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ON THE ¢-SUBDIFFERENTIAL OF A CONVEX FUNCTION, II

TELMA CAPUTTI

1. INTRODUCTION

In this note we present a generalization of the algorithm for
minimizing a locally Lipschitz continuous function f: R" = Rr!
that is not necessarily differentiable or convex proposed by
Caputti [1].

We present a descent algorithm designed to locate stationary
points of functions of the form

F=hof

where f: R" » R™ is>differentiaBTe»and h: R® » R is convex.
This problem and techniques to solve it play a central role in
contemporary studies in mathematical programming. For example,
the function h may be taken to be the identity, a norm, a penal
ty function or the distance function to some convex set. The
conditions under which accumulation points of sequences genera
ted by our algorithm are also stationary points of F can be
determined via the notion of epi-convergence as the natural

and appropriate technique. ‘

2. THE ALGORITHM

Following - Wets [2] we consider a mapping p: R" + (-w,+e]
that satisfies the following four conditions

i) p is a closed proper convex function
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ii) 0 € int(dom p)
iii) 0 = p(0) = min{p(d): d € R™} (2.1)

iv) p is inf-compact, or equivalently, 1lim p(x) = +w.
I %Il oo
We now employ these functions p in defining our primary analy-
tic tool for the development of techniques intended to minimi-

ze (1.1) that is, the class of convex functions
d — ¢(d;x,p): R — R

defined by the relation
¢(d;x,p) := h(£(x)+£f'(x)d) + p(d) (2.2)

for every x € R" and p as in the previous conditions (2.1) where
h: R -» R1 is a finite-valued convex function on R™ and
f: R®™ > R® is Fréchet differentiable on R".

Taking into account [1, Proposition 2.2, Proposition 2.3] we
may generalize as follows.

PROPOSITION 2.1. Under the above conditions, the following
statements are valid
i) 0 < F(x) - inf{¢(d;x,p):d € R"} < e if and only if
0 € 3.9(0;x,p)
ii) I 0 & 8€¢(0;x,p) and d is any vector such that
v*(4/3,6(03x,p)) < 0 then F(x) - inf 9(Adsx,0) > € where

V* denotes the support function of a non-empty compact con
vex subset 3€¢(0;X,D) (1.

Since this result is a straight-forward application of Propo-
sition 2.2 and (2.3) in [1, Section 2] we omit its proof.

REMARK 2.2. The choice of search direction in the descent

algorithm presented by Caputti [1, Section 3] can be general-
ized as follows.

For x € R® and r € (0,1) we consider
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0 if 0 € 8€¢(0;x,p)
e(x) = (2.3)
max{rP: 0 & 9 pd:(O;x,p), p = 0,1,...} otherwise.
r

and we define the class of search directions by

{0} if e(x) =0
D(x;p,r) = (z.4)

L {dfw*(d/ae(x)¢(0;x,p)<i0} and F(x)-¢(d;x,p) =e(x) otherwise.

If 0 € 3¢(0;x,p) the statement that the set D(x;p,r) is non-
empty is easily seen to be equivalent to the above Proposi-

tion 2.1, part ii).

ALGORITHM 2.2. The type of algorithm that we study is of the
form
X =x, + A d (2.5)

where

A. = max{rP: F(x,) - F(xk+rpdk) > rPe(x), p=0,1,2,...},

k k)
d, € D(x;p,7), €(x) =0, r € (0,1) and x € R".

We note that _the number e(x) and the set D(x;p,r) satisfy
the following three conditions:

i) D(x;p,r) # @ according with the above observation

ii) 0 € D(x;p,r) if and only if e(x) = 0 if and only
if 0 € aF(xk) N v (2.6)

iii) h(f(xk) + f'(xk)dk) - F(xk) < -e(x)

where 3F(xy), the Clarke subdifferential of F at x;, has the

representation '

= o £V = n = . .
3F(xk) = dh(f(x,)) °£'(x,) {y € R'/y 2f' (x), z € dh(f(x,))}
for all x € R" [3, Proposition 10]. o )
We see that any direction dk for which h(f(xk) t)f'{xk)dk)<
< h(f(xk)) is a descent direction for F. Therefore, condi-

tions (2.6) along with the stopping criterion 0 € BF(xk) (xk
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is a stationary point of F) guarantee that algorithm (2.5) is
always well defined.

The convergence result for algorithms of type (2.5) that satisfy
conditions (2.6) to the effect that,

"If {x,} is the sequence generated by algorithm (2.5) with ini-
tial point x,; and stopping criterion 0 € 3F(x), then provided
that conditions (2.6) hold, one of the following must occur: the al-

gorithm terminates finitely at XkO with 0 € BF(xk ); and/or
0
F(xy) V-=; and/or the sequence {lld,ll} diverges to +=', is simi-

lar to the proof of convergence given by Bertsekas and Mitter
in their paper [4].

We may view the algorithm as successively minimizing a sequen-
ce of convex functions that are themselves local approxima-
tions to the function in which our real interest lies. The na-
tural and appropriate technique by which such optimization
schemes are analyzed is via the notion of epi-convergence. The
basic properties of epi-convergent sequences of convex func-
tions as applied to optimization problems, are developed in,
for example,the work of Rockafellar and Wets [2,5].

DEFINITION 2.3. Let {fi}?= be a sequence of closed convex

0
functions with domain in R™ and range R* := R U {+x}. We say
that {fi} converges pointwise to the closed convex function

£: R > R* and write £, 5 f if Lim £,(x) = £(x) for all x € R™,
We say that {f,} epi-convergesto f and write f; $ £ if the

epi-graphs of the fi converge to the epi-graph of f, that is
limisup epi(fi) = 1imiinf epi(fi)
where the epi-graph of a convex function g: R"™ - R* is the set
epi(g) = {(x,a) € R" xR: g(x) <a; x € dom(g)}

Taking into account [2, Corollary 4, Theorem 7, Theorem 9] we

may prove the following result
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THEOREM 2.4. Let {x,} be the sequence generated by Algorithm 2.5
with initial point Xy € R®, stopping criterion 0 € 3F(x). If

x* is an accumulation point of {x,} with Y; ; x* and

p(.,yj) ? p(.,x*) for some subsequence {yj} of {x.}, then
L?n(min{¢(d;y5,p): d € R"}) = min{¢(d;x*,p): d € R*} = F(x*) , (2.7)

F(x,) ¢ F(x*) and 0 € oF(x*).

Proof. Let {yj} be as in the hypothesis with p(.,yj) L p(.,x*),
Then, ¢(.;yj;p) L3 ¢(.;x*,p). Hence, by [2, Corollary 4],
¢(.;yj,p) S ¢(.;x*,p). Thus, by [2, Theorem 7], we have the
first half of (2.7) and by [2, Theorem 9], (2.7) also holds.
Furthermore, F(xk) ¥ F(x*), since {F(xk)} is a decreasing se-
quence and the sequence {lld I} is uniformly bounded since

{di} C {d:¢(d;x,p) <F(x)}.

From Proposition 2.1 i) we know that
0 <'F(xk) - min{¢(d;x,p): d € R"} < rl e (x)

for all k sufficiently large;
We have that,

L&m [F(xk) - min{¢(d;xk,p): d €er™1 =0
Therefore, by the first half of (2.7), we have that

F(x*) =LPlHyﬂ =L?1[mm¢myym:dekﬁ =

min{¢(d;x*,p): d € R"}

]

and so 0 € 3F(x*).
(q.e.d.)
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