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GENERALIZED COMPLEX BESSEL TRANSFORMATIONS

J. J. BETANCOR

ABSTRACT. In this paper we consider two variants of the Hankel
transform (they are called Bessel-transformations) which are de
fined by:

. [0 L 2u+t
B (£)(7) [Ox b, o) £(x) dx

tBu(f) (y) = y***! JO bu(xy)f(x)dx

where bu(z) = z—uJu(z), JU(Z) being the Bessel function of the

first kind of order u. We extend these transformations to cer-
tain. spaces of generalized‘functions and prove several results
on inversion, uniqueness, boundedness and analyticity. The
theory developed here is applied to solve certain Dirichlet
problems.

1. INTRODUCTION

After L.Schwartz [10] extended the Fourier transform to cer-
tain spaces of distributions (distributions of slow growth),
the extension of classical integral transforms to generalized
functions constitutes an interesting and active area of study.

There are two main approaches used to extend the classical
transform associated to the Kernel K(x,y)



(1.1 F(y) = T(£)(y) = j K(x,y) £ (x)dx

to generalized functions. The first method consists in construct
ing a space A of testing functions defined on (-»,+»), which
is closed with respect to the classical transform (1.1). The
transformation of the functional £ € A' (where A' stands for
the dual space) is defined as the adjoint transformation of T:

(TE) (v) = £(Ty) , £ €A , ¥ EA.

This approach has been followed by L.Schwartz [10], A.H.Zemanian
[12], J.M.Méndez [5] and G.Altenburg [1].

In the second procedure a space B of testing functions is con-
structed such that the kernel function K(x,y) is in B for each
real or complex y and then the transform Tf of the generalized
function f is defined by the relation

(T£) (y) = £(K(x,y))

This method has been followed by A.H.Zemanian [13], E.L.Koh
and A.H.Zemanian [3], L.S.Dube and J.N.Pandey [2], and others.

The Bessel transform

(® 2u+l
x“HTH

(1.2) B,(B)(y) = Jo b, (xy)£(x)dx

where bu(z) = Z—UJU(Z), Ju(z) being the Bessel function of the

first kind of order u, has been extended to certain spaces of
generalized functions by using both approaches. Following the
second one, L.S.Dube and J.N.Pandey [2] gave an extension of
the Bessel transform; they proved an inversion theorem for a
certain class of generalized functions interpreting convergen-
ce in the weak distributional sense. Later, W.Y.Lee [4] gave

two spaces of testing functions Fu and Gu, and proved that Bu
is a continuous imbedding of Fu in GU' Then the dual operator
B; defined by

(BI£)(¥) = £(B V)

is a continuous map of Gb into Fﬁ. More recently, G.Altenburg



[1] and J.M.Méndez [5] investigated the transform (1.1) on cer-
tain space H' of generalized functions of slow growth. They
used the first of the above mentioned methods.

The purpose of this paper is to extend two different Bessel
transforms, namely (1.2), introduced by A.L.Schwartz [9]; and

(co

2u+l
By B O =y by (o (x)dx

studied by J.M.Méndez [6], to a space of generalized functions
by using the second procedure. Our study has been suggested by
a paper of E.L.Koh and A.H.Zemanian [3] on the complex Hankel
transformation and also a work of W.Y.Lee [4], where the exten
sion that we carry out here is presented by him as an open pro
blem. As in [3], the independent variable y is allowed to be a
complex, and the Bessel transforms defined turn out to be ana-
lytic on a certain strip @, in contrast with the restriction.
in [2] and [1]. We give several theorems on boundedness, inver
sion and uniquéness, together with an operational transform
formula for a Bessel type differential operator. In ‘the last
paragraph we study some appliéations of the transformations in
the solution of certain Dirichlet problems.

2. THE TESTING FUNCTION SPACES Iu a’ Iu(o) AND THEIR DUAL SPACES

Let I be the interval (0,~), a be a positive real number and

u any real number. Then, for each pair (a,u) we define Iu a?

as the collection of the infinitely differentiable complex va-
lued functions ¢ on I such that the next inequality holds
1

m -ax max(O,u)+2 m
n,,a(¥) = suple”™" x AP < e
? xel
for m € N, where AU < - x“ZH-lpe2utly
’

We assign to Iu a the topology generated by the countable mul-

tinorm {nﬁ o) Hence, Iu o 1s & countable multinormed space.
b b N



The dual space Iﬁ , consists of all continuous linear function
als on I . The dual is a linear space endowed with the weak

u,a

topology.

