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Abstract: An Orlicz space L¥° is approached by spaces L*s with convex functions ¢,
tending to ¢ in some specific way. For a function f we study convergence of the best L¥«

approximants to f as € — 0. Norm, pointwise and uniform convergence are considered.
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1. INTRODUCTION

In {[LR1], Landers and Rogge introduce the concept of best natural approximant, say m,
which can be obtained as follows. In a finite measure space, consider f, as the best L?
approximant of the L? function f. They proved that f, converges in L' norm to a function
m as p tends to one. This element m is a uniquely well determined function among the
best L' approximants of f. Recently this result was partially extended to the set up of
Otlicz spaces in [ZF]. We pursue here the study of the best natural approximant in these

spaces.

Throughout this paper we will work on a finite measure space (X, X, u) which will be
denoted just by X. Set @ for the set of continuous convex functions ¢ defined on [0, o)
such that ¢(0) = 0 and ¢(z) > 0 for all large z, i.e.  might be negative near 0. Given
@ € ® we introduce the Orlicz space L¥(X) as usual, i.e., a measurable function f defined
on X belongs to L¥ iff for some A > 0 the integral [, (A|f]) is finite. Of course the
integral above is always greater than —oo, and it is understood that the integral is taken
on whole space X with the measure p. For genei‘al properties of Orlicz spaces see [KR],
[M] or [RR].

Given an approximant class C C L' and f € L¥ we set

(11) welF10) =tg € C: [ wllf = al) = jug, [ ol1f = #D).
For some particulars ¢ and C it can be proved that p,(f/C) # &, see for example

Lemma(3.6) in [ZF].

If oo € @ is not a strictly convex function the set p,,(f/C) has, in general, more than

one element. In order to select one element in C' = Peo(f/C) we approach the function
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o with a family {p.}e>0 of convex functions tending in a suitable way to oo as € tends
to zero. It is proved in [ZF), under some conditions, that given m. € p,, (f/C) the net
{me}e>0 converges in a norm on L¥° to some specific element in C. This best approximant
m; does not depend on the net {m.}.5¢ but it does depend on the family {®.}e>0, so we

called it the natural best L¥° approximant adapted to the family {¢c}e>o-

Now, we introduce the best || ||, approximant analogous to the best L¥-approximant in-

troduced in (1.1). To do so we consider the Luxemburg “norm ”||||,, which is. defined
by ’
(1.2) Ile =intle >0 [ pllfl/e) < 1),

where ¢ is in @, (if ¢ > 0 then Il is actually a norm).
For an approximant class C C.L! and f € L¥ we set

(13) ki, (F/0) = {9 € C 1 If = glle = inf IIf = kllo).

Given a family {p.}e>0 tending in a suitable way to o we shall prove that any net
{Me}eso, me € l,. (f/C), tends to an uniquely determined element m. Here we shall
deal with approximant classes C more particular than those given in [ZF]. In order to be
self contained we present a short proof of the main result given there, of course we will
use the additional properties that we have now on this particular approximant class C.
Finally, when C is the class of monotone functions we give some pointwise convergence

results.

2. NORM CONVERGENCE OF THE BEST APPROXIMANTS

We consider an approximant class C C L'(X) with the following compactness property.

Given any sequence (f) in C such that

(2.1) /A fuldu < M,

for a finite constant M. Then there exists a subsequence (f,/) of (f,) that converges a.c.

to a function f which is also in C.

If C has the above compactness property, clearly C is a closed set in L' and then C N LY

is closed under the “norm ”convergence in L¥. To see this fact use the following incquality
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(2.2) For € ® there exists a non negative constant ¢ such that z < cp(z), for all z > c.

Many classical examples of approximant classes C' fulfill the compactness property asked

above. Now we analyze some of them.

a)Let X = [0,1], 4 the Lebesgue measure and C be the set of integrable non-decreasing
functions. In fact, (2.1) and the monotony of the function imply the pointwise bounded-
ness of the sequence (f,) and thus the Helly’s selection Theorem can be used. This class
has been widely used in approximation theory, see [HL1], [H], [DH] and [HT].

