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INTRODUCTION

In [2] D. Ferus introduced the notion of extrinsic symmetric
submanifold of an euclidean space obtaining, at’ the same time,
a classification of this important family of submanifolds. On
the other hand in [3] he gave a proof, independent of the
classification, of the fact that these submanifolds of an eucli
dean space are tight. In [5] the notion of extrinsic k-symme-

tric submanifold of RN was introduced generalizing Ferus' defi
nition to the case of the so called regular s-manifolds of
order k (see [4]1). [5] contains theé classification of these
submanifolds for the case of odd k as well as a proof of their
tightness. That proof depends strongly on the nature of the
order k and does not extend to the case of even order. It
should be pointed out that the classification of these subma-
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nifolds/for k even is still an open problem although some par-
tial results have been obtained.

In this paper we give a proof of the tightness of these sub-
manifolds for k even, complémenting the results dan [5]. The
proof that we give here is a generalization of the one given
by Ferus in [3]. But we must point out that this generaliza-
tion is not straightforward since the case k > 2 requires spe-
cial methods in several points (see for instance the proof of
0-tightness (2.1)). This fact, besides the interest of the re-
sult itself is, in our opinion, what justifies the present pa-
per.

The content of the paper is the following. In the next section
we recall the definition of extrinsic k-symmetric submanifeéld
and prove that the imbedding is 0O-tight while in section 3 we
complete the proof of the tightness.

SECTION 2

In [5] the following definition is given. Let M be a compact
connected Riemannian manifold and let i:M"“ Rn+q be an iso-

metric imbedding which has the following properties.

i) For each p € M there is an isometry o_: R®T9 & RP*4 gych
that 0§ = id , ob(P) = P, ob(Mt) = identity on Mt (Mt denotes

the normal space at p € M).

ii) cp(M) Cc M.

iii) Let 6, = (bblM)' The collection'{ep: p € M} defines on M
a Riemannian regular s-structure of order k ([4]p.4-6) i.e.

for every pair of points x,y € M 9y°ex = Bony wlere.z = eyoq.
If,conditions (i), (i) and (iii) are satisfied by our imbed-

ding, we say that M® is an extrinsic k-symmetric sﬁbmanifold

of Rn+q.

The objective of this section is to prove the following
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(2.1) THEOREM. The imbedding i: M® » R™Y is 0-tight.

Proof. Let V denote the space R""9 and S(V) = {veVv: vl =1}
be theunit sphere in V. For each v € S(V) let §, be the
height function in the direction of v. For almost every

v € S(V) the function 8, is "stable" i.e. it is a Morse fune-

tion with only one critical poih% at each critical level.

For each critical point p of 8,, the isometry 9y leaves ¢
invariant i.e.

GVCGPCX)) = <wv,0,(x)> = <0 (v),0 (x)> = 8 (x)
since v € Mi.

Since Sy is stable, we see that each one of its critical points
must be left fixed by 9y (p a critical point of §). In fact,
if q is a critical point of Gv and s = dp(q)

ds | o
v

«l X =10 so s is also a
s P q

X = d(GVocp)|q X .= d6V|q

critical point of Gv and since Gv(s) = Gv(q) then s=q.

In order to prove (2.1) we need to show that §, has only one
critical point of index zero. To that end we shall see that by
assuming that §_  has more than one critical point of index ze-
TrOo, we reach a contradiction.

Let p; and p, be the first two critical points of index zero
of 8, that we find by moving in the direction of v. Since M is
connected we must have a critical point p of index one connect
ing p; and py. Clearly the level T, of Py must be higher than
the levels r; and r, of each one of the points p; and p,. For
Ty > 1> Max(rl,rz} , in M¥ = {x e M: 6§(x) <r}, we have at
least two connected components namely (Mr)pl and (Mr)p which

2
became :one at the level ;-
Let (U,xl,...,xn) be a Morse coordinate system for Gv around
Py Then we may write
‘ _ 2 2 2
Gv(xl,...,xn) =T, X] + X5t X
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Let B(t) = (t,0,...,0) the first coordinate curve in
(U,xl,...,xn). To fix our ideas we can say that B(t) €
To

