ON THE MAXIMUM ENTROPY SOLUTION
OF THE CARATHEODORY-FEJER PROBLEM

RODRIGO AROCENA

A la memoria de Julio Rey Pastor, pionero de la matemática en el Río de la Plata

Abstract. An approach to the Carathéodory-Féjer problem based on the method of unitary extensions of an isometry, which gives a geometric interpretation of Schur parameters, was presented in a previous paper. In this note we complement that approach by showing that innovation and entropy type considerations lead to select a particular solution of that problem, as it happens in the trigonometric moment problem.

Innovation in each step

We want to show that some relations between maximum entropy and the moment problem, as discussed by Landau [L], also appear naturally in the context of the Carathéodory-Féjer problem when it is solved by the method sketched in [A-I]. So we shall use the notation and results of the last paper without stating them again.

Let \( \{c_0, c_1, \ldots, c_n\} \subset \mathbb{C} \) be such that \( F_n = \{ f \in H^n(T) : \|f\|_\infty \leq 1, \hat{f}(k) = c_k, 0 \leq k \leq n \} \) has more than one element. (See [A-1], theorem A). Set \( K_n = \{ \hat{f}(n+1) : f \in F_n \}. \) A classical statement says that \( K_n \) is a closed disk with radius equal to \( \|\{1-|\hat{y}_k|^2\} : 0 \leq k \leq n \| \), where \( \gamma_0, \gamma_1, \ldots, \gamma_n \) are the Schur parameters corresponding to \( c_0, c_1, \ldots, c_n \) [Sch]. We start by giving a proof of that result. More precisely:

**Proposition A**

\[ K_n = \{ z \in \mathbb{C} : |z| - a_n \leq \rho(n) \}, \text{ with } \rho(n) = \prod \{1-|\hat{y}_k|^2\} : 0 \leq k \leq n \}, a_n = \]

\[ < V_P D(n) V^a d_1, d_2 > H(n), \text{ and } P_D(n) \text{ the orthogonal projection of } H(n) \text{ onto } D(n). \]

**Proof**

Let \( f \in F_n \) there exists \( (U,G) \in U \) such that \( \hat{f}(n+1) = < U^{*+1} d_1, d_2 > G = \)

\[ < V_P D(n) V^a d_1, d_2 > H(n) + < U P_N(n) V^a d_1, d_2 > G = a_n + < U P_N(n) V^a d_1, P_M(n) d_2 > G \]

Now, \( \rho(n) = \text{dist}^2 [V^a d_1, D(n)] = \text{dist}^2 [d_2, R(n)], \) so \( \rho(n) = \| P_N(n) V^a d_1 \|^2 = \| P_M(n) d_2 \|_2; \) thus, \( \text{dist}^2 [z, R(n)] - a_n \leq \rho(n). \)

It remains to see that, if \( |z| \leq \rho(n), \) there exists \( (U,G) \in U \) such that \( < U P_N(n) V^a d_1, d_2 > G = z. \)

Let \( N' \) be the span of a unit vector \( v, \) set \( H' = H(n) \oplus N' \) and call \( V' \) the isometry acting in \( H' \) that extends \( V \) to \( H(n) \) and verifies \( V'(P_N(n) V^a d_1) = [z/p(n)] P_M(n) d_2 + (p(n)^2 - |z|^2) / p(n) ) V', \) Take \( (U,G) \in U \) such that \( U_{|H(n)} = V' \). Then \( < U P_N(n) V^a d_1, d_2 > G = < V P_N(n) V^a d_1, d_2 > H(n) = z \)

Q.E.D.
As we know, the Fourier coefficients of each \( f \in F_n \) are obtained in a step by step extension of \( V^d_1 \). In the step that gives \( \gamma_{n+1} \) we put \( \gamma_{n+1} = \gamma_{n+1} \pm \mathcal{D}(n) \mathcal{D}(n) + \mathcal{D}(n) \mathcal{D}(n) \) belonging to \( H(n) \) and \( \beta = \langle (p(n)^2 - |z|^2) \rangle \) orthogonal to that space. So we may say that \( \gamma_{n+1} \) is obtained by using in \( \gamma_n \) the information we already had (i.e., the one given by \( \gamma_0, \gamma_1, \ldots, \gamma_n \)) and innovating in \( \gamma_{n+1} \).