Remark. We note that the Lebesgue measure in [0,1] can be replaced by a finite Borel
measure fulfilling the following condition, u(I) > 0 for every interval I of the form [0, z]
or [z,1]. Also, unbounded intervals can be used, for example take X = [0,00) and 4 a
finite Borel measure on X such that p([z, c0)) > 0 and u([0,y)) > 0 for large = and small
positive y. We omit the easy proof of these facts.

b)Let C be the class of piecewise monotone functions on a fixed partition of [0,1]. The

arguments given in a) can be used to prove the compactness property.

c)Set X for the unit n-cube [0,1]", p the Lebesgue measure and let C C L'(X) be the
set of all functions on X which are non-decreasing in each variable. The compactness of

C follows as in a), see [HL], [DH1] for a proof of the Helly’s selection theorem in this set
up.

d)Let X be asin ¢) and C be the class of convex functions on X. Given a sequence (f,) of
functions in C fullfilling (2.1) it is easy to see that for any interior point zo the sequence
(fn(z0)) is bounded and therefore we can use Theorem 10.9 of [R], so the compactness
property holds. See also [HZ], [HLT).

The classes in a), ¢) and sometimes the one given in d) are those that appear more

frequently in the literature.

We will assume the following conditions on g and on the approaching family {p.}e>q,

which were introduced in [ZF].

(I) For every € > 0, ¢, belongs to ® and ¢.(x) > 0 for z > 0.
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Note that we are not assuming that the functions in the family {¢.} are strictly convex

functions.

(II) For every € > 0, there exists 0 < ¢, < 1 and z. such that po(z) < cepe(z), for every

T 2> Te.
(III) The following limit exists for every z

ﬂ(:z:) = lim <P€($) — <p0(‘7’l)

e—0t 3

(IV)Forallz >0, e >0

¢e(2) — po(z) > ().

V) There exists q a strictly convex function, ¢ € ® with (¢(z)/z) tending to infinity as =
tends to infinity such that §(z) = ¢(po(z)) for z > 0.

(VI) For every € > 0, 3. € ®, where

D e Pol@) = of)
v = o T

Though condition (VI) can be somewhat weakened by assuming only that . < 7, for

some 1} € @ , we keep it in the way stated above:

Set Li == Ugso L¥. Then it follows rather easily that

(2.3) For every ¢ > 0 we have L¥ C L, Li CLfC ‘Ll and Lf C Uo<p Noce<p L“‘".
(2.4) 20 (1) < p(z),forz > 1, > 0.

{2.8) eype(z) 2 (1 — cc)pe(z), for ¢ > z., where z, and ¢, have the meaning given in (II).

In [ZF] were introduced the next two examples of {@.}e>0-

(2.8) The functions defined by ¢, = o!*¢ are the analogous to those given in [LR1]. In
this case B = pylngs and ¥, = Yol teingy.
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. 1ven q € a strictly convex Ilunction ana qx)/x) — CO as & — ©O we S8€
2.7) Gi ® a strictl functi i ( t

pe = po +ea(po). Now B = g(po) and g = f.

It is easy to check that the families givenin (2.6} and {2.7) fulfill the conditions {I)-{V¥).
These ¢, are strictly convex functions. It is possible to get a family {¢.}e>0 which fulfills

the conditions above but the ¢, are not strictly convex functions, see [ZF).

(2.8) Lemma. Let ¢ € ® and let C C L! be an approximant class with the compactness
property, we assume further C N L¥ # ¢. Then for any f € L}(X), the set p,{(f/C) is

non empty.

Proof. Set a = infyec [ ¢(|f — g|). Clearly a is greater than —co and we may assume
that a is less than oo, otherwise p, (f/C) = C. Let (fn) be a minimizing sequence in

C, ie.,[ ¢(|f — fal]) = a. Now, by (2.2), there exists a finite constant M such that
J1fal < M.

