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Abstrae!: An Orlicz space L'I'o is approached by spaces L'Pc with convex functions <Pe 
tending to <Po in some specific way. For a function f we study convergen ce of the bes t L'Pc 
approximants to f as é -+ O. Norm, pointwise and uniform convergence are considered. 
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1. INTRODUCTION 

In [LR1], Landers and Rogge introduce the concept of best natural approximant, say m, 

which can be obtained as follows. In a finite measure space, consider fp as the best LP 
approximant of the LP function f. T hey proved that fp converges in L1 norm to a fundion 
m as p tends to one. This element m is a uniquely well determined function among the 

best L1 approximants of f. Recently this result was partially extended to the set up of 
Orlicz spaces in [ZF]. We pursue here the study of the best natural approximant in these 

spaces. 

Throughout this paper we will work on a finite measure space (X,�, Il) which will be 

denoted just by X. Set <I> for the set of continuous convex functions<p defined on [0,00) 
such that <p(0) = O and <p(x) > O for alllargex, i.e. <p might be negative near O. Given 

<p E<I> we introduce the Orlicz space L'P(X) as usual, i.e., a measurable function f defined 
on X belongs to L'I' iff for some >. > O the integral Ix <p(>'lf!) is finite. Of course the 

integral above is always greater than -00, and it is understood that the integral is taken 

on whole space X with the measure Il. For general properties of Orlicz spaces see [KR], 

[M] or [RR]. 

Given an approximant cIass e � L1 and f E L'P we set 
(1.1) 1l'P(f le) = {y E e: J <p(lf - gl) = inf J <p(lf - hl)}. hEC 
For some particulars <p and e it can be provedthat Il'l'(f le) #- 4J, see for example 

Lemma(3.6) in [ZF]. 

If <Po E <I> is 1l0t a strictly convex function the set ll'Po(f le) has, in general, more than 

one elemento In order to select one element in e = ll'Po(f le) we approach the function 
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r.po with a farnily {r.p,,}e>O of convex functions tending in a suitable way to r.po as e tends 

to zero. It is proved in [ZF], under sorne conditions, that given m" E fL'P, U le) the net 

{m,,},,>o converges in a norrn on L'PO to sorne specific elernent in C. This best approxirnant 

mI does not depend on the net {m,,},,>o but it does depend on the farnily {r.p,,},,>o, so we 

called it the natural best L'PO approxirnant adapted to the farnily {r.p,,},,>o. 

Now, we introduce the best 11 11'1' approxirnant analogous to the best L'I'-approxirnant in­

troduced in (1 . 1 ) .  To do so we consider the Luxernburg "nOrnl "1 1 1 1'1" which is defined 

by 

(1 .2) 11111'1' = inf{c > O : J r.p(lfl/c)::; 1}, 

where r.p is in 1>, (if r.p 2: O then 11 11'1' is actually a norrn) .  

For an approximant class e c;;..1I and f E L'I' we set 

( 1 .3) 

Given a family {r.p,,},,>o tending in a suitable way to 'Po we shall prove that any uct 

{m"}e>O, m" E fLlIlI U le) , tends to an uniquely deterrnined elernent 111. Here we shall <p, 
deal with approximant das ses e more particular than those given in [ZF]. In order to be 
self contained we present a short proof of the rnain result giveli there , of course we will 

use the additional properties that we have now on this particular approximaut class e. 

Finally, when e is the class of mono tone functions we give some poiutwisl' coun'l"I!;('!l('1' 

results .  

2. NORM CONVERGENCE OF THE BEST APPROXIMÁNTS 

We consider an approximant class e c;;. LI(X) with the following compactul'ss pI"O¡H'rty. 
Given any sequence Un) in e such that 

(2 . 1 ) 

for a finite constant M. Then there exists a subsequeuce (f71' ) of (f,,) that COUVl'l"I!;('S <1.('. 

to a function f which is also in e. 