Now, \( \gamma_{n+1} = \gamma_{n+1} \pm \mathcal{D}(n) \mathcal{D}(n) + \mathcal{D}(n) \mathcal{D}(n) \) belonging to \( H(n) \) and \( \beta = \langle (p(n)^2 - |z|^2) \rangle \) orthogonal to that space. So we may say that \( \gamma_{n+1} \) is obtained by using in \( \gamma_n \) the information we already had (i.e., the one given by \( \gamma_0, \gamma_1, \ldots, \gamma_n \)) and innovating in \( \gamma_{n+1} \).

From \( \gamma_{n+1} = \gamma_{n+1} \pm \mathcal{D}(n) \mathcal{D}(n) + \mathcal{D}(n) \mathcal{D}(n) \) belonging to \( H(n) \) and \( \beta = \langle (p(n)^2 - |z|^2) \rangle \) orthogonal to that space. So we may say that \( \gamma_{n+1} \) is obtained by using in \( \gamma_n \) the information we already had (i.e., the one given by \( \gamma_0, \gamma_1, \ldots, \gamma_n \)) and innovating in \( \gamma_{n+1} \).

On the entropy integral

In this context the following result, due to Boyd [B], is remarkable:

1. Proposition

Let a sequence \( \{ \gamma_k \} \subset \mathbb{C} \) be such that there exists an \( f \in H^\infty (T) \) that satisfies \( \| f \|_\infty \leq 1 \) and \( f(k) = \gamma_k \) for every \( k \), with corresponding Schur parameters \( \{ \gamma_k \} \). Then

\[
\lim_{n \to \infty} \Pi \{ (1 - |\gamma_k|^2); 0 \leq k \leq n \} = \exp \left( \frac{1}{2} \pi \right) \log \left( 1 - \| f \|^2 \right) dt
\]

This property is closely related to the fundamental results we now recall.

2. Theorem

Let \( \eta = dt + d\eta_n \) be a finite positive measure on \( T \) such that \( d\eta_n \) is singular to \( dt \) and \( D_n \) the determinant of the Toeplitz matrix \( (\gamma(j-k)) \) for \( j, k \leq n \). Set \( e(t) = e^{it} \). Then:

a) the distance in \( L^2(\eta) \) of \( e_0 \) to the span of \( \{ e_j \}; j \geq 1 \) equals

\[
\exp \left( \frac{1}{2} \pi \right) \int \log w dt;
\]

b) \( \lim_{n \to \infty} (D_n/D_{n+1}) = \lim_{n \to \infty} D_n (1/n+1) = \exp \left( \frac{1}{2} \pi \right) \int \log w dt \).

Property (2.a) is Szegö - Kolmogorov- Krein theorem (See[G-S], p.44 or [G],p.144, for example) and the proof (1) is based on it. Property (2.b) is Szegö's limit theorem ([G-S], p.65).

The following extension of Boyd's proposition can be seen as translation of theorem (2) from the context of the trigonometric moment problem to the one of the Carathéodory-Féjer problem.

If \( \alpha = (\alpha_{jk}) \) is a positive matrix of measures on \( T \) call \( L^2(\alpha) \) the Hilbert space generated by the linear span of \( \{ (e_0, e_j); j, k \in \mathbb{Z} \} \) and the scalar product given by \( \langle (e_j, e_k) \rangle = \alpha_{11}(j-j') + \alpha_{12}(j-k') + \alpha_{21}(k-j') + \alpha_{22}(k-k') \).

3. Proposition

For \( f \in H^\infty (T) \) such that \( \| f \|_\infty \leq 1 \) let \( \{ \gamma_k \} \) be the sequence of its Schur parameters, \( \Gamma_k \) the Toeplitz matrix \( (f(j-k)) \) for \( j, k \leq n \), and \( \alpha = (\alpha_{jk}) \) as above given by \( \alpha_{11} = \alpha_{22} = 1, \alpha_{12} = \alpha_{21} = f \). Then the distance in \( L^2(\alpha) \) of \( (0, e_0) \) to the span of \( \{ e_j \}; j \geq 1 \) equals
\( \{(c_j, \varepsilon_k): j \geq 0, k > 0\} \) is equal to

\[
\lim_{n \to \infty} \frac{\det (1 - \Gamma_n^* \Gamma_n)}{\det (1 - \Gamma_{n-1}^* \Gamma_{n-1})} = \lim_{n \to \infty} \Pi \{(1 - |\gamma_k|^2): 0 \leq k \leq n\} \exp \{(1/2 \pi) \int \log (1 - |f|^2) \, dt\}.
\]