We now present some properties of these spaces.

Property 1: Iu a is a sequentially complete topological vector

space. Iu a is a Fréchet space.
Property 2: Iu a C E(I), for every choice of u and a, and the
topology of Iu a is stronger than the one induced on it by
E(I). Hence, the restriction of any £ € E'(I) to Iu a is in

’

.IL a’ and the convergence in E'(I) implies weak convergence
’

in I' .
U,a

Property 3: D(I) is contained in Iu a’ the inclusion being

continuous.

Property 4: If 0 <a < b, then Iu a © Iu b and the topology of

I is stronger than that induced on it by Iu

Hsa »b”’

Property 5: The operation y — Auw is a continuous linear map-

ping of Iu a into itself. The operator

A': 1 ]
vt oI a I,a

f——m Arf: 1 — C
u H,a

b O W) = £ )

is a continuous linear mapping of IL a into itself.

Property 6: Let f be a locally integrable function defined for

x > 0 and satisfying
1

e —max(O,u)-2

) [£(x)| e** x dx < w.
0

Then f generates a regular generalized function in Iu a
bl



Property 7: For each f € IL a’ there exists a nonnegative inte-

ger r and a positive constant C such that, for all y € Iu a ?
’

f(¥)| <C max n™ _(¥).
| 0<ksr H02

In view of property 4, we can define the following countable

union space. Let {an}n be a monotonically increasing sequen-

eN
ce of positive numbers tending to o (possibly o=+). Then we
introduce the union space

= U
L) =V,

which is equiped with the usual topology.

Property 8: The mappings

Au: Iu(c) —_— Iu(o) , Aﬁ: IL(O) —_— I&(o)

are continuous and linear.

We consider the function bu(z). The following Lemma (E.L.Koh
and A.H.Zemanian [3]) will be useful in the sequel.

LEMMA 1. Let a be a fixed real number such that 0 < a < =,

One then has
-ax
le b oY) | <A,

for every y in the region Q_ = {y € C:|Im y| <a, yé& (-0},
for 0 < x <o, gnd for u = —% , Where Au does not depend on X

and y.

An application of this Lemma leads to:

. m
Property 9: 9 {y2u+1b (xy)} € I
Bym H H,a
if uw = -% , for every y in the complex region Qa, x € (0,»)
and m € N.

The proof follows from the equality



10

A" ’{y2“+1b (xy)} = (-1)myZU+l+2mb'(xy) for m € N.
U, x U u
G.Altenburg [1] and J.M.Méndez [5] introduce as a space H of
testing functions, the space of the infinitely differentiable
complex valued functions y defined on I and such that

Vo, () = sup APy | < =

for each pair of nonnegative integers m and n.

The classical Bessel transform B, is an automorphism in H.
This allowed both authors to define the generalized transform
BﬁAin the dual space of H, H', as the adjoint of the classical

transform, namely:

(BL) (¥)

f(Buw) , for £f € H' and ¢ € H.

m . .
Providing Aﬁw(x) ) bszj(%lﬂj+m y(x), for every m € N, and
j=0

yZU+1 , a >0, one has:

N =

bu(xy) S Iu,a\H’ for each u > -

Property 10: HC I

1, a for every choice of a > 0, and the to-
’

pology of H is stronger than the one induced on it by Iu ar

Also H & Iu(c) and the convergence in H implies the convergen-

in I .
ce in u(0)

3. A GENERALIZED BESSEL TRANSFORM BL

Let u be a real number such that p = -%. According to the prop

erty 4, if f e IL a for some real number a, then there exists

b

a real number o_ (possibly 0f=+w) such that f E~IL for every

f » b
b <o, and f ¢ 1), for every b > o,.
. 2u+1 .
Since y bu(xy) € Iu a for every fixed y such that y & (-«,0],

|Im y| < O¢ it is possible to define the generalized u-th or-
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der BL transform of f by:

2u+1

(3.1) F(y) = (B)H)(y) = £y b, (xy)), v € 0

where Q. = {y € C/|Imy| <oy, y & (-=,01}.

The region Q¢ will be called the region of definition for
(3.1). However, if f(x) generates a regular generalized func-

tion £ in I' , .then:
U,a
(o]

,
BLE ) = £ b o)) = ¥ b G Edax -
0
= Y2 7T ),y e e

REMARK 1. The definition given by L.S.Dube and J.N.Pandey [2]
is essentially different to (3.1); the first one implies that
B'
M

B. on the locally integrable functions generating regular

distributions. In the paragraph 4 we analyze the definition
given in [2].