If e has the aboye cornpactness property, clearly e is a closed set iu L 1 amI tlH'U e n L 'P 
is closed under the "norrn " convergence in L'I'. To see this fact use the followiug ill(,<¡lIality 
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(2.2) For <p E .p there exists a non negative constant c such that x :5 c<p(x) ,  for aH x � c. 

Many dassical examples of approximant dasses e fulfiU the compactness property asked 

above: Now we analyze some of them. 

a)Let X = [0, 1 ] ,  ¡.t the Lebesgue measure and e be the set of integrable non-decreasing 

functions. In fact, (2 . 1 )  and the monotony of the function imply the pointwise bounded­

ness of the sequence (fn )  and thus the HeHy's selection Theorem can, be used. This dass 

has been widely used in approximation theory, see [HL1 ] ,  [H] , [DH] and [HT] . 

Remark. We note that the Lebesgue measure in [0, 1] can be replaced by a finite Borel 

measure fulfilling the following condition, ¡.t(I) > O for every intefval I of the form [O , x] 

or [x , 1 ] .  Also, unbounded intervals can be used, for example take X = [0, 00) and ¡.t a 

finite Borel measure on X such that ¡.t( [x ,  00» > O and ¡.t( [0, y» > O for large x and smaH 

positive y. We omit the easy prooIof these facts . 

b)Let e be the dass of piecewise monotone íunctions on a fixed partition of [0, 1] . The 

arguments given in a) can be used to prove the compactness property. 

c)Set X for the unit n-cube [O, l ] n ,  ¡.t the Lebesgue measure and let e � L1 (X) be thc 

set of all functions on X which are non-decreasing in each variable. The compactness oí 
e follows as in a) , see [HL], [DH1] for a proof of the HeUy's selection theorem in this set 

up. 

d)Let X be as in e) and e be the dass oí convex functions on X. Given a sequence Un ) oí 
functions in e fullfilling (2 . 1 )  it is easy to see that for any interior point :Z:O the sequence 

(fn (XO» is bounded and therefore we can use Theorem 10. 9  of [R] , so the compactness 

property holds. See also [HZ] , [HLT] . 

The dasses in a) , e) and sometimes the one givcll in d) are those that appear more 

frequently in the literature.  

We will assume the following conditions on ¡Po alld on the approaching íamily {'Pe } e >o ,  
which were introduced in [ZF] .  

(1) Fo:- every e > 0, <Pe belongs to .p and <P .. (x) > O for x > o.  
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Note that we are not assuming that the functions in the family {<p .. } are strictly convex 

functions . 

(H) For évery e > O, there exists O < Ce < 1 and Xe such that <Po(x) :$ ce<p .. (x ) , for every 

X ;::: x .. . 

(HI) The foHowing limit exists for every X 
" 

(IV) For aH x � 0, e > O 

(3(x) = lim 
'P"(x) - <po(x) 

. 
.. _ 0 +  e 

<p.,(x) - 'Po (x) � e(3(x) .  

(V) There exists q a strictly convex function, q E Ifl with (q( x)i x ) tending to  infiriity as x 

tends to infinity such that (3( x)  = q( <Po (x» for x � O .  

(VI) For every e > O ,  '!/J .. E Ifl ,  where 

./. ( 
) 

_ 'Pp(x) - 'Po(x) 
'l/e X - sup . . 

o<p�.. P 

Though condition (VI) can be somewhat weakened by assuming only that '!/Je :$ '!/J; , for 

some '!/J; E Ifl  , we keep it in the way stated aboye: 

Set L¡ = U .. >o Lt/>· . Then it foHows rather easily that 

(2 .4) xCf'., ( l )  $ <Pe(x ) ,  for x � 1 ,  e � O . 

(2.5) e'!/J .. (x ) � ( l - c., )'P.,(x), for x � xe , where Xe and Ce have the meaning given in (11) . 

In [ZF] were introduced the next two examples of {<Pe }.,>O . 

