anisotropic, satisfying the following similarity conditions: for any $x \in K$ represented by ψ, the isometry $<x> \psi \cong \psi$, holds.

We shall study in this Note, round forms over a linked field mainly with u-invariant $u(K) \leq 4$. If $\dim \psi = 2v \ell$, $v \geq 2$, ℓ odd, this study was made by M. Marshall [M]. We here complete it to forms of dimensions 2ℓ, ℓ odd. We rely on results in [M].

1. PRELIMINARIES.

K will denote a field of characteristic $\neq 2$. Quadratic forms over K will be regular (i.e. non-degenerate) and written in diagonal form $<a_1, \ldots, a_n>$, $a_i \in K$. If ψ and φ are quadratic forms, $\psi \perp \varphi$ denotes orthogonal sum and $\psi \otimes \varphi$, tensor product. If ψ is a quadratic form, with $D(\psi)$ we denote the set of all elements of K represented by ψ and $\tilde{D}(\psi) := D(\psi) \setminus \{0\}$.

For $a_1, \ldots, a_n \in K$, the n-fold Pfister form $<1, a_1> <1, a_2> \ldots <1, a_n>$ will be denoted by $<<a_1, a_2, \ldots, a_n>>$. A non-empty subset T of K will be called a preordering if it is closed respect to sums and products, i.e. if $T + T \subseteq T$ and $T \cdot T \subseteq T$.
A (quadratic) form ψ over K will be called round if either,
i) ψ is hyperbolic or ii) ψ is anisotropic and for all $x \in D(\psi)$, $x \neq 0$, $\langle x \rangle . \psi \simeq \psi$, i.e. the similarity factors of ψ coincide with $D(\psi)$.

A field K is called linked (or, a linked field) if the classes of quaternion algebras over K form a subgroup in the Brauer group of K. We shall use results on linked fields contained in $[G_1]$ or $[G_2]$.

The u-invariant of a field K is by definition: $u(K) = \max\{\dim q\}$ where q runs over the anisotropic torsion forms over K. If K is a linked field then it is well-known that $u(K) \in \{0,1,2,4,8\}$.

With $W(K)$ we shall denote the Witt ring of K, consisting of the Witt classes of all quadratic forms.

Next, we recall some basic results that will be needed in this paper. Both are from [M]. We give a proof of Proposition 1 which avoids the use of the Hasse-invariant.

1.1. Proposition ([M], Prop. 1.1 (ii)). Let ψ be a round form of dimension 2ℓ, ℓ odd. Then

$$D(\psi) \subset D(\langle 1, \det \psi \rangle).$$

Proof. Let $a \in D(\psi)$, so $\langle a \rangle . \psi \simeq \psi$, and hence $\langle 1, -a \rangle . \varphi = 0$ in the ring of K. This means that $\varphi \in \text{Ann}(\langle 1, -a \rangle) =: \text{annihilator ideal in } W(K)$ of $\langle 1, -a \rangle$. Now it is well known (see [EL], Cor. 2.3) that we have an isometry

$$\psi \simeq \beta_1 \ldots \beta_\ell,$$

where $\beta_i = \langle c_i \rangle . \langle 1, -b_i \rangle$, $b_i \in D(\langle 1, -a \rangle)$. Therefore $-\det \psi = b_1 \ldots b_\ell \in D(\langle 1, -a \rangle)$.

Thus $\langle 1, -a \rangle = \langle -\det \psi, \det \psi . a \rangle$
or $\langle 1, \det \psi \rangle = \langle a, \det \psi . a \rangle$,

and so $a \in D(\langle 1, \det \psi \rangle)$.
1.2 PROPOSITION ([M], Prop.2.7). Let K be a linked field with $u(K) \leq 4$. Let ψ be a round form over K of dimension $2^\ell \ell$, ℓ odd. Then

\begin{enumerate}
 \item If $\nu = 2$, there exists a unique ν-fold Pfister form ψ_0 defined over K such that $\psi = \ell \times (\det \psi) \psi_0') (\psi_0 \approx <1> \perp \psi_0')$.
 \item If $\nu > 3$, there exists a unique ν-fold Pfister form ψ_0 and a unique universal 2-fold Pfister form ρ defined over K such that $\psi \approx \ell \times (\det \psi) \psi_1')$ where ψ_1 is defined by $\psi_0 \rho \approx \psi \perp \rho H$. (H denotes a hyperbolic plane).
\end{enumerate}

