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Introduction 

ON LINKED FIELDS 

ENZO R. GENTILE 

In these notes we present an exposition of results in .the algebraic theory of quadratic forms 
in the context of the so called linked fields. There are many properties that make this kind of 
fields a very interesting object to deal with. The notion and the name of linked fields is due to 
R. Elman and T.Y. Lam [EL 3] but the idea of linkage was known to algebraists of the thirties, 
for instance A.A. Albert [A 1] and E. Witt [W]. To start with, we recall the notion of a quatemion 
algebra. Given a, b e K. where K denotes a field of characteristic ~ 2 and K' : ,- K \ {O}, we 
associate to this pair the four dimensional K-algebra with basis: 
1 ,i, j , k' , and multiplication table 

1 i j k 
1 i j k 

a.1 k a .j 
j j -k b .1 -b .i 
k k -a .j b . i -a.b .1 

We denote it by (a,b)K or simply (a,b) and this is the quatemion algebra associated to a,b. 
Clearly (a,b) and (b,a) are K-isomorphic. 

0.1. Example: M2 (K) : - the algebra of 2 x 2 -matrices over K is a quatemion algebra 
which can be described by (l,a) for any a e K' 

In fact we can choose 1, i ,j , k as follows: 

1 0 1 0 o a o a 
1 : = j : - K:-

o 1 o -1 1 0 -1 o 

This is (up to isomorphism) the only quatemion algebra over K which is not a division 
algebra. ' 

A quatemion algebra (a,b) over K is a central simple algebra and therefore it determines a 
class [a,b] in the Brauer group B(K) of K. A natural question to ask is : 

When form the totality of classes of quaternion algebras a subgroup of B (K) ? 
This is clearly equivalent to ask: 
When is, the tensor product of two quaternion algebras, similar to a quaternion algebra? 

In symbols, similar means to have an algebra isomorphism 

(a, b) ® (c, d) == (e, f) ® M2 (K) 

..... 
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It is well known that the tensor product of two quaternion algebras (a,b), (c,d) is simiiar to 
a quatemion algebra if both algebras admit a "common slot" Le. there exist x, y, z e K' such 
that (a, b) ... (x, y) and (c, d) == (x, y). 

If this is the case we have 

(a,b) ® (c,d) ... (x,y,z) ® Mz(K). 

That the common slot property is also necessary was proved by Pfister {pfJ, later by 
Elman-Lam (E - L 2] and also in a posthumous paper by A. A. Albert [A 2] by using the theory 
of algebras. 

A field is linked if any pair of quaternion algebras admit representations with a common 
slot. Or equivalently, when the classes of quaternion algebras in the Brauer group of K form a 
subgroup. 

It follows easily from the classical Wedderburn's theorem that the tensor product of two 
quaternion algebras is either a division algebra or similar to a quaternion algebra. 

Therefore a field K is linked if and only if the tensor product of two quatemion algebras 
never is a division algebra. 

Let us say that linked fields abund. In fact, any algebraic extension of the rational field and 
any of its completions are linked fields. These are fact'>, of course, of a purely arithmetic nature. 

Linked fields are interesting fields to be studied in the context of the Witt ring W(K) of 
regular quadratic forms over K. Recall that in W(K) we have the distinguished ideal, denoted by 
IK (or simply I) of all (classes of) even dimensional regular quadratic fOlIDS. We also have the 
powers of this ideal, namely 10 K. Every 10 K is generated as an abelian group by the 
2°-dimensional n-fold Pfister forms 

n 
« aI' ... , a,. » : - ® < I, a i > 

i-I 
and give rise to a filtration of W (K) : 

Let us mention in passing that the common feeling among specialists in quadratic forms is 
that the quotients 

should provide the invariants needed to characterize isometry classes of quadratic forms over 
K. But so far there are not many important results in this direction. 

An element q e I"K can be represented by a sum "in W (K) " 

q - < a I > . 11 + ... + < ar > . 1 r 

where 1 i are n -" Pfister forms and a i E K·. 
In a linked field K we have a representation of q which is actually "an isometry": 

q == < al > . 1 I .L . .. .L < a r > . 1 r 

(The reader has noticed our abuse of notation in using the same symbol to denote a quadratic 
form and its class in W (K), O. K .). 
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This is the so called "simple decomposition" of q, a fundamental result due to Elman-Lam. 
In this notes we intend to give another proof of this results which avoids the use of the Arason -
Pfister Hauptsatz. 