(2 .6) The functions defined by. 'P .. = 'Po l+e are the analogous to those given in [LRl] . In 

this case (3 = 'i'o lnr.p') and '!/J .. = 'Po l+e 1n'Po . 
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(2.1) Given q E cP a strictly convex function and (q(x)lx ) ---. 00 as x -t 00 we set 

'P� = 'Po + eq('Po ) ,  Now (3 = q('Po ) and 1/!e = f3. 

It is easy to check that the families given in (2.6) and (2 .7) fulfill the conditions (1)-(V1) .  

These 'Pe are strictly convex funetions. I t  i8 pos8ible to get a family {'Pe } . > 0  which fulfills 

the conditions aboye but the 'Pe are not strietly eonvex funetions, see [ZF] . 

(2.8) Lemma. Let 'P E cP and Jet e � Ll be an approximant class with tbe compactness 
property, we assume further e n L<P =1= 1>. Then for any f E L1 (X) ,  the set f-j<p(f le) is 
non empty. 

Proof. Set (\' = infgEc J 'P( II  - gl) . Clearly (\' i8 greater than -00 and we may assume 

that (\' is les s than 00, otherwise f-j<p(f le) = e. Let Un ) be a minimizing sequenee in 

e, i .e . ,J  'P{ II  - Inl) ---. (\' . Now, by (2 .2) ,  there exists a finite eonstant M sueh that 

J llnl :::; M. 

By the eompactness property of the class e, there exist a subsequenee Un' )  of Un ) and 

9 E e sueh that In ' -+ 9 a . e .  as n' ---. oo. Using Fatou's Lemma, (2 .8) follows • 

Reeall that a funetion 'P E ·<I> satisfies the �2-eonditjon for large x ,  if there exists a constant 
c > O sueh that 'P(2x) :::; c'P(x) for a11 x bigger than a fix number. 

(2 .9) Remark. If we assume in Lemma (2.8) that 'P satisfies the ll.2-eondition for large 

x, then it is easy to see that f-jc¡,(f le) = ¡.t", (f le n L"') ,  whenever J 'P( II  - g l )  is finite for 
some 9 E e n L <p .  

(2 .10)  Remark. For every I E L1 (X) ,  the non empty set f-j",U le) has the eompactness 

property. The proof of this fact is similar to Lemma (2.8) .  

( 2 . 11 )  Remark. Let e be a eonvex set in Ll(X) with the eompaetness property, then 

for every l E  LI (X ) we have that the set J.!pUlf-j<po (fle))  is either the set f-j<po Ule) 
or has exactly one function, say mI U ) = mI ' Indeed, if J (3(11 - m i ) = +00 for every 

m E J.!<po (f 1 e) then, f-jf3(f 1 f-j<po (f 1 e)) = f-j<po (f 1 e) .  Otherwise, we will have the uniqueness 

property taking into aeeount that the set f-j<po U le) is a eonvex set and (3 is a strietly eonvex 

funetion by property (V) . The uniqueness property is not hard to prove and it follows in 

the same way as the given in [LR1] for the case 'P.(x) = xI+€ . 
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In order to avoid the pathological situation J ,8( 11 - 91 ) = +00 for every 9 E 1''1'0 (1 le) we 

shall assume from now on that all functions <Po , (<p�) and ,8 have the �2-condition for large 

x . Thus , l' p(l 1 1''''0 (11 e» = {mi } .  The function mi is called the natural best approximant 

of 1 adapted to the approaching family {<Pe }  or simply the natural best approximant . Note 

that mi depends on 1, thus we often denoted it by mi (l) :  

The following result was proved in [ZF] for a general dosed set e � Li , now the re­

quirement we will impose on e is of a ·  different nature, besides the proof of the following 

theorem is considerably shorter than the original one. 

(2 . 12)  Theorem. Let 1 be in Lt and e be a convex set in Li with the compactness 

property. Further suppose 1''1'0 (1 le) � L� , with mi the natural best approxitnant and 

m� in 1'",. (11 e) .  Then 

Proof. By (IV) , 

f ,8( 11 - m� 1 ) � � f <Pe( 11 - me l )  - <Po ( 11 - me 1 ) � � f <Pe ( 11 - m I )  - <Po ( 11 - m I ) , 

where m E 1''''0 (1 le) .  Since 1 - m E L! , the last integrals in the inequality above are 

uniform1y bounded as é -+ O. Therefore, there exists a constant M such that J ,8( lme l )  � 
M for small é .  