A Bﬂ—transform is analytic on its region of definition. We pro

ve this statement in the following

THEOREM 1. Let E(y) = (Bﬁf)(y) for y € Q. Then, F(y) is an

analytic function on Q¢ and

n
DPF(y) = £(2—{y?"*!y (xy)}) , for n € N.
y Byn H

Proof. Let y be an arbitrary fixed point in Qf. Choose a real
positive number a such that y € Qa C Q. Let C and C1 denote

two circles with radius r and r, respectively such that r <r

1 1°
These circles lie completely within Q.. Finally, let Ay be a
nonzero complex increment such that |[Ay| < r. Now consider the

expression:

F(y+sy)-F(y) 3 ., 2u+l -
Ay - f(a—;{y bu(xy)}) = f(wAy)
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where .
2u+1 ‘ 2u+ ,
(y+4y) b, (x(y+Ay))-y b (xy)
v (x) = u “ -2yt (xy)
Ay Ay

. . ) .
By using Cauchy integral formula and interchanging 3y with

y

m .

AU’ we may write:
m .
AEwAy(X) - (ZTTT)1 J Ay . n2m+2”+lbu'(xy)dn
' ¢, (n=y-ay)(n-y)
Hence, by Lemma 1, we have:
-ax %+max(0,u) o
sup |e x AuwAy(x)I <H.Ay — 0 , as Ay — 0.

xel

This proves that wA (x) converges to the null function in
y

I as Ay — 0. Since f € I} , it follows that
H,a Hsa

. F(y+Ay)-F(y) _ (3 (y2H+l1
iig v f(ay {y bu(xy)}).

Reasoning in nearly the same'way as before we can prove the
preceding statement for n > 1.

The following result will be helpful.

THEOREM 2. F(y) <s bounded in every region of the form
g, = {y ec: |Im y| <a < o, and y & (-»,0]1}.

2u+1

More precisely, |F(y)| < |yl Pa(|y|2), where P_ is a poly-

nomial depending on a.

The proof follows from Property 5 and Lemma 1.
Moreover, F(y) satisfies the inequality:

C[YIZU+1 , for 0 < |y| <1
IE() | <
|2u+1+2r

Cly , for |y|] <1
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when r is a sufficiently large natural number and C a positive
constant appropiately chosen.

If £ € Iﬁ(o), then £ € H'; therefore we can define the general
ized transform of f in two different ways: as an element of
Iﬁ(o), by (3.1); and as an element of H', according to G.Alten
burg [1] and J.M.Méndez [5]. The following theorem shows the
equivalence of both definitions.

THEOREM 3. Let f be a member of IL(G) and u = -%. If ¥ € H,then
FO) = £(3,(¥))

where F(y) = f(y2”+lbu(xy)).

Proof. Let y be a positive real number. By virtue of Theorem 2,

F(y) defines a regular generalized function in H', as follows

P = [ emvmay = [ £6P b, cvomey

for y € H.

Moreover,

IRCAR NCPICLIY

[“er® s ryveay
0

as can be proved by using the techniques of Riemann sums and
the proof is completed.

REMARK 2. As we already pointed out, our definition (3.1) 1is
different from the corresponding one of L.S.Dube and J.N.Pandey
in [2]. For instance, the property described in Theorem 3
can't be proved if we adopt the definition given in [2].

Now we give an inversion theorem.

THEOREM 4. Let f € IL(G) and let F(y) be the Bﬁ transform of
f. Then

N .
(| Fob, cnx ey 1) — £)
0



14

for each Y € D(I), as N » o,

Proof. The function

6,00 = [ Fooxt I ey

for each r > 0 and if p > -% , generates a regular distribu-

tion in D'(I) defined by

5, = [ FoEmay

where £(y) = Bu(w). Moreover, by using the technique of Riemamn
sums, we obtain

2u+1

6, ) = £(f ¥y cnsman.

We now consider the function:

N
1
6y(t:) = )Py (eyyb (enday -
0
2Uu+2

N
222

(0 &%, (b, 0a0-x’b, (N, ,; GN))

u+l

For 0 <a <b we have

1, t e (a,b)
b —2u-1 1
lim J G (t,x)x H=lax = =, ta or t=b
N 2
N> 7 a
0, t ¢ [a,b].