€ M " - {po})pl (component of p,) for t > 0. Let now H be an

open set such that Py € H Cc U and cg (H) c U for each j=1,...,k.
0

For t > 0 the curve B(t) is descénding ie. t <t =

= GV(B(t)) > GV(B(t‘)). Let € > 0 be a real number such that
t € (0,e) = B(t) € H. Then, on (0,e), the curve B(t) is des-
cending and because of the invariance of 6, all the curves

ogO(B(t)), j = 1,...,k, are descending.

r
Let W, = UnNn [M 0—{p 1 i = 1,2 (component of p.).
i 077" py i

Then N
2 2
W= lxp,.e0x ) €0 x7 > jzz x{ , x; >0}
n
- ) . 2 2
W, = {(x;,...,x ) € U: x] > jzz x; , x; < 0}.

Let us consider now the sets.Qi = H n,Wi i=1,2. They satisfy

od (Q.)) € w. i=1,2; j=1,...,k because ol (H) €U, for each j,
PO 1 1 Po

< r r
by definition of H and o ([M 0-{p 11 ) C M 0-{p 1 i=1,2
P 0 py 0" py
r
¥ j. (This is true because [M 0-{po}]p must be invariant by
: i

o; , due to the invariance of GV and to the fact that Py is
0 : ’

fixed by o% ). Then, since by the definition of € > 0
0

B(t) € Q1 for t € (0,e), we can conclude that

The curves opj(B(t)) s for t € [0,e], all lie in W, U {po}.
0 ‘ _

Let us study now the curves cg (B(t)) in coordinates..For
0
j = 1,...;k and for t € [0,e) write oI (B(t)) = (y,.(8),...,y_.(£)).
PO J nj

We clearly have
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= 2
5,(B(t)) = r-t
5. (0 (B(1))) =1, - (y ()% + E ‘ t))?
NS o = Uy DALY
i=2
Now, due to the invariance of GV , we get

(ry; ()% - 2 = ,zzcyijct))z = R
-

and then, since ylj(t) =0 for t € (0,e) (The curves og (B(t))
0

lie in W, v {py}), we have

Yij -t = yoE >0 for t € (0,¢).
Therefore,

Y,

- 120 for t e (0,e).

Let us take now limit for t - 0% (t - 0, t >0) then we get

yl' .+
. J . *
1ig+—€— =1 1i.e. ylj(OJ => 1.

Since the curves‘og (B(t)) are differentiable we see that the,
v 0 .

right hand side derivatives i;t(O) that we have computed are

in fact the derivatives and then we have

(2.2) ilj(O) >1 j=1,...,k.

Now oio(étO)) (715035 +,¥,;(0))  and since

kK.
Y ol (B(0)) 0 we clearly have
j=1 Po

S
0= ] y,;(00 >k by (2.2)
j=1

which is a contradiction.

This contradiction originated in our assumption of the exist
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ence of more than one critical point of index 0 for our §,.

This proves (2.1).

SECTION 3
In this section we prove the following
(3.1) THEOREM. The imbedding M™ » R™Y is tignt.

Proof. As we indicated in the introduction, if k is odd this
fact was proved in [5] then we may assume that k=2s.

In order to give a proof of (3.1) we proceed by induction on
the dimension n of the manifold. If dim M'= 0 then M is just

a point and the theorem is trivial in this case. Let us assume
that the result is true for every extrinsic k-symmetric sub-
manifold of dimension < n in an euclidean space.

Let now M" - Rn+q = V be an extrinsic 2s-symmetric submanifold

of dimension n. Take v € S(V) such that .6, is "stable" and let
a be a critical point of §,.

Let N = F(G:,M) be the fixed point set of 0: in M. Let

N -+»N_be the connected components of N. It is well known

1’
that each Ni is a closed totally geodesic submanifold of M and

all of them are contained in the subspace W = F(oz,V). We pro-
ve now the following

(3.2) LEMMA. Egch one of the components of N is an extrinsic

2s-gsymmetric submanifold of W.

Proof. Let N; be one of the components of N and let b be a
point in Ni' It is easy to see that cb(W) = W and ob(Ni) = Ni'
Now 1let Norb(Ni,W) be the normal space of the submanifold Ni

in W at the ﬁoint b. Then we have
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(3.3) Norb(Ni,W) = Mt nw.