By the compactness property of the class C, there exist a subsequence (f,:) of (f,) and

g € C such that f,» — ga.e. as n’ — oo. Using Fatou’s Lemma, (2.8) follows 2

Recall that a function ¢ € @ satisfies the A,-condition for large z, if there exists a constant

¢ > 0 such that ¢(2z) < cp(z) for all z bigger than a fix number.

(2.9) Remark. If we assume in Lemma (2.8) that ¢ satisfies the Aj-condition for large
z, then it is easy to see that py(f/C) = pu(f/C N L¥), whenever [ o(|f — g}) is finite for
some g € C N L¥.

(2.10) Remark. For every f € L'(X), the non empty set p,(f/C) has the compactness
property. The proof of this fact is similar to Lemma (2.8).

(2.11) Remark. Let C be a convex set in L(X) with the compactness property, then
for every f € L'(X) we have that the set pg(f/ue,(f/C)) is either the set u,,(f/C)
or has exactly one function, say m;(f) = m;. Indeed, if [B(|f — m|) = +oo for every
m € gy (f/C) then, pg(f/ 1o (f/C)) = pyo (f/C). Otherwise, we will have the uniqueness
property taking into account that the set z,,(f/C) is a convex set and S is a strictly convex
function by property (V). The uniqueness property is not hard to prove and it follows in

the same way as the given in [LR1] for the case p,(z) = z't¢.
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In order to avoid the pathological situation [ B(|f — g|) = +oo for every g € py,(f/C) we
shall assume from now on that all functions ¢y, (¢.) and 8 have the Aj-condition for large
z. Thus, pg(f/pe.(f/C)) = {m1}. The function m; is called the natural best approximant
of f adapfed to the approaching family {¢.} or simply the natural best approximant. Note
that m; depends on f, thus we often denoted it by m(f).

The following result was proved in [ZF] for a general closed set C C L', now the re-
quirement we will impose on C is of a different nature, besides the proof of the following

theorem is considerably shorter than the original one.

(2.12) Theorem. Let f be in Lﬁ and C be a convex set in L! with the compactness
property. Further suppose po,(f/C) C Lﬁ’_, with my the natural best approximant and
me in p,, (f/C). Then

wo(|me —my|) = 0 as € — 0.

Proof. By (IV),
[ 805 =md <2 [ o5 =m = el ~m) < 2 [ 0ulls = ml) = oa(lf = m),

where m € iy, (f/C). Since f —m € Lﬁ, the last integrals in the inequality above are
uniformly bounded as € — 0. Therefore, there exists a constant M such that [ 8(|m.|) <
M for small .

Since B € @ the integral [ |m.| is bounded for all € near 0. By the compactness property
we can select a sequence (m,; ) which converges a.e. to some function m € C. Again, using
property (IV), Fatou’s Lemmia and repeating the arguments given at the beginning of the
proof we have [ B(|f — m|) S.f B(|f — m|), for m € py,(f/C). Thus, by the uniqueness

property, m = m;.

To end the proci we shall see that J eo(lme; —my]) - 0 as ¢; — 0. Indeed, by property
(V). J @o(|me;!) is uniformly integrable. Hence by Egorov’s theorem the result follows 8

Now, we study the convergence of || ||, approximants. First we need a similar lemma to

(2.8).

(2.13) Lemma. Let o € ® and f € L¥. If C C L! satisfies the compactness property.
Then py, (F/C) # ¢
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Proof. Let a = infaec ||f — h||y and (m,) be a minimizing sequence, i.e. ||f — mnq|ly

converges to a. Therefore, for some A > 0 we have

Jois == [ots = mallf =2

) SAf = mally < 1.

