A NOTE ON LAGRANGE INTERPOLATION IN \mathbb{R}^2

J. R. BUSCH

ABSTRACT. In [1] Chung and Yao introduced some sets in \mathbb{R}^2, satisfying what they called the GC condition for P_n unisolvent of Lagrange interpolation problems; in [2] Gasca and Maeztu, while studying which of their reversible systems for Hermite interpolation in \mathbb{R}^2 were P_n unisolvent, conjectured that in the Lagrange case these systems included as a special case those satisfying the GC condition, and they mentioned a proof for $n=3$. In this work we shall prove this conjecture for $n=4$.

INTRODUCTION.

By P_n we denote the real polynomials over \mathbb{R}^2 with total degree less than or equal to n; P_n is a $(n+1)(n+2)/2$ dimensional linear space. ACR^2 is said P_n unisolvent when for any set $\{f_a : a \in A\}$ of real numbers, there is one and only one polynomial p in P_n such that $p(a) = f_a$ for all a in A. Given a P_n unisolvent set A, we call basis function associated to a point a in A to the function p_a in P_n such that $p_a(a) = 1$ and $p_a(b) = 0$ for all b in A different from a. In this case, any polynomial p in P_n may be expressed by a Lagrange formula as $p = \sum a_p(a)p_a$.

THE GC CONDITION.
Let $\mathcal{A}\mathcal{C}\mathcal{R}^2$ be a set with $(n+1)(n+2)/2$ points. We say that A satisfies the GC condition for P_n unisolvency when for each a in A there is a set L_a of n lines such that: i) for each $L \in L_a$, $a \notin L$, and ii) if $b \in A$ and $b \neq a$, then there exists $L \in L_a$ such that $b \in L$. When $L \in L_a$ we say that a needs L, and we call the points in A nodes.

Chung and Yao proved in [1] that if A satisfies the GC condition for P_n unisolvency, then A is P_n unisolvent; in fact, the basis function associated to a node a is easily obtained as the product of the n linear factors w_L, where $w_L(x) = 0$ is a linear equation for $L \in L_a$ and the w_L are chosen such that $w_L(a) = 1$.

GASCA AND MAEZTU'S CONJECTURE.

Let $\mathcal{A}\mathcal{C}\mathcal{R}^2$ be a set with $(n+1)(n+2)/2$ points and let it satisfy the GC condition for P_n unisolvency. Then it is easy to see that no line passes through more than $(n+1)$ nodes; Gasca and Maeztu conjectured that there is at least one line passing through $(n+1)$ nodes (see [2], pp.9-10). We shall not refer to the significance of this conjecture in the context of their work, but we shall prove it for $n=4$ (for $n=1$ and $n=2$, the result is immediate; for $n=3$ the proof is comparatively easy, as mentioned in [2]).

THE CASE $n=4$ OF THE CONJECTURE.

We shall need the following lemma, which is a consequence of a well known result on cubics, which is itself a special case of the Cayley-Bacharach theorem (see [3], pp.671-673); this last theorem seems to be very related to the conjecture in its general version.

LEMMA 1. Suppose that we have three lines L_i, $i=1,2,3$, and another three lines L'_i, such that for each i,j L_i and L'_j intersect at a point a_{ij}, and assume that these intersection points
are all different. Then if a polynomial $p \in P_3$ vanishes at eight of the a_{ij}, it vanishes at the nine.

Assume from now on that ACR^2 is a set with fifteen points, and that it satisfies the GC condition for P_4 unisolvency.

Lemma 2. Suppose that a node a needs a line L that passes through exactly four nodes; then there are three nodes that need a same line.

Proof. Consider the line L and the four lines that join the node a with the nodes on L: each of the eleven nodes that are not on L needs some of these five lines, thus at least three of them need a same one.

Lemma 3. Let two nodes a and b be such that L_a and L_b have exactly one line L in common. Then L has at least four nodes, and if a third node c needs L, L has five nodes.

Proof. The three remaining lines in L_a intersect the three remaining lines in L_b at a set B having at most nine nodes; B must include all the nodes but a,b and those on L, so that L has at least four nodes. Assume now that L passes through exactly four nodes; then B has nine nodes and no node in common with L; a third node c that needs L must be in B, but then the three lines in L_c different from L should cover eight points of B and not the nine, which is impossible by Lemma 1.

Lemma 4. If two nodes a and b are such that L_a and L_b have exactly two lines in common, then some of these lines passes through five nodes.