Since ,8 E el> the integral J Ime 1 is bounded for all é near O .  By the compactness property 

we can select a sequence (me; ) which converges a.e. to some function m E e. Again, using 

property (IV) ,  Fatou's Lemma and repeating the arguments given at the beginning of the 

proof we have J ,8( 11 - m I )  �
"
J ,8( 11 - m I ) , for m E 1''''0 (1 le) .  Thus, by the uniqueness 

property, m = m i . 

To end the proof we shall see that J <po( lmej - mi l ) -+ O as éj -+ O. Ind�d, by property 

(V) , J <po ( lmEj ! )  is uniformIy integrable. Hence by Egorov's theorem the result follows • 

Now, we study the convergence of 1 1 1 1 ", approximants. First we need a similar lemma to 

(2 .8) . 

(2 . 13) Lf'=!mma. Let <p E el> and 1 E L"'.  lf e � Li satisfies the compactt.iess property. 

Then 1' 11 1 1", (1 je) f <f; .  
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Proof. Let a = infhEC I I !  - h l l 'l'  and (mn) be a minimizing sequence, i .e .  I I ! - mn l l 'l' 

converges to a. Therefore, for some A > O we have 

Thus, by (2 .2)  there exists M such that J Imn l ::; M. Therefore there exists a subsequence 

(mnl )  convergent a.e. to some m E e and the Lemma follows since we have 

I I !  - ml l 'l' ::; lim I I !  - mn/ l l 'l' = a • 

(2 .14) Lernrna. Let '-P , 'tjJ E IP, with '-P ?: O and 'tjJ( 1 ) = 1 . Let ! E Lt/Jo'l' (X)  and assume 

jj(X) = 1 . Then I I ! I I 'I' ::; 1 1 ! I I t/Jo'l" 

Proof. For any c > O by Jensen's inequality we have 

'tjJ[f '-P( lf l /c)] ::; / 'tjJ('-P( lf l /c» , 

thus if c = I I f l l t/Jo'l" which always can be assumed bigger than zero, we have 

'tjJ(f i.p( l f l /c» ::; 1 . 

Since 'tjJ( 1 ) = 1 and 'tjJ E IP it follows J '-P( lf l /c) ::; 1 • 

For f E L'I' we set 

e('-P) = e(f, i.p , e ) = inf { l lf - g l l 'l' : 9 E e} .  
The short notation e (  i.p ) is used since f and e are fixed, also we shall use te for t (  i.p, ) ,  E ?:  O .  

We started dealing with a family {'-Pe } approaching to a function '-Po.  Now we assume that 

'-Pe is of the form i", O '-PO , i" E IP and the family { ie } tends to the identity function when E 

goes to zero. The conditions (1) to (VI) should be reformulated in the obvious way using 

ie . We replace (I1) by (11') as follows 

(I1') . There exist a number Xo and a constant Co such that for every E > O and x ?: IO , 

The next lemma is an extension of a result given in [O] where the convergence is proved 

for bounded functions . 
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(2 .15)  Lemma. Let 1 be in L! , then 1 1 / 1 1 ""0 converges to 11/11""0 as e tends to O.  

Proof. Let 1 he in L"" , then J t,Ve ( l/ J ) is finite and !¡?p( lf J ) - !¡?o ( l/ .! ) :5 Pt,Ve ( l/ J )  for 

0 <  p < e , -thus !¡?p( l/ J ) :5 py,e ( I /D .  Therefore fo� every c > O 

J !¡?p( l / l /c) -+ ! !¡?o( l/ l /c) , 

as p -+ O. Thus we have the next two statement : 

(a) For c such that O < c < 1 1 / 1 1 ""0 we have 

J !¡?p( l/ l /c) :> 1 , 
, , --

for al! smaH p. 