Thus, by (2.2) there exists M such that [ |m,| < M. Therefore there exists a subsequence

(mp:) convergent a.e. to some m € C and the Lemma follows since we have

Ilf—m”‘ﬂ S hm ||f—mn:||¢ =o B

(2.14) Lemma. Let ¢, € ®, with ¢ >0 and ¢(1) = 1. Let f € L¥°¥(X) and assume
H(X) =1. Then ||fll, < || fllpoy-

Proof. For any ¢ > 0 by Jensen’s inequality we have

m/wvwns/wka»

thus if ¢ = || f||yoy, which always can be assumed bigger than zero, we have

ol [elir/e <1
Since (1) =1 and ¢ € ® it follows [¢(|f]/c)<1 B
For f € L¥ we set
e(p) = e(f,,C) = inf{||f - gll, : g € C}.

The short notation e(p) is used since f and C are fixed, also we shall use e, for e(p.), ¢ > 0.
We started dealing with a family {y.} approaching to a function ¢o. Now we assume that
e is of the form ¢, 0 g, i € ® and the family {i.} tends to the identity function when ¢
goes to zero. The conditions (I) to (VI) should be reformulated in the obvious way using

ic. We replace (II) by (II’) as follows
(II’). There exist a number zp and a constant ¢y such that for every ¢ > 0 and = > o,

‘PO(x) < CO‘P:(I)-

The next lemma is an extension of a result given in [O] where the convergence is proved

for bounded functions.
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(2.15) Lemma. Let f be in Lff,, then ||f||,. converges to ||f||,, as € tends to 0.

Proof. Let f be in L¥<, then [ ¢.(|f]) is finite and ¢,(|f]) — wo(|f]) < pvpe(|f|) for
0 < p < ¢, thus (| f]) < pve(|f]). Therefore for every ¢ > 0 :

[ ez~ [ wtisivo),

as p — 0. Thus we have the next two statement:

(a) For ¢ such that 0 < ¢ < ||f||, We have

/ ol fl/e) > 1,

for all small p.

(b) For ¢ > || f|| 4o we have
[edise <1,

for all small p.

By (a) and (b) given € > 0 there exists po such that

/ eollF1/(Ifllgo —€)) > 1> / eo(IF1/(1flleo + €))

for every 0 < p < pg. Therefore

Ifllpo — € < flle, <N fllgo +

(2.16) Lemma. Let f be in Lﬁ, Boo(f/C) C Lﬁ and C be a convex set in L' with the
compactness property. Then e(p.) — e(ypo) when € — 0.

Proof. For any g € C we have
Bim (o) < lim 17 = ol = 1f = gl
The last equality follows from Lemma (2.15). Therefore

(a0 e(i06) < el0).
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Moreover
(b) e(o) < e(pe), for every € > 0.
In fact we select g, € C such that
I = Gollicows < elpe) +p,

where p is an arbitrary positive number. By Lemma (2.14)

e(p0) SN f = e lloo < N1f = gellicowo,
so (b) and the lemma follow B
We strength condition (III) as follows

(III°) The limit
. is(zs) — Tg
z) = lim
g(z) = lim
exists, where z. is any sequence tending to z.

From now on (IIT’) is in force.

To prove the norm convergence result we need additional restrictions on ¢ or f. For the

following theorem we will assume one of the two cases
a) po(z) = |z| and any f € Lf_.
b) o as before and f € L. C lattice, and the constants belong to C.

Note that under the condition b) we have: if m € p,(f/C) then. |m|lco < || flco-

(2.17)Theorem. With the same conditions as in Theorem (2.12), and f ¢ C,, =
C N L%, for any m. € py,, (f/C) we have |m, — my|lp, — 0 as e — 0, where m; =

eoml(-f;), with ml(;%) the best natural approximant ofej; in u‘po(;%/%%"- .

Proof. For any net {m.}e>o , mc € py,, (f/C) we can find a sequence ¢; — 0, and

mg € C such that m,; — Mo pointwise. In fact, given € > 0 it holds

/%(Lf:ﬂf_‘)=1

€e
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and using (II’) we have for some constant M

[ed=2dy <m

Thus by (2.16) it follows easily that m, is bounded in L' for all € small, and the existence

of (ﬁ’ts,-) and 7y is a consequence of the compactness property. Furthermore, the element
Mo € |1, (f/C). In fact

IF = mollyo < bim I = ey oo < lim I = e, -

€j . &=

The first inequality follows using a version of Fatou’s theorem for the Luxemburg norm,
the second one is obtained from (2.14) and the fact that ¢, = i 0 9. Now from

Lemma(2.16) the right hand side of the above inequality is eo, and since g € Cyp, we

have mo € py,,(f/C).