In view that for each y € D(I) with support contained in
[a,b] and m € N:

AP (g2l Jb G d b=
u a N (X (x)dx - y()} =
X |
- ¢o2u-l j x"2HTLG (8, %) (b, () -9, (£) ) dx
a

where wm(x) = (DXZU+1DX'2u'l)m(x2u+lw(x)), a method analogous
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to the employed by L.S.Dube and J.N.Pandey [2] leads us to:
r
. 1
tin [P (en)E0dy = v (o)
r->o /Q :

in the sense of Iu , for 0 < c <o . This proves the theorem.

’

An immediate consequence of Theorem 4 is the following weak
version of a uniqueness theorem:

THEOREM 5. Let F(y) = (Bﬁf)(y) for y € 9, let G(y) = (Bﬁg)(y)
for y € Qg, and assume that F(y) = G(y) for y € Qf n Qg. Then

f=g, <n the sense of equality in D' (I).

4. THE GENERALIZED TRANSFORM tBL

J.M.Méndez [6] defined a variant of the Bessel transform

NG L IR G ANCOHOE

stating its inversion formula.

J.M.Méndez [7] also extends this transformation to a space of
generalized functions tHL’ dual of the space of testing func-
tions

fy = e My () = sup X DY) | <=, myn € N}
? XE

The classical transform tBu is an automorphism in tHu‘ The

generalized transformation tBﬂ in tHL is defined as the adjoint
of the classical transform:

(tBLf)(w) = f(tBuw) , for f € tHﬁ and Yy € tHu'

In this paragraph we introduce a complex generalized trans-
form analogous to that given by L.S.Dube and J.N.Pandey [2],
although these authors considered only a real transformation.



16

For each positive real number a and for each real number u we-
define the function space

luya = € CTME N} () = supleTHIAEmEOW Wy )

méN.

where tAu = px2Wtlpy-2u-1,

Properties similar to those listed in Section 2 can be proved

. . .
for the space tIu,a and its dual, tIu,a' Hence, tIu,a satis

fies the following chain of topological inclusions:

D(I) € H, C I, _ CE(I)

Moreover for every y € @, = {y € C: |Im y| <a, y & (-»,0]}

u = -% , m €N, the function

m
g—g Py )
y

is a member of I .
t y,a

Also, if {av}veN is a monotonically increasing sequence of

positive numbers tending to o (possibly o=+=), the countable

union space can be defined

!

~C8

1,00 = W,a,

which is equiped with the usual topology.

It can easily be seen that if f € tIL a for some a > 0, then

1
£ such that f & tIu,b

for every b > Of and f € tIﬁ,b’ for every b < Ogs

f e tIl'l(of). We define tBLf’ the generalized transform of f,

there exists a positive real number o

hence,

as follows:

F() = (Bi) () = £ 1o ()

if u=> --;— and y is in the region @ = {y €C: [Im y| < Oy ¥ & (-=,0]}.
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The proofs of the following theorems are very similar to those
in the preceding paragraph and therefore are omitted.

THEOREM 6. Let F(y) = (tBﬂf)CY) for y € Q. Then, F(y) <s an

analytie function on Qf, and:

DRE(y) = f(i;{x““bu(xy)}) , neN , yeag

D% £

THEOREM 7. F(y) s bounded on any region Qa’ according to

HOIRSIAGID

where Pa 18 a polynomial depending on a and Q, denotes the sa-

me region as in former sections.

THEOREM 8. Let f be a member of tIl'l(c) and U = —%. If y € tHu’
then:
F(¥) = £(,B,¥)

2u+1

where F(y) = f(x bu(xy)).

THEOREM 9. Let f € IL(O) and let F(y) be the tBL-transform of
f. Then N
. 2u+1
Lin (| Fb, G a4 - )
0

N->oo

for each Y € D(I).

THEOREM 10. Let F(y) = (,B'f)(y) for y € 9, let G(y) =
= (tBLg)(y) for y € Qg, and assume that F(y) = G(y) for

y € Qf N Qg. Then, f=g, in the sense of equality <m D' (I).

5. APPLICATIONS

In the solution of the differential equations of the kind
P(B)u = g

= ' = ' ' g -
where B Au or B tAu’ the dual operator of tAu’ P is a po.
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lynomial,u and g are transformable functions, the following
operational rule is of interest.