In terms of the <tUotients I K we can also mention the very useful property of linked fields 
that any element of tK can be repesen~d in f K by an n - fold Pfister form Le. for any q e InK 
there is an n-fold Pfister form <P such that 

n+1 
q=<p(1 K). 

From this one can prove easily that the quotient group i 2 K is isomorphic to the subgroup 
of B (K) of all classes represented by quatemion algebras. The word linked is due also to Elman 
- Lam and was used originally to express a sort of linkage of n - fold Pfister forms. 

Namely, let for n e N, n > 1, <PI' <P2 be n - fold Pfister forms. 
It is said that <PI and <P2 are linked if there ell\ists an ( n - 1 ) - fold Pfister form T 

such that 

with Tj' i : - 1,2, 1 - fold Pfister forms. 
Elman-Lam defined a field to be linked iffor any ne N, n > 1, any pair of n - fold 

Pfister forms are linked. 
In general linked fields behave so well that specialists first check properties in this kind of 

fields. Some also say that linked fields are the "easy" fields. This is paltially justified since two 
main problems in the algebraic theory of quadratic forms are answered positively for linked 
fields. Those twa problems are the conjecture that the u-invariant is a power of 2 and the famous 
Pfister problem about whether forms in eK of Clifford invariant 1 are elements in tlK. In 1981 
the russian mathematician A. S. Merkujev solved Pfister's conjecture. In fact, Merkurjev proved 
that the Clifford invariant map c: 12K / eK --+ Br2 (K) is an isomorphism, which amounts to 
proving Pfister's conjecture and furthermore the long standing problem about Br2 (K) being 
generated by the classes of quaternion algebras. In 1988, again Markurjev constructed various 
non real fields with u - invariant equal 6 and in 1989 proved the existence of fields u - invariant 
equal 2 n , for all natural n . 

However, what can be said about the ring structure of W(K) of a linked field? 
This paper is expository in nature and most results are well-known to the people working 

in the field, and can be found mostly in papers by Elman-Lam and Elman. However, proofs given 
here are to some extend easier and more revealing of the structure of linked fields. 

We assume the reader acquainted with the basic facts on Witt rings as can be found in Lam's 
book [L] and Lorentz [LO]. 

1. Quaternion algebras. (See Lam [L], O'Meara [O'M]). 
Let a,b e K·. we associate with the pair a,b the 4-dimensional K-algebra (quaternion 

algebra), q.a. defined by a basis 1 ,i ,j , k , and multiplication table: 
·2 ·2 b .. .. k I - a, J - , I • J - -J. I -
1 • x - x.l - x, \I x 

(As usual we identify a.l with a, for all a e K.) 
It is denoted by, 

(a,b)K or simply (a,b). 
This algebra is central (Le. its center is K .1 - K) and simple (Le. it has only 2 two-sided 

ideals). 
Notice that in general there are many ways to represent (a,b)K' For instance 
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( a, b ) K == (a. x2 , b • i h for all x, y e K . . 
The matrix algebra M2(K) is a quatemion algebra represented by (l,x) for any x e K·. We 

shall see that it is (up to isomorphism) the unique split quatemion algebra, i.e. non-division 
quatemion algebra. 

Denote with i the conjugate of z: 

We have on (a,b)K the quadratic map, the norm of (a, b) K: 

- 2 2 2 2 
N (z) : - z . z - x 0- a. x I - b.x 2+ ab. x 3 

- The norm is a 2-Pfister form and as usual we write 

N (a. b) - N - < 1 , -a , -b , ab > - < < -a, -b > > . 

For instance if (a,b) - (l,x) == M2(K) the norm form is the hyperbolic form 

<l,-l,-x,x> - «1,-1». 