Usmg the equality gy, (f/C‘po) = eou¢o(i/lﬂ) see [LR], we have %‘O‘l € pn —L/—-fl .

‘Po eo

For mj = —;—1— and my = ml(;%) (the natural L¥° best approximant of f/e), we shall sce
< » o
that [|m; —mi||, — 0 as j — co. We note that m; — mo = 72 pointwise. By (IIT’) and

Fatou’s theorem we have
(1) [ BUL —mo|) <lim;_ o/ %J(l —mj|) - vo(l;f; —mjl).

If we take now n; the best natural approx1mant in ;1%( / ——‘-) i.e. the best natural

po-approximant of ;% adapted to the same approaching famlly e where the approximant

. C‘i’:- .
class is 3_¢"L’ we can estimate (1) by
(2) hm]qo'o 5 f %,(le‘ - n’]D - SPO(*L —ny).

. ' Coe Cos.
For the case f € L™, i.e. case b), we have that each function in p,,( ;f—- /%) is bounded
’ € €.

uniformly in j, (we are using that e.; — eo # 0).

We firstly show that there exists a subsequence {(n; ) of (n;) such converges a. ¢. to
my(f/eo), the best natural approximant of f/ey with respect to the approximant class

C‘Po/eU'



37

In fact we have

/mi~mng/m£~wm

Co,.
for all g; € /L‘PO(E“%/—&?‘-). Since f € L> we have sup;|n;| € L* and by the compactness

property there exist a subsequence (nj,) and n € CT“;‘I such that n;, - n a.e. as! — co.

Co..
Now let ~ be in u%(;%/%%‘l). Since h € L*> we have e—'i‘:_—h € —i:-z"— and
f / f e
— —n;|) < | B(|=— — —h|).
[t —nins [ ool 2om)
By Fatou’s theorem considering the subsequence (n;j,) in the inequality above we have
O N
[ oL -nn< [ a0t -,
20 €0
for every h € N¢u(;%/%y‘)- Thus n = my(f/eo). As sup|nj,| € L™ we have

— [ea i =nib = oo - - [ a0L = muirrenn,

€51 i €5y

as | — co. Then the limit in (2) is less or iqual than [ ﬂ(|;;[0 —~may(f/eo)l)

For the case that f is not bounded, we have po(z) = z and it follows

(3) 'uﬁPo(E;%/ei )= fj?ﬂwo(;%/%) = ef)_ i1, (f/C)

and the set p‘,,o(;% / CT“:Q) admits a minimum and a maximum, see [LR]. On the other
hand, if f € LY« the set g oy (f/C) is also in L¥<. The proof of this last fact follows using
the same argument of the proof given in [LR1] for the case ¢.;(z) = ¢'*%. Using that
Hillle, (f/C) C L¥¢, the equality (3) and recalling from [LR] that the set u‘po(;%/%) has
a maximum and a minimum, here we are using that C is a lattice, we can conclude that
the function sup|n;| € L¥<. In a similar way to the case f € L™ we can prove that the

limit in (2) is bounded by [ ﬂ(l;% —ma(f/eo))-
Therefore in both cases a) and b) we obtain
[ 80L = mob < [ 0L = macsreom.

Thus mg = m1(f/eo).
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It remains to prove the convergence in norm. Working as before we have that
T f
I, [ a0 - mi
is bounded. Therefore 4,00(|;-L —m;|) is uniformly integrable. Thus
<

/ po(lm; —ma(f/ea)]) = 0

as j — oo. Then, since o is Ay, [|Me; — eomi(f/eo)|lp, = 0 as j — oo and the theorem
follows B

3. POINTWISE CONVERGENCE

We have obiained in the previous section the best natural approximant as a limit in L¥
norm or in the mean, now we analyse the pointwise counterpart. We assume that all the
functions are defined on a subset of R™ and we work with the Lebesgue measure, which
on a set A will be denoted by |A|. In this section the following conditions are required for

the approximant class C.
A .(The Almost Continuity). Each function f in C is continuous almost everywhere.