(h) For c > 1 1 / 1 1 ""0 we have J !¡?p( l/ l/c) < 1 , 

for aH small p.  

By (a) and (h) given e > O there exists Po such that 

J !¡?p( I/ I /( I I / I I ""o - e)) > 1 > J !¡?p( I/ I /(I I / I I ""o + e)) 
for every O < p :5 Po . Therefore 

(2 .16)  Lemma. Let 1 be in Lt , /-L""o U le) � Lt and e be a convex set in L1 with the 

compactness property. Then e(!¡?e ) -+ e(!¡?o ) when e -+ O. 

Proof. For any 9 E e we have 

The last equality foHows from Lemma (2 .15) .  Therefore 
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Moreover 

(b) e(Cf'o ) :5 e(Cf'e ), for every é > O. 

In fact we select 9 p E e such that 

where p is an arbitrary positive number. By Lemma (2 . 14) 

so (b) and the lemma follow • 

We strength condition (111) as follows 

(111') The lÍmit 
( )  

l
. ie (x, ) - Xe q x := ¡m 

e-O+ é 

exists ,  where Xe is any sequence tending to x .  

From now on (111') is in  force. 

To prove the norm convergen ce result we need additional restrictions on Cf'o or f. For the 

following theorem we will assume one of the two cases 

a) Cf'o (x ) = I x l and any f E L¡ . 

b) Cf'o as before and f E Loo . e lattice, and the constants belong to e. 

Note that under the condition b) we have: if m E P<.p (f le) then I lm l loo  :5 I l f l l oo . 

(2 .17)Theorem. With the same canditions as in Theorem (2 .12 ) , and f f/. C<.po 
e n L<.po , iar any me E P II I I"" (f le) we have l ime - m¡ l l <.po --+ O as é --+ O , where m¡ 
eom¡ ( L ) , with mI e L ) the best natural approximant ai L in p,no ( L/�) .  e o  eo f O  T fa f O  

Proof. For any net {m€ } e>O , me E P I I I I "" (f le) we can find a sequen ce é J --+ 0, and 

mo E e such that me; --+ mo pointwise . In fact, given é > O it holds 
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and using (11') we have for some constant M 

Thus by ( 2 .16)  it follows easily that mE is bounded in LI for all é small , and the existence 

of (mej ) and mo is a consequence of the compactness property. Furthermore, the element 

mo E Jl I I I I  .. o (f IC) . In fact 

I l f  - mo l l ""o � lim I l f  - mej " ""0 � liin I I f  � mej " ""oj . Ej . I!j --+O 

The first inequality follows using a version of Fatou's theorem for the Luxemburg norm, 
the second one is obtained from (2 .14) and the fact that <.pe = i e O <.po . Now from 

Lemma(2 . 16) the right hand side of the above inequality is eo , and since filO E C""o we 
have mo E Jl I I I I  .. o (f IC) . 

Using the equality Jl II I I  .. o (f IC""o ) = eOJl""o C t/�), see [LR] , we have � E Jl""o (  t 10;:- l ·  

For mj = � and mI = m I C t ) ( the natural L""o best approximant of f!eu ) ,  we shall seC' 
J � . .  

that I Imj - m I  " ""0 --+ O as j --+ oo .  We note that mi --+ mo = � pointwise. By (111 ' )  alld 
Fatou's theorem we have 

If we take now nj the best natural �pproximant in Jl""o { -!._ /�:�i ) ,  i .e .  the hest natural 
J J ' 

<.po-approximant of ...L ad�pted to the same approaching' family <.p. wherc the approximaiÚ eSj 
e ' 

dass is � , we can estimate ( 1 )  by eej 

: . , , ' " " 
( ' ' 

For the case f E LOO,  i .e . ' case b) , we have that each function in Jl""o ( -!:;J ·.::i. ) is houll(hl 

uniformly in j ,  (we are using that ee¡ --+ eo =1- O) .  ' 

