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ON THE MAXIMUM ENTROPY SOLUTION

OF THE CARATHEODORY-FEJER PROBLEM
RODRIGO AROCENA

A la memoria de Julio Rey Pastor, pibnero de la matematica en el Rio de la Plata

Abstract. An approach to the Carathéodory-Féjer problem based on the method of unitary
extensions of an isometry, which gives a geometric interpretation of Schur parameters, was
presented in a previous paper. In this note we complement that approach by showing that
innovation and entropy type considerations lead to select a particular solution of that problem,
as it happens in the trigonometric moment problem.

Innovation in each step

We want to show that some relations between maximum entropy and the moment problem,
as discussed by Landau [L], also appear naturally in the context of the Carathéodory-Féjer
problem when it is solved by the method sketched in [A-1]. So we shall use the notation and
results of the last paper without stating them again. A

Let {Cg» Cy» +-es Co} © C be such that Fo = {f € H” (T): Ilfll, <1.f(k)=c,0<k<n}
has more than one élement. (See [A -1 ], theorem A). Set Kn = { ?(n + 1) : f € Fn}. A classical
statement says that Kp is a closed disk with radius equal to [T{(1- hl?): 0<k<n }, where Y,
Y1» s ¥ are the Schur parameters corresponding to Cg, Cj, ..., ¢, [Sch]. We start by giving a proof
of that result. More precisely:

Proposition A
Ka= {z € C: llz - anll < p(n) }, with p(n) = [T {(1- lyklz). 0<k<n},apn=
-< VPD( n) vid, d, >H(n)» and PD(n) the orthogonal projection of H(n) onto D(n).

Pl'OOf A
It f € F, there exists (U,G) € U suchthat f(n + 1) =<U"*" d;, d; > =

n n P
<V V'dids > gy + < UPpyp)V" din o >g = an + < UPyyp) Vdi, Pyg o>

Now, p(n) = dist* [V" d;, D(n)] = dist’ [d;, Rm)], s0 p(n) = 1P g V"d, 117 =

= IPM(n) d,Ii%; thus, Il fn + 1) - an 1< p(n).
It remains to see that, if 1z < p(n), there exists (U,G) € U such that < UPN(n)V"dl,dpG-z.
Let N’be the span of a unit vector v, set H* = H(n) ® N’ and call V’ the isometry acting in H’
that extends V to H(n) and verifies V'(PN(n)V“ di) = [z/p(n)]PM(n)dz + {[p(n)2 -
12121/ p(n) }?v. Take (U,G) € U such that U (=" Then <UPN(n)V"d1,d2>G =
=< V'PN(n)V"d1, d2>G = [z/ p(n)] < PM(n)dz,slz >H(n) = %
Q.E.D.
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As we know, the Fourier coefficients of each f € Fy, are obtained in a step by step extension
of V"d,. In the step that givesc,,, = f(n+ 1) = <U™' d,,d,>g we put U™'d, = p + B,  with
n=VPpn)V'd, + [2/p(n)]PM(n) d, belonging to H(n) and B = {pm)? -1z 2pm) v
orthogonal to that space. So we may say that c,,, is obtained by using in p the information we
already had (i.e., the one given by cq, ¢, ...,c,) and innovating in B.

Now, [p()* - ¢y~ 2,1 %1 /p (n) =11 Bl = dise* (U™ ' d,, H(n) 1 = p(n) (1- 1y, | 2)

=p(n+1)

Since p(n) is determined by {c,,C), ....C,}, we may think of (1 -| Yo+t | 2as giving a measure
of the innovation in step (n + 1) of the construction of the sequence {ck} of Fourier coefficients
of f.

From| c,,,-a,|2=p(n)|v,,,|% and p(n+1) = [p(n)*-Ic,, , - a,| 21/ p(n) we see that the
closer we choose c,,, to the centre a, of the disk K|, the bigger the innovation will be and the
larger the disk K,,, where we shall have to choose c,,, in the next step. In particular, when
innovation in step (n+1) equals zero, f is completely determined by {c,, c,, ..., €, , ;} While
maximamum innovation corresponds to 7 ,, ;= 0.