B.(The Helly’s Selection Principle). Given a sequence ( f,) in C bounded in L! and a finite
set of points K, there exists a subsequence ( f,/) which converges a.e. to a function f € C

and it converges for every point of K.

C.{Separation Criteria). Given f,g € C and f continuous at a point y. If f(y) # ¢(y)
then [{f # g} > 0.

All the examples introduced in section 2 fullfill the three conditions above. The following
lemma has its antecedents in [HL], we believe that our presentation here somewhat clarifies

the essential properties required for the pointwise convergence.

2.1} Lemma. Let ¢ € &, ¢(z) > 0for ¢ > 0, and (f;)o<t<1 be a net in C' N L¥ and
feCnL?. It [ o(lfi— f|) = 0ast — 0%, then f, cbnverges ae to fast— 0t

Procf. Let E be the set where the net {f;)o<i<1 does not converges pointwise to f, and

assume |E| > 0 Then by property A there exist a point y where f is continuous and a
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sequence () such that (f, (y)) does not converge to f(y) as t, — 0*. We may assume,

by taking as many subsequences as necessary, that for some subsequence (f;_,) we have
L fi, — fae ast, —0.

2. fi,, = gae withge C and f ,(y) — g(y) and f(y) # g(y). Use B.

Using C we have |{f # ¢g}| > 0, which contradicts 1. and 2. and the lemma follows #

As a direct consequence of the Lemma we obtain the next two pointwise convergence

results.

(3.2) Theorem. Let f and C be as in Theorem(2.12). Let m; be the natural best
approximant of f adapted to the approaching family {.}. Then for any m. in p,, (f/C),

the net {m,}.>o converges almost everywhere to m, as ¢ tends to 0.

(3.3) Theorem. Let f and C be as in Theorem(2.12), and m; be asin Theorem(2.17),
then for m. in pyy, (f/C) we have that the net {m.}.>o converges a.e. to 7y as € tends

to 0.

Thus the pointwise convergence result is an easy consequence of the norm convergence re-
sults. The interesting situation is that we can get in most of the cases uniform convergence
results, with this aim we give some definitions. It is important to remark that for the last

part of this paper the approximant class will be the class of monotone functions.

(3.4) Definition. Given f € L'(0,1) and = € (0,1), we say that f is approximately
continuous at z if there exists a real number A such that for every € > 0, = is a point of
metric density one for the set A, = {y/|f(y) — A| < ¢}, i.e.

|A. N 1|
1]

-1,

when the measure of the interval I tends to 0 and z € I.

(3.5) Definition. We write f € bA iff f € L™ and f is approximately continuous at each
point of (0,1).

(3.6) Remark. The number A in Definition (3.4) is uniquely determined, and we

assume, as it is customary, that it is f(z).
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(3.7) Remark. For f € L, z is an approximately point of continuity for f iff z is a
Lebesgue point of f. In other words we shall work with a bounded function where each

point of (0,1) is a Lebesgue point of the function.

(3.8) Theorem. Let ¢ € ®, f € bA and g € p,(f/C) then g is a bounded continuous

function.

Proof. It suffices to consider the continuity of g in the open interval (0,1) since on the end
points of the interval (0,1) we can redefine the function ¢ in such way that it is continuous

there, thus let 0 < y < 1 and assume g(y*)—g(y~) > 0. Then we have the next four cases:
(M f(y) = 9(y™) >0, (2)9(y™) — f(y) > 0, (3)g(y*) — f(y) > 0, (4)f(y) —g(y~) > 0.