We firstIy show that there exists a subsequence (nj! ) ofJ nj l such converges a. e. to 
m I (f l eo ) , the best natural approx:'mant of f leo with respect to  the approximallt class 

C""o leo . 
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In fact we have J ¡3( 1 e:j - nj ! )  � J ¡3( 1  e:j - gj l ) ,  

for all gj E J-l'Po ( -t /�:�i ) .  Sin ce 1 E L oo  we have suPj lnj l E L oo  and by the compactness 
J J 

property there exist a subsequence (nj, ) and n E %-a- such that ni, � n a.e. as 1 � oo .  

L C c"" . 
Now let h be in J-l'P0 ( e o  / --;.;- ) . Since h E LOCJ we have � h E --.-:- and 

J ; 

By Fatou's theorem considering the subsequence (nj, ) in the inequality above we have 

as 1 � oo. Then the limit in (2) is less or iqual than f ,B(lfo- - ml(J /eo ) I ) ·  

For the case that 1 i s  not bounded, we have <po (x) = x and i t  follows 

(3) ( L / � )  - � ( L/ 52 ) - -L (1 le) J-l'Po e, . e, . - e, . J-l'Po eo e o  - e , . J-l 1I 1 I",0  I J J ) .  J 

and the set J-l'Po ( fo- / %-a-) admits a mínimum and a maximum, see [LR] . On the other 
hand, if 1 E L"" the set J-l1 I 1 I (J /e) is also in L"" . The proof of this last fact follows using "'o  
the same argument of the proof given in [LRl] for the case If'€j (x) = x1+€j . Using that 

J-l1 I 1 I", 0 (J /e) � L"" , the equality (3) and recalling from [LR] that the set J-l'Po ( fo- / f;)  has 
a maximum and a minimum, here we are using that e is a lattice, we can conclude that 

the function sup lnj l E Lf/;, . In a similar way to the case 1 E LOCJ we can prove that the 

limit in (2)  is bounded by f ¡3(lfo- - ml (J/eO ) I ) . 

Therefore in both cases a) and b) we obtain 
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It remains to prove the convergence in norm. Working as before we have that 

is bounded. Therefore �0 ( 1 �  - mi l ) is uniformly integrable. Thus 
J 

J �o ( lmi - ml (1/eo ) 1 ) -t O 

as j -t oo .  Then, since �o is ti 2, I Imej - eo ml (1/eo ) I I 'Po -t O as j -t 00 and the theorem 

follows • 

3. POINTWisE CONVERGENCE 

We have obtained in the previous section the best natural approximant as a limit in L 'P 

norm or in the mean, now we analyse the pointwise counterpart . We assume that all the 

functions are defined on a subset of Rn and we work with the Lebesgue measure, which 

on a set A will be denoted by IA I . In this section the following conditions are required for 

the approximant class c. 

A. (The Almost Continuity) . Each function J in e is continuous almost everywhere. 

B . (The Helly's Selection PrincipIe) . Given a sequence (In ) in e bounded in L 1 and a finite 

set of point.s K, there exists a subsequence (lnl ) which converges a.e. to a functioll J E e 
and it converges for every point of K. 

C. (Separation Criteria) . Given J, g E e and J continuous at a point. y .  "If f( y )  =f:. g ( y )  
then I U =f:. g } 1  > O. 
AH the examples introduced in section 2 fullfiH the three conditions above. Thc following 

lemma has i ts antecedents in [HL] , we believe that our presentation here somewhat clarifies 

the essential properties required for the pointwise convergence . 