On the entropy integral
In this context the following result, due to Boyd [B], is remarkable:

1 .Proposition

Let a sequence {c,} C C be such that there exists anf € H™ (T) that satisfies | f | o< 1
and f(k) = ¢, for every k, with corresponding Schur parameters {y.}. Then

lim,, JT{(1-|92):0<sksn) = exp{(1/2%) log(1-|f|?) }‘dt )
This property is closely related to the fundamental results we now recall.

2. Theorem. Letdn =w dt +dv, be a finite positive measure on T such that dv, is singular
to dt and D, the determinant of the Toeplitz matrix (ﬁ‘ G-K)ogjksn Sereft) = e”. Then:
a) the distance in Lz(r|) of € to the span of {e;: j2 1} equals

exp{(1/2 &) | log w dt};

b) lim, ., (D/D, ) =lim,_.D,"*" =

=exp {(1/2w) Jlog w dt }.

Property (2.a) is Szegd - Kolmogorov- Krein theorem (See[G-S], p.44 or [G],p.144, for
example) and the proof (1) is based on it. Property (2.b) is Szeg6’s limit theorem ([G-S], p.65).
The following extension of Boyd’s proposition can‘be seen as translation of theorem (2) from
the context of the trigonometric moment problem to the one of the Carathéodory-Féjer problem.

Ifa=(a ) ;x-12 isapositive matrix of measures on T call L*(ox) the Hilbert space generated
by theA linear span of {(e;, &,). j.k € Z} and the scalar product given by < (ejep), (ej.6.) > =

&1y G + 61 K + dyy (k) + @y (kK).

3. Propositon B Forf € H” (T) such that|| || , <1 let {Y\} be the sequence of its Schur
parameters, ', the Toeplitz matrix ( f (G-k))osjksnanda=(a;)x.12 givenby
Q) =0 =1,0a,=0, =f Then the distance in L? (o) of (0,e,) to the span of

' e e e e N e N N N

N Nl —
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{(e; €): j20,k> O} isequalto

lim, ., [det(1-T, T,)/det(1-T,," T, )=

=limp o « {1 - | % |2):osi<5n}-exp {(1/12 ) [log(l -1£1%) dty.

Proof

With t (k) =c,set H=V {H(n):n 2 0}. Thus, with obvious notation, H is generated
by{Vid, ,V¥d,: j,k € Z }and L(Vid, + V* dz) - (eJ , ek ) defines a unitary isomorphism of
HontoLh(a) that takes d, to (0, eo)andV(Vd,. \ d,: j>0 k>0}ontoV Se , € ): j20k>0}

. We know [A-1] that p(n) = det (1 - T, * T,)/det(1-T,," I, = I{(1- lvd?):0<k<n)is
equal to the distance in H(n) from d, to the span of (V d, VEd,:n 2j j20,n2 k >0 }. Since
H(n) ¢ H(n +1) forevery n, lim , _, , {(det(1 - l" T )/det(l Foy Taa )} =
hm,,_,.,. O{a-1 'yk |2) 0 <k <n }is the distance in H from d, to V{Vd,, Vid,:j 20, k=0},
ie, the distance in L2 (o) from (0, e5) to V (e;e): j 20,k>0 ). So the result follows from(1).
.E.D.

Now, with the notation of (2) if n is the spectral measure of a zero-mean Gaussian stationary
process X = {X;:j € Z}, the entropy rate H(X) of X is such that [L]

H(X) = “m,q e (1/2) log [2Te D“(llml)]

SO

H(X)=(1/2)log[2re]l+(1/4R) [ log w dt.

Thus, the association to each f as in (3) of a Gaussian stationary process X with spectral
measure dn = (1-1 £1?) dt gives an entropy meaning to the integral

{(1/2 x) log(1- | £1%)dt}. Proposition (1) says that the sum of the logarithms

of the step by step innovations converge to that entropy integral.