The most striking and important elementary result about quatemion algebraS is that a class 
of algebraic isomorphism of q.a is uniquely determined by a class of isometry of notID maps. 
That is 

(Q) 

where ==: denotes isomorphism of K-algebras 
.. : denotes isometry of quadratic spaces 

It is easy to see that the quatemion algebra (a,b) is a division algebra if and only if the 
quadratic form N (a,b) is anisotropic (i.e. N (z) - 0 if and only if z - 0). Moreover, a Pfister form 
is isotropic if and only if it is hyperbolic. It follows from these observations and from (Q) that 
there is (up to isomorphism) a unique q.a. which is not a division algebra, namely the matrix 
algebra M2 (K) , whose norm form is the hyperbolic 2-fold Pfister form. An important problem 
is to study the structure of the tensor product of quatemion algebras. Recent work by Amitsur, 
Tignol, Rowen show very unsuspected results. If we recall a well-known isomorphism 

( a, b) ® (a, c) == (a,b. c) ® M2 (K) 

we see that the tensor product of q.a. is easy to determine if both algebras (a,b) and (c,d) 
admit a "common slot". 

That is, there exist 

x, y, z e K' such that (a, b) == (x, y) ,(c, d) == (x, z) 

The existence of a common slot can be better analyzed by means of the quadratic space 
structure. Let (a,b)o denote the space of pure quatern;ons, i.e. those quatemions 
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z - X 0 + X I • i + X 2 • j + X 3 • k with X 0 ~ O. 

Then z e (a, b) 0 ~ i - -N (z). 

So, if z e (a, b)o and c - N (z) .:1: 0 we have that the quadratic form < - a, -b, ab > 
represents c, that is <- a, -b,ab > == < c , d, cd > for sonie d E K·. If we choose 

io e (a,b)o with -c - -N (io) - i~, jo E (a,b)o with 

i 0 J.. j 0 , k 0 - io . j 0 we get the basis I, i ° ,j 0, k ° of (a, b) such that 

(a, b) - (-c,-d) if -d - N(jo)' 

In conclusion given a q.a. (a , b ) K we have (a ,b ) K == (c, d) K if and only if c is a value in 
K' represented by the "pure" form < - a , - b , a b >. The next proposition is clearly a corollary 
of our dicussion. 

1.1. Proposition. Let (a,b), (c,d) be q.a. over K. Then these admit a representation with a 
common slot if and only if the quadratic form 

<a,b, -ab, -c, -d, cd > 
is isotropic. 

We can digress at this point to recall a classical result by A.A. Albeit [AI] where he considers 
the case of Proposition 1.1. for two quaternion algebras over the rational field. His Theorem 1 
states that "by finding a single solution of a solvahle diophantine equation we may represent any 
pail' of generalized quaternion division algebras in the canonical form 

a) A ... (e. i, j. i j) , 
,2 
I = ae, ,2 b J = e, j i ... -i j, 

b) B ... ( E, I, J, 11), e - aE, J2 - cE, 11 - -IJ, 

with e and E respectively the module (identities) of A and B, where a,b and care 
multiplication constants expressed in terms of the original multiplication constants of A and B 
and the above solution, and where without loss of generality, a,h,c may be taken to be product 
of distinct rational primes". 

If we assume that originally A and B were given by A = (a I • b I)' B = (a 2' b 2) the above 
diophantine equation refers to solving equations of the following S011: 

that is, to find a zero of the quadratic form < ai' bl, -albl, -a2,-b2 >. 
To solve it he invokes Meyer's Theorem: An indefinite regular form f over Q in n ~ 5 

variables is isotropic, (A. Meyer,( 1881), Zur The01'ie del' indefiniten quadratischen Formen. J, 
reine angew. Math. 108, 125-139), 

.. 1.2 Exercise. Let A and B be quatemion algebras as above a) and b), Prove that A and B 
are isomorphic if and only if band care congl'Uent modulo the norm of the quadratic extension 
Q (va), i.e. 
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c - (X~ - X~ a) . b , for some XI' X2 e Q. 

For instance (-l,b) == (-I ,c) if and only if c - (x~ + x~).b. In particular a quatemion algebra 
(a,b) is split if and only if b is a norm b - NQ ({i) I Q (x) for some x e Q ( ..Jd). 