**Proof**

With \( \hat{f}(k) = c_k \) set \( H = V \{ \{H(n): n \geq 0\} \). Thus, with obvious notation, \( H \) is generated by \( \{V d_j, V d_j: j, k \in \mathbb{Z}\} \) and \( L(V d_j, V d_j: j \geq 0, k > 0) \) onto \( V \{\varepsilon_0, \varepsilon_k: j \geq 0, k > 0\} \). We know [A-1] that \( p(n) = \det (1 - \Gamma_n^* \Gamma_n) / \det (1 - \Gamma_{n-1}^* \Gamma_{n-1}) = \Pi \{(1 - |\gamma_k|^2): 0 \leq k \leq n\} \) is equal to the distance in \( H(n) \) from \( d_2 \) to the span of \( \{V d_j, V d_j: j \geq 0, n \geq k > 0\} \). Since \( H(n) \subset H(n+1) \) for every \( n \), \( \lim_{n \to \infty} \Pi \{(1 - |\gamma_k|^2): 0 \leq k \leq n\} \) is the distance in \( H \) from \( d_2 \) to \( V \{V d_j, V d_j: j \geq 0, k > 0\} \), i.e., the distance in \( L^2(\alpha) \) from \( (0, \varepsilon_0) \) to \( V \{\varepsilon_0, \varepsilon_k: j \geq 0, k > 0\} \). So the result follows from (1). Q.E.D.

Now, with the notation of (2) if \( n \) is the spectral measure of a zero-mean Gaussian stationary process \( X = \{X_j: j \in \mathbb{Z}\} \), the entropy rate \( H(X) \) of \( X \) is such that [L]

\[
H(X) = \lim_{n \to \infty} \frac{1}{2} \log [2 \pi e D_n^{(1/n+1)}] =\]

\[
(1/2) \log [2 \pi e] + (1/4 \pi) \int \log w \, dt.
\]

Thus, the association to each \( f \) as in (3) of a Gaussian stationary process \( X = \{X_j: j \in \mathbb{Z}\} \) with spectral measure \( d\eta = (1 - |f|^2) \, dt \) gives an entropy meaning to the integral

\[
\{(1/2 \pi) \int \log(1 - |f|^2) \, dt\}. Proposition (1) says that the sum of the logarithms of the step by step innovations converge to that entropy integral.

**Calculation of the maximum entropy solution**

So, when \( \{c_0, c_1, \ldots, c_r\} \subset C \) is such that \( F_n \) has more than one element, we may say that the function \( f \in F_n \) corresponding to the Schur parameters \( \gamma_j = 0 \) for every \( j > n \) is the maximum entropy solution of the Carathéodory-Féjé problem. Of course, it can be obtained by means of Schur's algorithm [Sch]. Here we sketch an alternative method, based on the fact that every \( f \in F_n \) is given by a unitary extension \( (U, G) \subset U \) of a well defined isometry \( V \) and that the maximum entropy solution corresponds to the "most innovative" [A-2] element in \( U \).

Since \#(F_n) > 1, the orthogonal complement \( N = N(n) \) of the domain \( D(n) \) of the isometry \( V \) in \( H(n) \) is one-dimensional and the same happens with the orthogonal complement \( M = M(n) \) of the range \( R(n) \) of \( V \). Set \( M_j = M \) for every \( j \leq 0 \), \( N_k = N \) for every \( k \geq 0 \) and \( G = (\oplus (M_j: j < 0)) \oplus H(n) \oplus (\oplus (N_k: k > 0)) \).

Let \( S \) be the unilateral shift. Since \( H(n) \oplus (\oplus (N_k: k > 0)) = D(n) \oplus (\oplus (N_k: k \geq 0)) \)
and \((\oplus \{ M_j: j \leq 0 \}) \Theta H(n) = (\oplus \{ M_j: j \leq 0 \}) \Theta R(n)\), a unitary operator \(\tilde{U}\) is defined by setting 
\(U = S\) on \((\oplus \{ M_j: j < 0 \}) \Theta (\oplus \{ N_k: k \geq 0 \})\) and \(U = V\) on \(D(n)\).

Then \((U, G) \in U\) and, from the geometric interpretation of Schur parameters, it follows that in this case \(\gamma_k = 0\) for every \(k > n\).

Consequently, \((U, G)\) gives the solution we are interested in.