THEOREM 11. Let P be a polynomial, then

(BP(ADW () = Py (B (), for every u € I} (o)

(BLP(LDW ) = PY)) (Bu)(¥) » for every u € I1(0).

These results are inferred without difficulty from the equal-
. oy L o2
ity 8, b (xy) = -y"b (xy).

The integral transforms defined in this paper are useful in
the solution of some Dirichlet problems which will be now
discussed.

Suppose that we wish to find a function v(r,z) defined in the
region {(r,z): r > 0, z > 0} and satisfying the differential

equation
2
(5.1) vz) vy v(r,z) = 0
BZ Uar
with v > -% , and the following boundary conditions:

(a) v(r,z) converges to the generalized function f € tIl'l(o)

in the sense of convergence in D'(I), as z -~ 0".
(b) v(r,z) - 0, as z » = , uniformly on r € (0,x).
1
7

(c) ruv(r,z) =o(r ) , as T » o,

(d) v(r,z) is bounded on r € (0,») , for z > 0.

A formal application of the Bu—transform boundary conditions
(a) and (b) allow to obtain

v(r,2) = | o™ (xe)e P RGBT b (x0))do
0

This function satisfies (5.1) and (a)-(d), and is a solution
of the problem. In the proof of (a) we have to use Lebesgue's
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dominated convergence theorem and (c) follows as an applica-
tion of Riemann-Lebesgue Lemma.

We can tackle in a similar way applying the Bu-transform the

t
following Dirichlet problem. The following differential equa-
tion is considered

V

2
M + A V(r,z) =0 s for M
822 t U, r

N —

with the conditions:
(a) v(r,z) converges to the generalized function f EILUﬂ in the
sense of the convergence in D'(I).
(b) if u = -% , v(r,z) - 0, as z - «» , uniformly onr € (0,x)
if u > —% s V(r,z) - 0, as z » » | unifdrmly onr € (0,c) ,

for ¢ > 0.
1

(c) r_u_lv(r,z) = o(r 2) , as T > o,

(@) if u = "5 v(r,z) is bounded on 0 <r < =, forAz >0,
1

if u > -7 v(r,z) - 0, as r - 0, for z > 0.



[1]

(2]

(3]

[4]

[5]

(6]

171

(8]

[91

[10]

[11]

[12]

[13]

[14]

20

REFERENCES

G.Altenburg, Bessel transformationen in Raumen von Grund-
funktionen Uben dem Intenvall Q = (0,*) und derem Dual-
nraumen, Math.Nachr.108 (1982), 197-218.

L.S.Dube and J.N.Pandey, On the Hankel trhansform o§ dis-
trhibutions, Tohoku Math.Jour.27 (1975), 337-354.

E.L.Koh and A.H.Zemanian, The complex Hankel and I-trans
gormation of generalized functions, SIAM J.Appl.Math.
16(5) (1968), 945-957.

W.Y.Lee, On Schwantz's Hankel transformation of distni-
butions, SIAM J.Math.Anal. 6(2)(1975), 427-432.

J.M.Méndez, On the Bessel transformation of arbitrary
ohden, Math. Nachr., 136 (1988), 233-239.

J.M.Méndez, On the Bessel transform, Jnanabha, 17 (1987),
79-88.

J.M.Méndez, A vardiant of the Bessel transformation o4
centain space of generalized functions, To appear.

A.Schuitman, On a certadin test function space for
Schwarntz Hankel transformation, Delft.Progr.Rep., 2
(1977), 193-206.

A.L.Schwartz, An Lnveasdion theorem for Hankel transform,
Proc.Amer.Math.Soc. 22(1969), 713-717.

L.Schwartz, Théordie des distributions, Hermann,Paris, (1966).

I.N.Sneddon, Specdial functions of Mathematical Physics
and Chemistrny, New York, Interscience Publishers, INC, (1956).

A.H.Zemanian, A ddistrnibutional Hankel thansformation,
J. SIAM Appl.Math. 14(3) (1966), 561-576.

A.H.Zemanian, Generalized Lintegral-trnansgormation, Inter
science Publishers, New York, (1968).

A.H.Zemanian, Distribution theory and transform analy-
444, McGraw Hill, New York, 1965.

Departamento de Andlisis Matematico
Facultad de Matemdticas

Universidad de La Laguna

La Laguna (Tenerife)

Canary Isles-Spain.

Recibido en marzo de 1988.