2. Linkage results. 

2.t.Definitions.: Let n e N denote with Pfn (K) : - totality of n-fold Pfister form over K. 
i) <PI' <P2 e Pfn (K), n > 1 are said to be linked if there exist 1 e P fn•1 (K) and 

aI' a2 e Pfl(K) such that <P j ... 1 . a jo i-I, 2. 
ii) K is said to be n-linked if any pair of form in Pfn (K) is linked. 
iii) K is said to be a linkedfield if it is n-linked for all n, n > 1. 

2.2.Proposition. The following equivalent conditions hold 
i) K is 2 -linked 
ii) K is linked 
iii) 'In e N, V'q e 10 K, 3 <p e Pfo (K) such that q == <p ( 111+\ 
iv) Any 6-dimensionalform of type < a,b,ab,-c,-d,-cd > over K is isotropic. 
v) The classes of quaternion algebras in Br (K) form a subgroup. 

Proot . 
i) ~ ii). Proceed step by step using 2-linkages. 
ii) ~ iii).WriteqelnKas q- <al >. 11 + <a2>' 12 + ... + <a,.> .1 r with 
1 j E Pfn(K). 

It is enough to prove the case r - 2. Let cp e Pfn_I(K) such that 1j - <p • «XI»' 
12 - <p. «X2»' Then . 
<al >· 1 1+ <a2>' 12 - <p. «al>' «X Jlll» + <a2>' «X2») 

- <p • « a I > . «X I» + < a 2 > . «X I» -
< a 2 > . «X I» + < a 2 > . «X 2 » 

- <p. «X». <a l,a2> + <p. <a2>' <X2' -XI> 
- <al>' <p .«x,al a2» + <p .<a2> '<X2'-XI > 
== < X 2> . < a 2 > . <p • < 1 , - XI X2> (In + I K ) 
== <p • < 1 ,- X I X2> (I n+1 K) . 

iii) ~ i v). Let q - < a, b, ab, -c, -d, -cd> - «a, b » • .l < - 1 > .« c, d» '. 
- «a, b» - «c, d» e 12K 
and by iii) q == «e, f» ( 13 K) . 

Assume e ~ -1. 
If we apply the Clifford invariant c: 12K -+ Br(K) we have that 

( « a , b> » . c « < C , d > > - C « < e , f» ) 

that is, 

[ ( -a , -b )] . [( -c , -d )] - [( -e, -f)] in B I' (K). 

Therefore by taking the quadratic extension K "-+ K(k) we have 
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Therefore 

« a , b;» = «c, d » over K (k) 

This is equivalent to say!!!.8 that the form q -. < a, b, ab, -c , -d, -cd > goes to zero in the 
morphism W(K) --+ W(K (v-e) ). If q were anisotropic we could write q = < 1 , e > . h , where 
h is a ternary form. But this is contradictory because by taking determinant we would get 

-I-e. 
Ife--l, then «a,b» == «c,d» (modeK) and hence (-a,-b) = (-c,-d) therefore 
< < a, b > > = < < c, d > > and clearly < a, b, ab, -c, -d, -cd> is hyperbolic. 
iv) => v) is clear. 
v) => i) uses the same idea,> as in iii) => iv). 

2.3. Exercises. 
1) Prove the equivalence of the following conditions on K. 
i) K is linked. 
ii) Every 5-dimensional form represents its determinant. 
iii) Every 6-dimensional form of discriminant 1 is isotropic. 
2) Let (a,b)K ,(c,d)K be quaternion algebras. Prove that if (a,b)®K (c,d) is not a division 
algebra, then (a,b)k and (c,d)kcontain a common quadratic extension of K. 

2.4. Definition. We say that an anisotropic form q E fKhas a simple decomposition (of 
length r) if there exists an isometry 

q=<a,>.<P,.l ... .l<ar>· <Pr 

where ai E K and <Pi E Pfn (K). 

Notice that if q E InK has a simple decomposition then 

2n I dimq. 

Let <P ,. <P 2 E Pfn (K) and r be a non-negative integer. We say that <P, <P 2 are r - linked 
if there exist, T E Pfr (K) , TiE Pfn-r (K) ,i - 1,2 such that <P i = T . Ti , i - 1,2. 