2. ROUND FORMS OVER LINKED FIELDS.

2.1. PROPOSITION. Let K be a linked field and ψ a round form of dimension 2ℓ, $\ell > 1$, odd. Then

\begin{enumerate}
 \item $\psi \approx l <x_i, \varphi_i > l <1, \det \psi>$ with φ_i, 2-fold Pfister forms, $x_i \in K$;
 \item $q := l <x_i, \varphi_i >$ is a round form and $D(\psi) = D(q)$;
 \item $D(\psi) = D(<1, \det \psi>) = D(q)$;
 \item $D(\psi)$ is a preordering.
\end{enumerate}

Proof. If $\ell = 1$ then $\psi = <1, a>$, and so we can assume $\ell > 1$.

i) Being K a linked field we can write (see [G.1])

\[\psi \approx l <y_i, \varphi_i > l <a, b> \]

with φ_i, 2-fold Pfister forms.

Clearly, $\det \psi = a^b$. If we multiply ψ by $<a>$ we get

\[\psi \approx <a> \psi \approx l <x_i, \varphi_i > l <1, \det \psi>. \]

ii) From Prop.1.1 we have $D(\psi) \subset D(<1, \det \psi>)$ and then from i) it is clear that

\[D(\psi) = D(<1, \det \psi>). \]

iii) is consequence of i) and ii).

iv) Let $x, y \in D(\psi)$. Then $x \in D(l <x_i, \varphi_i>)$ and $y \in D(<1, \det \psi>)$.
and so \(x + y \in D(\psi) \). For the product \(x \cdot y \), it is clear that \(x \cdot y \in D(\psi) \).

2.2. PROPOSITION. Let \(K \) be a linked field with \(u(K) \leq 4 \) and let \(\psi \) be a round form of dimension \(2\ell, \ell = 2k+1, k > 0 \).

1) Assume \(k \) odd. Then, there exists a unique 2-fold Pfister form \(\langle a, b \rangle \) such that
 i) \(\psi = k \langle a, b \rangle \ll \langle 1, \det \psi \rangle \)
 ii) \(D(\langle 1, \det \psi \rangle) = D(\langle a, b \rangle) \)
 iii) \(D(\langle a, b \rangle) \) is a preordering.

2) Assume \(k = 2^r h, r > 1, h \) odd. Then, there exists a unique \((r+1)\)-fold Pfister form \(\psi_0 \) and a unique universal 2-fold Pfister form \(\varrho \) such that
 i) \(\psi = h \psi_1 \ll \langle 1, \det \psi \rangle \) where \(\psi_1 \) is a round form defined by \(\psi_0 \varrho \varrho = \psi_1 \ll 2H. \)
 ii) \(D(\psi_1) \) is a preordering.
 iii) \(D(\psi_1) = D(\langle 1, \det \psi \rangle) \).

Proof. 1) By using Prop. 2.1 i) we can write
 \[\psi = \ll x_1 \varphi_1 \ll \langle 1, \det \psi \rangle \]
 with: \(\varphi_1 \), 2-fold Pfister form, and \(q := \ll x_1 \varphi_1 \) a round form of dimension \(4k, k \) odd.

By applying [M], 2.7 (i) it follows the existence of a unique 2-fold Pfister form \(\psi_0 = \langle a, b \rangle \) such that
 \[q = k \langle a, b \rangle. \]

Therefore
 \[\psi = k\psi_0 \ll \langle 1, \det \psi \rangle. \]