In fact, it is clear that

= . S
T Ni {X e Mb' o,

b X=X} = Mb nw

o

and if.we call Q the orthogonal complement of T N, in My then
for Y € Q we have cz*lbY = -Y. Therefore W is contained in the
orthogonal complement of Q in V which is TbNiﬂth. This implies
(3.3). _

With these observations if we put B, = ob|W for each b € N, it

is easy to see that Ni C W and the isometries {Bb: b € Ni}

satisfy the conditions (i), (ii) and (iii) of the definition
of extrinsic 2s-manifold.

REMARK. It is not hard to see that, in fact, the component of
the critical point a in N is extrinsic s-symmetric in W but
we do not need this fact here.

Since the  function 8, is stable and a is a critical point we
see, as in the proof of (2.1), that the critical points of §,
are all contained in N.

Let U be the gradient field of s, in M.

i.e. ULY> = d6v|dY VaeM VYeM. The field U satisfies
s Uu =10 for each critical point of § because
x| qUq og(a) p critical point o O,

ds_|

s =d 00 ° Y =4d .
v cg(q)(cpf|q(Y)) (s, cp)lq 1 Y

q

Then if p=a and ﬁ € N we get o:*|qu = Uq and therefore (U|N)
is a tangent field on N. This means that the restriction of
Gv to N(leN) could only have a critical point'q € N if

(U|N)q = U = 0 and therefore the critical points of (6V|N)

S .
are the c?ltibal points of 6v on M. We know, by our choice of
/

8 that these critical points are non-degenerate in M but of

V,
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" course we must check that they are non-degenerate on N.

To that end we study the Hessian of (GVIN) at a critical point
q of (8 |N). .Je want to show that Hess(GVIN)Iq is non-degene-
rate in TqN:<TqN. Let y be the second fundamental form of N

in W. It is well known that for “the height function leN
Hess(6V|N)|q(X,Y) = <Yq(X,Y),V>.

If we call o the second fundamental form of M in V, w the se-
cond fundamental form of N in M and e the one for N in V we
have € = (a|N) + w. But, since N is totally geodesic in M, we
have =0 and so € = (a|N). Now we have, for X,Y € TqN s

o3 (e(X,Y)) = e(05X,05Y) = e(X,Y)
and therefore e(X,Y) = y(X,Y) i.e.
(3.4) Y (X,Y) = o (X,) ¥ X,Y € TN

If the critical point q of (GVIN) were a degenerate critical

point then 3 X € TqN such that <yq(X,Y),v> =0 V YE TqN
and by (3.4) <a§(X,Y),V> =0 VY&TN.

Let Q, as before, denote the orthogonal complement of TqN in
M, and take Z € Q. Then '

<o (X,2),v> <o:(a§(x,2)),o:V> =

= <aq(X,-Z),v>.

This clearly means that <aq(X,Z),v> =0 VvV Z € Q and therefore
we get that if Hess(6v|N)|q is degenerate then Hess(dv)lq is
degenerate. It follows that (GVIN)\is a Morse function. Fur-
thermore, if we denote by ejcsv) the number of critical points

n
of index j of § in M and Bj(6v|N) = 'Z

.(8 |N.) is the total
1_183( GINg) i
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number of critical points of index j of (6v|N) then

n

(3.5) I 808 = 1 1 Bi(8,IN)).

j20 j20 i=1 .

Now from (3.2) and the inductive hypothesis it follows, since
dim Ni < dim M, that

) bj(Ni,ZZ)

i=1

Il ~8

(3.6) I B;(8,IN) =}
J J

where bj(Ni,Zz) is the j-th Betti number of N; with Z2 coefi-
cients.

) .
Now, since N = F(UZ,M) and (oz) = idM, we have that N is the

set of fixed points in M of an action of the group Z,. The
homological structure of the set of fixed points of a Z,-ac-
tion is related to the homology of the original manifold M
via the Smith special homology groups [1,p.123] and one ob-
tain from [1,p.126, Th.4.1].

(3.7) T b (N,Z.)) < § b.(M,Z.).
k3o K772 j30 37772
Now from (3.5), (3.6) and (3.7) it follows that

(3.8) b, (M,2,) =5 B,(65.)
kgo k 2 E 28 v

and since the opposite ihequality is given by Morse's inequal
ities we see that (3.8) is in fact an equality and then
Theorem (3.1) is proved.
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