We shall need the following proposition that expresses the linkage property in terms of the 
Witt index. 

2.5. Proposition ([ EL4] Prop.4.4). Let <P and "I be n-fold Pfister forms. and r a 
non-negative intege,.. Let q - <P .1 < -1 > "I. Then <P and '1 a,.e r-linked if and only if the Witt 
index of q is ~ 2r 

2.6. Theorem. Let n E N, n> 1. Then K is n-linked if and only if every q e InK has 
\--, a simple decomposition. 

Proof. Before we give the proof of this theorem we prove a useful lemma due to 
Shapiro-Wadsworth. . 
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2.7.Lemma [SW] . Let cp be a Pfister form, 'Y a fOlm such that cp I 'Y. Let C E 'UK ( 'Y ). 
Then there exists a form 'Y 0 such that 'Y "" c cp .1 'Yo and cp I 'Yo. 

Proof. Recall that a Pfister form is a round form, that is it is hyperbolic or anisotropic 
satisfying: 

a E Dd cp) ~ < a> . cp =: cp. 

Let P - < al , ... , a", > be such that 

'Y = cp ® p = < al > . cp .1 < a2 > . cp.l ... .1 < a", > . cp. 

If c E Dk ( 'Y) , there exist tie D ( cp ) u { 0 } ,i - 1, ... , m such that 

c - al tl + ... + a 1m t m. 

Let S - < X I' .•• , X m > with Xi - ti aj if tj::F- 0 and Xi - 1 if t i - 0 

Then it is clear that 

'Y = cp ® < XI ' ••• , Xm > 

and moreover c E D k (S) since 

c - 1: 12 • Xi + 1: O. Xi 
li..o li-o 

Therefore S - < c > .1 S' and 'Y - < c >.cp .1 cp ® S' . 

We now return to the proof of the theorem. 
Let q E InK be anisotropic and assume that q has no simple decomposition. We can choose 

lJ with the property that it admits a representation in W(K): 

q = <, a l > T I + ... + < a r > T r , Tie P fn (k) 

with r minimum. 
Clearly is r> 1. Suppose r - 2. 
There exist cp E Pfn-) (K) and a I ,a2 E JC such that 

Since q is anisotropic < al > T I .1 < a2 > T 2 must be isotropic. Hence 

By applying Lemma 2.6 we can write 

q-<a>. cp.l <x>. cp.l <-a>. cp.l <y>. cp 

that is, 
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q - < X, y > . <P - < X > «X y» . <P 

But this contradicts the minimality of r. So we are done if r - 2. 
Assume then r> 2 . The fOl:m <a.> 1. .1. .. .L < ar> lr must be isotropic, so let 

with Xi e D (n) u {O}, i-I, ... , r. We can assume that all Xi are "# O. In fact, let Xr-
0, say, then the form 

< a l > . 11 .L ... .L < ar-l> . 1 r-l 

has a simple decomposition, but it is isotropic, and not hyperbolic. Therefore its kernel form 
admits a representation of lower length (in the number of n-fold pfister forms needed). 
consequentlr q would have a lower length, a contradiction. Let then <p E Pfll-l(K) satisfy: 
<p 11 I ,<p 12' We can then apply Lemma 2.6 to 

to have 
"I = < c > . <p.L J, 0 and <p I "10 • 

By counting dimensions we must have 
. 

"10 = <p ® < x,y,z> , forsome x,y,z E K 

and therefore 

q - <p ® < X , Y > + <p ® < c , Z > + < a3 > 1 3 + ... + < a r > 1 r . 

But the form 

<p ® < c, Z > .1 < a 3 > 1 3 .L ... .L < a r > . 1 r 

is isotropic and it has length < r. So its kernel has a simple decomposition of lower length. But 
this implies that q itself has a representation with less than r n-fold Pfister forms, a contradiction. 
This proves the necessity in the theorem. Let us see sufficiency. Let", and X be n-fold pfister 
forms. Notice that a consequence of the existence M simple decompositions in I"K is that any 
nonzero anisotropic form in I"K has dimension a multiple of 211. . . 