We shall use now the notation defined in the statement and proof of proposition B. Remark that, if for any trigonometric polynomial \(q\) we set \(p(t) = q(-t)\), then we have:

\[
\langle q_1, q_2 \rangle, \langle q_1', q_2' \rangle > T^2(\alpha) = \sum_{T} \{ p_1 \bar{p}_1 + p_2 \bar{p}_2 f + p_1 \bar{p}_2 \bar{f} + p_2 \bar{p}_1 \bar{f} \}.
\]

Let \(v \in N\) be a unit vector in \(N\) such that \(\langle v^0, d_1, d_2 \rangle > 0\); thus, \(v\) is a well defined linear combination of \(\{ v^j, d_j: n \geq j \geq 0, n \geq k \geq 0 \}\) and there exist two analytic trigonometric polynomials of degree at most \(n\), \(q_1\) and \(q_2\), such that \(L(v) = \langle q_1, q_2 \rangle \in L^2(\alpha)\). Also, \(L(S^j v) = \langle q_1, q_2 \rangle, \forall j \in Z\). From \(0 = \langle S^j v, v \rangle > 0\) for every \(j > 0\) and \(1 = \langle v, v \rangle > 0\), it follows that

\[
p_1 \bar{p}_1 + p_2 \bar{p}_2 f + p_1 \bar{p}_2 \bar{f} + p_2 \bar{p}_1 \bar{f} = 1 \text{ on } T.
\]

Now, \(p_1 \bar{p}_2 = f + \phi\), with \(\phi \in H^{\infty}\) and \(g\) an antianalytic polynomial of degree at most \(n\) completely determined by \(\{ c_0, c_1, ..., c_n \}\), such that

\[
2 \Re \phi = 1 - \| p_1 \|^2 - \| p_2 \|^2 - 2 \Re g \text{ on } T \text{ and } \phi(0) = 0.
\]

Consequently, \(\phi\) is also determined by \(\{ c_0, c_1, ..., c_n \}\) and \(f\) is given by the rational fraction

\[
f = \frac{\langle e_n g + e_n \phi \rangle \langle e_n p_1 p_2 \rangle}{\langle e_n p_1 p_2 \rangle}.
\]

In order to have explicit formulas note that

\[
v = [1/(1 - l_p^2)] d_1(n) + [\gamma_n / (1 - l_p^2)] d_2(n),
\]

with \(d_1(n)\) given by (16) in [A-1] and \(d_2(n)\) by a similar expression.

Summing up,

**Theorem C.** Let \(\{ c_0, c_1, ..., c_n \} \subset C\) be such that \(F_0 = \{ f \in H^\infty(T): \| f \| \leq 1, f(k) = c_k, 0 \leq k \leq n \}\) has more than one element. Set \(c_j = 0\) for \(-n \leq j \leq -1\) and \(c_j = \phi_j\) for every \(j \in Z\), call \(P\) the linear span of \(\{ e_0, e_1, ..., e_n \}\) and in \(P \times P\) define a scalar product by setting, with \(\delta(0) = 1\) and \(\delta(j) = 0\) if \(j \neq 0\),

\[
\langle (e_j, e_k), (e_l, e_k) \rangle = \delta(j-l) + c_j k + \bar{c}_l k + \delta(k - k').
\]

Then there exists one and only one \((q_1, q_2) \in P \times P\) such that \(\langle (q_1, q_2), (e_j, e_k) \rangle = 0\) for \(0 \leq j < n, 0 \leq j \leq n\), and \(\langle (q_1, q_2), (e_n, 0) \rangle > 0\).\(\hfill \square\)

Set \(\rho_1(t) = q_1(-t), \rho_2(t) = q_2(-t)\); if \(\rho_1 \bar{p}_2 \Sigma (e_j e_j: 0 \leq j \leq n) = \Sigma (e_j e_j: n \leq j \leq 2n)\), call \(g = \Sigma (e_j e_j: -n \leq j \leq 0)\); let \(\phi \in P\) be determined by \(2 \Re \phi = 1 - \| p_1 \|^2 - \| p_2 \|^2 - 2 \Re g\) and \(\phi(0) = 0\). Set \(f_0 = \langle e_n g + \phi \rangle / \langle e_n p_1 p_2 \rangle\).

Then: \(f_0 \in F_n\) and, for any \(f \in F_n\) such that \(f \neq f_0\),
\[
\int \log(1-|f|^2) \, dt > \int \log(1-|f_0|^2) \, dt.
\]

Finally, we want to point out that our approach to maximum entropy aims to establish the relations of some results of [C] and [D-G] with the method of unitary extensions of isometries.

References


Recibido por U.M.A. el 16 de mayo de 1989.