(3.1) Lemma. Let � E <.1», �(x ) > O for x > O, and (I, )O < t < 1 be a net in e n L'P alld 

J E e n  j,'P . If J 'P( I!t - J I )  -t O as t -t 0+ , then J, c�nverges a.e . to J as t -+ 0+ " 

Proof. Let E be the set where the net (I¡ )O < t < l  does not converges pointwise to J, and 

assume IE I  > O. Then by property A there exist a point y where J is continuous and a 
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sequence (tn) suro that (ft,, (y» does not converge to I(y) as tn --t 0+ . We may assume, 

by taking as many subsequences as necessary, that for some subsequence (!tn' ) we have 

1. Itn' --t I a.e. as t� --t O. 

2. Itn' --t 9 a.e. with 9 E e and Itn, (Y) --t g(y) and I(y) #- g(y) .  Use B.  

Using e we have l { f  #- g} 1 > O, whiro contradicts 1 .  and 2.  and the lemma follows I 

As a direct consequence of the Lemma we obtain the next two pointwise convergence 

results .  

(3.2) Theorem. Let I and e be as in Theorem(2.12 ) .  Let mI be tbe natural best 

approximant ol I adapted to tbe approaching family {epe } .  Tben for any me in /-i",. (f le) , 
tbe- net {m,, },,>o converges almost everywhere to mI as e tends to O .  

(3.3) Theorem. Let I and e be as in Theorem(2.12) ,  and mI be as in Theorem(2 .17) ,  

then lor m" in ¡.t ll l l . (f le) we have that the net {m,, },,>o converges a. e. to mI as e tends 

to O. 

Thus the pointwise convergence result is an easy consequence of the norm convergence re­

sults. The interesting situation is that we can get in most of the cases uniform convergence 

results, with this aim we give some definitions . It is important to remark that for the last 

part of this paper the approximant dass will be the dass of monotone functions. 

(3.4) Definition. Given I E LI(O , l )  and x E (0 , 1 ) ,  we say that I is approximately 

continuous at x if there exists a real number A suro that for every e > O, x is a point of 

metric density one for the set A" = {y/ l/(y) - A l < e } ,  i .e. 

IAt n 1 1 1 
1 1 1 --t , 

when the measure of the interval 1 tends to O and x E 1. 

(3.5) Definition. We write l E  bA iff fE L'X' and I is approximately continuous at each 

point of (O, 1 ) .  

(3.6) Remark. The number A in  Definition (3.4) i s  uniquely determined, and we 

assume, as it is customary, that it is I(x). 
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(3.7) Remark. For f E Loo, x is an approximately point oí continuity íor f iff x is a 

Lebesgue point of f. In other words we shall work with a bounded function where each 

point of (0 , 1 )  is a Leb�sgue point of the function. 

(3.8) Theorem. Let 'P E <J.i, f E bA and 9 E J1.cp(f le) then 9 is a bounded continuous 

function. 

Proof. It suffices to consider the continuity oí 9 in the open interval (0, 1 )  since on the end 

points oí the interval (0, 1 )  we can redefine the function 9 in such way that it is continuous 

there, thus let O < Y < 1 and assume g(y+ ) -g(y- ) > O . Then we have the next four cases: 

( l )f(y) - g(y+ ) > 0, (2)g(y- )  - f(y ) > O, (3)g(y+ ) - f(y) > 0, (4)f(y) - g(y- )  > O . 
We shall prove the first case, the other cases follow in a similar way. First we note that 

for x > 0 , ip(x)  = foz p(t) dt where p is a non negative monotone function. Then we have 

the following properties 

(1) 1'P(x) - 'P(y) 1 � p(max{x , y} ) lx - y l , x , y > O 
(11) 'P(x)  � 'P(x + u) - up(x) , u > O. 
Let é = f(y) - g(y+ ) then by the approximately continuous property of f there exists 

6 > ° such that 

(I1I) l { f  > f(y) - é}  n (y - 6, yl l > q6 

where O < q < 1 � Thus we define 

_( ) _ { g(X ) + r¡  if x E (y - 6, y] i  9 x - g (  x) . otherwise. 

where r¡ = min{g(y+ ) - g(y- ) , é } .  