Therefore clearly 

ker (",'.L -X') = <c>' S, 

for some S e Pfll (K) , c e K . But this implies that ",'.L - X' is isotropic. Hence ",' and 
X' represent a common value a, say. From this follows that« a» I '" and« a» I X. Let 
then 1 be a Pfister form of the highest dimension among those dividing '" and X. If dim 1 ... 2 0-1 

we are clearly done. Assume then that dim 1 - 2r < 20 - 1 and write 

",=l.LP,X=l.LO, lip 110 

for some forms p and 0 . We have dim p > 2"-· and dim 0> 20 - 1 and so 
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dim (p .i-O) > 20. From 

P .i-o = 'If.i- X = < c > . a , a E Pfn (K) 
. . 

it follows that p .i - 0 D must be isotropic. Choose then e E D ( p) (j D (0 ). By Lemma 
2.6 we can write 

'If .. 1 .i < e > . 1 .i p' .. « e» . 1 .i p' , 

x .. 1 .i < e > . 1 .i 0' .. «e» . 1 .i 0 ' . 

Then 'If.i < -1> X has Witt index ~ dim 1 + 1 - r + 1 and so, by Prop. 2.5, 'If and X have 
an r+I-linkage, a contradiction. Theorem 2.6 is completely proven. This proof does not use the 
Arason-Pfister Hauptsatz. 

Remark. If K is a so called Cn-field then 10 K is linked. A simple proof of this result is 
obtained by using the following known result: 

Let 'If and p l>e Pfister forms with p being a v-fold Pfister form. Assume that 'If ® p' 
represents c E K. Then there exists a (v-I)-fold Pfister form 1 such that 

'If ® P == "If ® < 1, c > ® 1. 

3. A theorem by R. Elman. 
In this section we give a simple proof of an interesting theorem by R. Elman which allows 

to determine for a given field K, when is the field K « t » of power series over k, in one 
undeterminate, a linked field. 

3.1. Theorem [E). F: - K ( ( t ) ) is a linked field if and only if every 4-dimensional 
quadratic form over K with determinant ",. 1 is isotropic. (In other words, anisotropic 
4-dimensional quadratic forms over K have determinant I). 

Proof. ( ¢:: ). Let q be a 6-dimensional form over F with discriminant 1, that is, det (q) = -1. 
We can write 

where q i are forms over K. 
Now, det q - -1 ~ dim (12 is even. By symmetry is enough to consider the case: 
dim (11 - 4 and dim q2 - 2. 
Therefore 

, det ql - 1 ~ det Q2'" -I ~ lh isotropic 

or 

det ql ",. 1 ~ ql is isou'opic by hypothesis. 

Therefore K « t » is a linked field. 
( ~) Let < al ' a2 ' a3 , a4 > be an anisotropic fmro over K. 

The 5 - dimensional form over K « t » , 
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< ai' a2' a3' a4 , t > 

represents TIai • t. Write then 

TIai' t- al (xo' + XI . t + ... )2 + 
a2 (Yo + YI · t + ... }2 + 
a3 (~ + ZI · t + ... )2 + 
a4 (uo + ul · t + ... )2 + 
t (10 + II · t + ... )2 . 

The anisotropy of < ai' a2' a3' a4> implies Xo· ~- Uo - 0 therefore the fIrst four summands 
contribute nothing to the fIrst degree term and so . 

which means fIai - 1 (mod K .2 ) . 
Remark 1. => holds for K(t}. 
Remark 2. We leave as an exercises (or else look in [ELW)) to prove the following 

expansions of 2.1. 
The following statements are all equivalent: 
1) K«t» is linked. 
2} Any anisotropic 4-dimensional form over K has determinant 1. 
3) Every quadratic extension of K is a splitting fIeld for every quaternion algebra over K. 

Moreover if K is a formally real field the above.conditions are equivalent to 
4) K is an euclidean fIeld (i.e. formally real and IKI K' 21 - 2), and also equivalent to 
5) K « t» is a ED - fIeld ( see [P-W, Th. 2]) . 