If \(k = 1 \), then \(D(\langle a, b \rangle) = D(\langle 1, \det \psi \rangle) \) and we know that \(D(\langle 1, \det \psi \rangle) \) is a preordering. Assume then \(k > 1 \). That \(k \langle a, b \rangle \) is a round form implies, by using [M] 1.7, that \(D(\langle a, b \rangle) \) is a preordering. So \(D(\langle a, b \rangle) = D(k \langle a, b \rangle) = D(\langle 1, \det \psi \rangle) \).
2) Assume \(k = 2^r \cdot h \), \(r > 1 \), \(h \) odd. With the notation of Prop. 2.1
i) we have that \(q = 1 < x_1 > \varphi_1 \) is a round form of dimension \(2^{r+1} \cdot h \), \(h \) odd. It follows from [M] 2.7, the existence of a unique \(\nu+1 \)-fold Pfister form \(\psi_0 \) and a unique universal 2-fold Pfister form \(\rho \) such that

\[
\rho \sim h. \varphi_1
\]

where \(\varphi_1 \) is defined by

\[
\varphi_0 \perp \rho \sim \varphi_1 \perp 2H.
\]

Therefore

\[
\psi \sim h\varphi_1 \perp 1, \det \psi >.
\]

By Prop. 2.1 we have that

\[
D(h. \varphi_1) = D(<1, \det \psi>).
\]

If \(h = 1 \), then \(\varphi_1 \) is round and \(D(\varphi_1) \) is a preordering. If \(h > 1 \), then by [M], 1.7 it follows that \(D(\varphi_1) \) is a preordering and \(\varphi_1 \) is round.

2.3. PROPOSITION. Let \(K \) be any field and let \(\psi \) be an anisotropic form over \(K \), and \(\varphi_1 \) a round form. Then if \(\psi \) can be written as

\[
\psi \sim k. \varphi_1 \perp 1, \det \psi >
\]

with \(k \in \mathbb{N} \), \(k \) odd, and

\[
D(\varphi_1) = D(<1, \det \psi>) \quad \text{a preordering,}
\]

then \(\psi \) is a round form.

Proof. Since \(D(\varphi_1) \) is a preordering \(\neq K \), it follows from [M], 1.7 that \(k\varphi_1 \) is a round form if \(k > 1 \). If \(k = 1 \), the same is clearly true. Let \(x \in D(\psi) \), write

\[
x = x_1 + x_2,
\]

\[
x_1 \in D(k\varphi_1), \quad x_2 \in D(<1, \det \psi>).
\]

Then, \(x_1 + x_2 \in D(<1, \det \psi>) = D(\varphi_1) \). Therefore

\[
<x_1 + x_2>: \varphi_1 \sim \psi, \quad (x_1 + x_2).k\varphi_1 \sim k\varphi_1 \quad \text{and}
\]
\[<x_1 + x_2>, <1, \det \psi > = <1, \det \psi >.\]

Consequently
\[<x>, \psi = <x_1 + x_2>, \psi = \psi,\]

and \(\psi\) is round.

2.4. REMARK.

If \(K\) is a global field and \(\psi\) is an anisotropic round form over \(K\) then \(\dim K \equiv 0 \pmod{4}\) and \(\det \psi = 1\) (see [HJ]). In fact, since \(D(<1, \det \psi>)\) is a preordering, it follows that \(<1, \det \psi>\) represents all sum of squares. Therefore, for every discrete prime \(p\) in \(K\) we have that \(<1, \det \psi>_p\) is universal in the completion \(K_p\) of \(K\). Now, according to [OM], 63:15 (ii) if \(\varphi\) is a two-dimensional anisotropic form over a local field \(K\) and if \(\varphi\) represents 1, then \(D(\varphi)\) is a subgroup of \(K\) of index 2. Therefore our form \(<1, \det \psi>\) is isotropic for all but a finite number of spots (the real ones). Equivalently \(-\det \psi\) is a square in all, but a finite number of \(K_p\). By [OM], 65:15, we conclude that \(-\det \psi\) is a square in \(K\), i.e. the form \(<1, \det \psi>\) is isotropic. This is a contradiction, since it is a subform of an anisotropic form.

After this paper was finished I received a preprint on Round Quadratic Forms by Burkhard Alpers (University of Saskatoon, Canada).
REFERENCES

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
1428 Nuñez, Buenos Aires, Argentina.

Recibido en febrero de 1989.