Proof. The remaining two lines in L_a intersect the remaining two lines in L_b at a set B that has at most four nodes. B must contain all the nodes but a,b and those on some of the lines common to L_a and L_b; thus on these two lines there are at least nine nodes, so that some of them passes through five nodes.
LEMMA 5. Suppose that three nodes \(a, b \) and \(c \) need a same line, and assume that no line in \(L_a \) passes through five nodes. Then we have: i) There are three lines \(L_1, L_2 \) and \(L_3 \) needed by both \(a \) and \(b \); ii) each of the lines \(L_i \) passes through exactly four nodes, and two of them have no node in common; iii) if a node \(d \) needs some of the lines \(L_i \), it needs the three; iv) the node \(c \) also needs the three lines \(L_i \).

Proof. i) By Lemma 3, \(L_a \) and \(L_b \) have more than one line in common; by Lemma 4, they have more than two lines in common; thus \(L_a \) and \(L_b \) have three lines in common.

ii) As no line in \(L_a \) passes through five nodes, the lines \(L_i \) cover at most twelve nodes. Let \(d \) be a node not covered by them and different from \(a \) and \(b \); then the fourth line in \(L_a \) must be the one through \(b \) and \(d \), and the fourth line needed by \(b \) must be the one through \(a \) and \(d \); as these lines intersect only at \(d \), there is not a fourth node out of the \(L_i \)'s so that these lines cover exactly twelve nodes, each of them passes through four nodes, and each two of them have no node in common.

iii) Suppose that \(d \) needs \(L_1 \) and \(d \) is not on \(L_2 \). Then the three remaining lines in \(L_d \) cover the four nodes in \(L_2 \), so that \(d \) needs \(L_2 \); now the two remaining lines in \(L_d \) cover at least three nodes on \(L_3 \) (all but eventually \(d \)), so that \(d \) needs \(L_3 \).

iv) As \(c \) needs some of the \(L_i \)'s, iv) is a consequence of iii).

REMARK. Note that we have thus far shown that if there are no lines through five nodes, then if a line is needed by two nodes it passes through four nodes (Lemmas 3, 4 and 5).

THEOREM. There is a line passing through five nodes.

Proof. Suppose that there is no line passing through five nodes. Then for each node \(x \) there is a line in \(L_x \) that passes exactly through four nodes, so that by Lemma 2 there are three nodes \(a, b \) and \(c \) that need a same line; now by Lemma 5 \(a, b \) and \(c \) need three lines \(L_1, L_2 \) and \(L_3 \), each of them passing through
exactly four nodes and each two of them with no node in common.
Let us call B the set of nodes covered by L_1, L_2 and L_3, and C
the set of nodes covered by L_1 and L_2; thus B has twelve nodes
and C has eight nodes.

*If three nodes in B need a same line, they are each on a dif-
ferent L_i: because (by Lemma 5) they must need three lines in
common, each with four nodes and with no node in common be-
 tween them, so that (as no of these lines can be one of the
L_i's) each of these lines have one node on each L_i, thus they
cover three nodes on each L_i leaving only one node not covered.*

*If two nodes in C need a same line L, it has one node on each
L_i: as a,b and c are not on a same line, L has at most two of
these nodes; by our previous remark L has four nodes, so that
L has one node on at least two of the L_i's, say L_2 and L_3; let
us call d the node on L and L_2, and consider the set V formed
up with the three lines joining d with the nodes in L_3 that
are not on L. If a node in C different from d does not need L,
it needs some line in V, and then it follows (as there are not
three nodes in C needing a same line) that there are at least
two lines in V needed by two nodes in C and which in conse-
quence have four nodes. We conclude that L has at most one of
the nodes a,b and c, thus it has a node on each L_i.

Consider now the set W of lines that join a to the nodes on L_3;
each of the eight nodes in C needs some of the lines in W, and
no three of them need a same one: thus, each line in W is need-
ed by exactly two nodes in C, and in consequence each line
in W has a node on each L_i. Thus, the four lines of W cover B.

Consider now the polynomial p obtained as the product of the
four linear factors w_L, where $w_L(x) = 0$ is a linear equation
for $L \in W$: as this fourth degree polynomial vanishes at all
the nodes but b and c, it should be a linear combination of
the basis functions associated to these nodes; but these basis
functions vanish all along the lines L_i, so that this should
be true also for p, which is a contradiction.
FINAL REMARKS. Of course our purpose while studying this special case of the conjecture was to get a thorough understanding of the general one; but we arrived to solve this case with arguments that do not seem to have a wider application; perhaps the most promising in this sense is the relation with the Cayley-Bacharach theorem that we have already mentioned.

REFERENCES

Departamento de Matemática
Facultad de Ingeniería, UBA
Paseo Colón 850-1063 Capital-Argentina.

Recibido en junio de 1988.