4. A theorem by Jacob-Tignol. 
The following beautiful result due to Jacob and Tignol was communicated to me by 

A.WadswOlth. 
4.1. Theorem Let K be a field with valuation v with value group f K and residue field K. 

Suppose: 
i.char(K ) -:F- 2, 
ii. K is not quadratically closed, 
iiLf K is not 2 - divisible. 

Then the rational function fIeld K(t) is not linked. 
Proof. Pick a,s E K' with v (a) - v (s) - 0 and it E K \ K .2, and pick 7t E K' with 

v (7t) e 2 f K' Let b = t + S 2 • 

CLaim: « - a , - t» and «- 7t , - b » are not linked. 
We must prove that < - a, - t , (\ t, 7t , b, - 7t b > is anisou'opic over K(t). 

_ The valuation v on K !tas a standard extension, also denoted by v. on F(t) with residue field 
K(t) (t trascendental over K) and value group fK(t) - fK. By passing to the henselization of K(t) 
respect to v and applying Springer's theorem, it suffIces tQ see that 

< -a, -t, at , 6 > and < 1, - b > m'e isotropic over K( t) 
< 1, -6 > = < 1 , - (t + S 2) > is clearly anisotropic. 
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We have <- a,-t, at, Ii > - < a, - t, at ,t + Ii 2 >. To see this is anisotropic, pass to K«t», ) 
over which the form becomes «- Ii ,- t », which is anisotropic by Spinger's theorem as 
<I, If> is anisotropic over K. 

4.2. Application. This theorem applies to the following fields which consequently, are not 
linked. 

Q (t) ; Q p(t), p:;t 2;' R (X,Y); C (X,Y,Z); K (X,Y), K a finite field of char (K):;t 2. 

4.3. Main question about non-linked fields. 
If K is a non-linked field find an upper bound on the number n of quatemion algebras Di 

over K such that D\ ® ... ® Du is a division algebra. 

5.Examples 
5.1. Linked fields. 
i) K, a finite field of characteristic :;t 2. There exists, up to isomorphism, a unique quaternion 

algebra, namely: M2 (K). More generally it can be proved that if K is a non-real field with at 
most 8 squares classes, then the classes of quaternion algebras over K form a subgroup of Br(K). 

ii) K, a p-adic field, that is, a complete field respect to a discrete valuation with finite residue 
class field. These fields are exactly finite extensions of a field Qp of p-adic numbers or a finite 
extension of a completion of a field k (X) of rational functions in 1 indeterminate over a finite 
field k. In this situation there is, up to isomorphism, a unique non-split quatemion algebra. 

iii) K, a global field, that is, a finite extension of Q or a finite extension of a field k(X) of 
rational functions in one indeterminate over a finite field k. The completion ofKJor the various 
topologies defined by absolute values in K produce a p-adic field for each ultrametric absolute 
values 01' else R 01' C. 

The celebrated Hasse-Minkowski theorem states that over a global field K, a quadratic form 
is isotropic if and only if it is so in all completions of K. 

From this theorem it follows immediately that K is a linked field. 
iv) K, a function field over the complex number C ofu'anscendence degree S; 2. According 

to Lang-Tsen theorem, every quadratic fOlm of dimension greater than 4 is isotropic. Hence K 
is a linked field. 

v) K, a function field over R of U1lnscendence degree S; 1. 
In particular, R(X) is a linked field and so is every algebraic extension of it. In other words, 

R(X) is a hereditarily linked field. 
Proof. Let q - < a, b, ab , -c , -d ,-cd> with coefficients in K·.If K contains C then K has 

trdnscendence degree S; lover C and then by Lang-Tsen, q is isotropic .. 
In fact, let then K(i)/K be a propel' quadratic extension ofK. By the same argument as before 

q is isotropic over K(i). If q is anisou'opic we can write q == < c > . <1 ,1> 1. < aI' a2' a3' a4> 
over K with nai - -1. But by Lang-Tsen theorem < a\, a2' a13, a4> is isotropic over K(i). 