Calculation of the maximum entropy solution

So, when {cg, C,; ..., ¢, } © C is such that Fy has more than one element, we may say that the
function f € Fq corresponding to the Schur parameters y; = 0 for every j > n is the maximum
entropy solution of the Carathéodory-Féjer problem. Of course, it can be obtained by means of
Schur’s algorithm [Sch]. Here we sketch an alternative method, based on the fact thatevery f
€ Fp is given by a unitary extension (U,G) € U of a well defined isometry V and that the
maximum entropy solution corresponds to the "most innovative' [A-2] element in U.

Since #(F,) >1, the orthogonal complement N = N(n) of the domain D(n) of the isometry V
in H(n) is one-dimensional and the same happens with the orthogonal complement M=M(n) of
the range R(n) of V. Set M; =M for every j< 0, Nk =N for every k 20 and

G=(®{M;j<0})®Hn)®O{N:k>0})

Let S be the unilateral shift. Since Hn) ®(® { N: k>0 })=D(n)® (D {Ni: k 20})
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and (®{M;: j<0}) ®H(n) = (®{M;:j < 0}) ®R(n), a unitary operator U is defined by setting
U=S on ®{M;:j<0})®(D{N:k20})and U=V on D(n). :

Then (U,G) € U and, from the geometric enterpretation of Schur parameters, it follows
that in this case 1, = O foreveryk >n.

Consequently, (ﬁ.&) gives the solution f we are interested in.
We shall use now the notation defined in the statement and proof of proposition B. Remark
that, if for any trigonometric polynomial q we set p (t) = q (- t), then we have:

< (q, q2).@'1,4q%2) >L2(a)= T(Pl D1+ piPaf+pp, F+ p2p2}-

Let.v € N be a unit vector in N such that < V" d;, d, > > 0; thus, v is a weil defined linear
combination of {V/d,, V*d; n2j20, n 2>k 20} and there exist two analytic trigonometric
polynomials of degree at most n, q; and q, , such that Lv = (q,, q,) € L%a). Also,
L(S’v)-(ej 11,€jQ), V j€ Z.From0=<§v, v> forevery j> 0 and 1 = <v, v>, it follows that

PP +piPaf+p Bif+p,P,=1onT

Now, pjp, f = g + ¢, with ¢ € H™ and g an antianalytic polynomial of degree at most n
completely determined by {c,, c;, ..., ¢}, such that

2Re¢=1-Ip,P-Ip,’-2Re gonT and ¢(0) =0

Con"sequently, ¢ is also determined by {c,, c,, ...,c,} and f is given by the rational fraction
f={e.g+e.0){e.pip2)

In order to have explicit formulas note that

v =[1/(1-hl®)] di(n) + [y / (1- by P)] d, (),

with d,(n) given by (16) in [A-1] and d,(n) by a similar expression.
Summing up. -

Theorem C. Let {co,C,, ....C,} © C be such that Fy = {f € H® (T): Ifll o<1, (k) =

= Ck, 0 S k < n} has more than one element. Set Ci=0for -n<j<-lande, _foreveryj
€ Z, call P the linear span of {ey.e,, ....e,} and in P x P define a scalar product by setting, with
8(0)=1and8(j) =0if j 0,

< (eJ N ek), (ej N ek') S>m 80'_1') + cj-k' + Ej'-k + 5(k - k').

Then there exists one and only one (q,,q;) € P x P such that < (a1, g2), (€j,0) > =
=< (q,92), (0,e;) >=0for0 <j<n,0 <j<n,and < (q,, qp), (e,,0) > > 0.

g=Z {gjej-n< j< 0); let
¢ € P be determined by2Re ¢ =1 - Ip,I? - Ip,* - 2 Re gand ¢ (0) = 0. Set
fo=(e. g8+ ¢)/ (e, pipy).

Set py(t) = q,(-t), po(t) =qy(-t); if p, P, = {cje;:'0<jsn}=Z {g;e; -n< ja2n},call

Then: f, € F, and, for any f € F, such that f 2 f,,

s S e Y N N N

—
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J log(1- If *) dt > J log(1- 1) dt.

Finally, we want to point out that our approach to maximum entropy aims to establish the
relations of some results of [C] and [D-G)-with the method of unitary extensions of isometries.
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