Set F = {f  > f(y) - é } n (y  - 6 ,  y] and F' = (y - 6, y] - F, then we have 

f 'P( lf - 91 ) � f 'P( lf - g l )  + p(2 I 1 f l loo )r¡-IF' 1 -'FI -'FI 
� f 'P( lf - g l )  + P(2I 1 f l loo )r¡( 1 - q)6 -'FI 
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To obtain the inequalities aboYe we have used I,IlI and 

and 

f <p( lf - gl ) :5 f cp(lf ":' g l ) - 71P( 71 + e ) !F I  :5 lF lFI 
:5 f cp( lf - g l) - 71p(e)q8, lFI 

where the last inequality follows by (III). 

If p(s)q > (1 - q)p(2 I1f l loo) we arrive to the contradiction 

j !p( I! - 91 ) < 1 cp( ¡f - g\ )  • 

We can prove, following the line of [DH] . 

(3.9) Theorem. Let {!f't }o99 be a family of convex functions such that for every x > O 
it is satisned 

0 <  inf CPt(x) :5 sup !f't(x) < 00 t t 
and f E bAo Let gt E Il"" (f le) then {9t}o9$1 is an equicontinuous family at each 

O :5 y :5 1 . 

Proof. We suppose, that the family {9, }o99 is not equicontinuous function at sorne 

point y ,  O < y < 1. Therefore there exist e > o' and a sequence Xn tending to y and 

another sequence tn such that 

We consider the case y < Xn for every n and we suppose, w.l.g. , there exists a such that 

Iftn (y) - a l  < e for every n. We can have f(y) � a + 4e or f(y) < a + 4e, we shaU w'ork 

only on the first case. 

Since f E bA, given any q, 0 <  q < 1, there exists 8 such that 

1 { lf - f(y) 1 < e} n II > qIII , 

for every interval I � (y - 8, y + 8). 



42 

Set F = { I! - !(y) 1  < e} n (y - h, y) and ¡jtn for the function defined by gtn + e on 

[y - h, y] , Ytn (y) on [y, xn )  and ¡jtn = gtn - e on [xn , y + h] . As in the proof of Theorem 

(3.8) we have 

'Ptn ( I! - Ytn 1 )  ::; . { 'Ptn ( If  - gtn 1 )+ } F' n( y-6 ,x n )  
+ Ptn (2 1 I f l loo )2 1 I f l l oo l { l f - f(y) 1 ::::: e l n (y  - b, xn ) l ,  

where F' is the complement of F ,  and 

By ( 1 ) , (2) and (3) we have 

Thus 

1 'PtJ If  - Ytn ! ) ::; 1 'Pd lf - gtn ! )  + 2 1 l f l loo (xn - y)+ 
( y - 8 , x n )  ( y - 6 , x n ) 

+Ptn (2 1 I f l l"", )2 I 1 f l l "", I { l f - f(y) l ::::: e } n (y - b, xn ) 1  

-eptn (2e)qb ::; .1 'Pdlf  - gtn i ) + 2 1 I f l l= ( Xn  - y)+ 
( y - 6, x n )  

+Ptn (2 1 I f l loo )2 1 I f l loo ( 1 - q )(Xn - y + b) - eptJ2e )qb. 

where R is a number depending on f and b, and n is large enough in .such away that 
Xn < y + b ,  we have used here the hypothesis on the family {pt } ,  M = 2 1 1 f l l = and N is a 

positive number depending on e and b . We have used the hypothesis Oll the family {pd 
near O. 

In (4) we take q near 1 such that - N q + R( 1 - q ) < O. Now if we take n large, the iuequality 
in (4) is less than I;:'6 'PtR ( lf - gt" , )  and this is a contradiction I 

(3 .10) Theorem. Let {'Pdo99 a fami1y witb properties (I)-(VI) of section 2 and 
moreover assume that tbe condition of Theorem (3.9) is in force. Tben, for every gl E 
J.l"" (f íC) tbe net (gt ) converges uniformely to tbe natural best approximant m I , for t 
tending to O .  



43 

Proof. Thís theorem is a direct consequence of Theorems (3.8),  (3.9) , (2 .12)  and 

Arzela Ascoli 's theorem I 
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