Therefore <a\,a2,a3,a4 > -d.<I,I>1.<x,y> ,with nai=-I-x.y and so 

q - < c > < 1.1 > 1. < d > < I, 1 > 1. <:: I, -I>, 

a contradiction. Therefore q is isotropic and K is a linked field. 
vi) K: - k « X » , for the following choices' of k: 

a) finite field of characteristic :;t 2 , 
b) real euclidean field (i.e. fOlmally real and 1 K' / K .21_ 2), 
c) C « t\ » « ~ ». (Over C « t\» « t2» there is a unique anisotropic form of 

dimension 4, namely, < I, t\, t2, t\ . ~ > ). 
d) C « t\ » « ~» « t3 » 
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) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 
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e) a p-adic field. 

5.2. Non-linked fields 
a) Q (X), Q « X » 
b). R (X,Y), R « X» « Y ». 

LINKED FIELDS 

c) <4 (X), P *' 2, the function field over the p-adic field. 
d) C ( X, Y, Z ). 

5.3. Related properties. Formally real fields. 
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a) Let K be a linked field. Then any odd dimensional universal form over K is isotropic. 
Proof Let q be an 9dd dimensional universal form of dimension> 4.Then we can write 

with r - < a > ,or r - < a , b , c > . 
For r - < a > it follows that q.L < -a > E 12K. Now p.L < -a> is isotropic and its kernel 

form has dimension a multiple of 4. This implies that 

q .L < -a > - 2. H + q , 

and from here we conclude that q is isotropic. The other case r - <a,b,c> is treated similarly. 
Remark As far as we know the statement is not known for arbitrary fields. 
b) Let us consider the following types of fields 

1) linked fields , 
2) SAP fields (Le. fields whose space of ordering satisfies the strong approximation 

property). 
3) ED fields. Propelty ED (effective diagonalization) is characterized by any of the 

following equivalent properties 
i) Kpyt (Pythagorean closure of K) is SAP 
ii) K is SAP and every binary torsion form represents a totally positive element of K· 
iii) For every real place v : K·--+ a we have 

a) la / 2a 1 !:> 2 and 
b) if la / 2al - 2 then the residue class field Kv of v is un euclidean field. 

We have the following (in general strict) hierarchy: 

Linked ~ ED ~ SAP 

If K is a formally real pythagorean field then these properties are equivalent, [Ell]. 
The fields Q(X) and R(X, Y) are not SAP fields [Pr], therefore are not linked fields. Moreover 

Q(X)llyt is an example of a non-linked pythagorean field. 
We do not know what additional property on ED gives a re~iprocal implication above. 
SAP fields also admit valuation theoretical charactelizations. In fact a field K satisfies SAP 

if and only if for every valuation v : K --+ a, with formally real residue field Kv we have 
la /lal !:> 2 und if la / 2al = 2 

'~I then Kv is uniquely ordered. 
We do not know whether there is an analogous result for real linked fields. 
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6. Remarks ) 
I. It is not known whether given a linked field K. then every quadratic extension is also 

linked. Even for K non-real and with u(K) - 4. this is not known. In this case. if K is linked and ) 
K(.Ja)is a quadratic extension then u(K(.Ja» - 4 or 6. If equal 4 then K (.Ja) is linked. 

On the other hand. odd dimensional extensions of linked fields need not be linked. For 
instance. let Fo be the euclidean closure of Q. Let F be a real odd-dimensional galois extension 
of Fo. Let K-Fo (a). Then K « t» - Fo« t» (a) is an odd dimensional (galois) extension of 
the linked field Fo « t » . But it is not linked. because otherwise this would imply that F is 
euclidean. which is not so. for F has infinite classes of squares. according to [L]. Cor.3. p.219. ) 

2. In Algebraic K-theory and quadratic/orms. Invent. Math. 9.318-344 (1970). J.Milnor 
defined. for every n > O. the groups knK and morphism h., • s,. 

Moreover. he proved that So is epimorphism. Now. Elman-Lam (see Journal of Number 
Theory 5. 367-378 (1973) proved that for a linked field. sn is an isomorphism. for all n. 
Consequently e~ is always defined. for a linked field K. It is also possible to prove that in this 
case e~ is injective. It is not known whether it is also surjective. 

3. For the u-invariant of linked fields see [E]. [G]. 
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