We shall prove the first case, the other cases follow in a similar way. First we note that
for z > 0, p(z) = f: p(t) dt where p is a non negative monotone function. Then we have

the following properties
D le(z) = ¢(y)| < p(maz{z,y})lz —yl, =,y >0
(D) ¢(z) < p(z + o) —op(z), o >0.

Let ¢ = f(y) — g(y*) then by the approximately continuous property of f there exists
6 > 0 such that

(1) {f > f(y) —e} Ny — 6,9l > ¢6
where 0 < ¢ < 1. Thus we define -
i) = 9@ +n ifze(y—5y;
§(z) = {g(z) otherwise.
where n = min{g(y*) — 9(y7),€}-

Set F = {f> f(y)—e}N(y—é,y] and F' = (y — §,y] — F, then we have

/ o1f — ) < / o(1f = al) + p2 flloa)n| |
F' F!
< ] o (1 = gl) + P2l Flloo)n(1 — )6
FI
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To obtain the inequalities above we have used LIII and

Ngllos < Nflleos lglleo < flleos 9(y7) <3 < 9(y™),

Jetr-ab< [ ois <o -mptn + oIFI <
- - I '

o s /F (lf = g1) — np(e)ad,

“where the last inequality follows by (III)..

If p(e)g > (1 = ¢)p(2|| f]loo) We arrive to the contradiction

[ets-a< [etr-au

We can i.)rove, following the line of [DH].

(3.9) Theorem. Let {¢t}o<t<1 be a family of convex functions such that for every z>0
it is satisfied’

0< iI}f we(z) < sup p¢(z) < 00
t

and f € bA. Let g, € py,(f/C) then {gi}o<e<1 is an equicontinuous family at each '
0<y<L

Proof. We suppose, that the family {g:}o<i<1 is not equicontinuous function at some
point y,0 < y < 1 Therefore there exist € > 0 and a sequence I, tending to y and

another sequence ¢, such that

|9tn (Zn) — 91, (¥)| > 8.

We consider the case y < z, for every n and we suppose, w.l.g., there exists a such that
|ft.(y) — a| < € for every n. We can have f(y) > a +4cor f(y) < a+ 46‘, we shall work

only on the first case.
Since f € bA, given any ¢, 0 < ¢ < 1, there exists § such that

HIf = f()l < e} N 1| > q|I|,

for every interval I C (y — é,y + 6).
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Set F = {|f — f(y)] < €} N (y — & y) and g, for the function defined by g:, + € on
[y — 6,y], §1,(y) on [y,z.) and g,, = gt, — € on [zn,y + 8]. As in the proof of Theorem
(3.8) we have ’

() S 0allf = 30) < i 0a(1F = 90,1) — epe, (26)g.

ealf =30 [ el -
Yy=0,Zn

+ Pea (2l flloo)2ll fll o {1f = f)I Z €} N (y = 6, 20)],

where F' is the complement of F', and

(2) v/I:'"ﬂ(y—&,z,.)

(3) fpn(y,z") ‘Ptn(lf - gtnl) < fpn(y,zn) Sot..(lf - gt..l) + 2Hf||oo($n -y)

By (1),(2) and (3) we have

L ealr=aah < [ el - g+ 2l le(en - v+
(y—8,zn) (y—6,z5)
4900 2017 loo)21 o1 — F0)| 2 €)1 (3 = 6,22

2905 [ 91 — gl + 2 leln — v+

y—6,z,)

+ptn(2||fllqo)?_||fllm(1 —q)(@n —y +6) — epy, (2¢)q6.

Thus

@) Jy2s pta(lf = Gtal) < M(zn —y) = Ng+ R =) + [;75 @0, (1f = 9.]),

where R is a number depending on f and 6, and n is large enough in such away that
Zn < y + 6, we have used here the hypothesis on the family {p;}, M = 2||f||c and N is a
positive number depending on ¢ and §. We have used the hypothesis on the family {p,}

near 0.

In (4) we take g near 1 such that —Ng+ R(1—q) < 0. Now if we take n large, the inequality
in (4) is less than f;:6 ¢, (|f — 9¢,|) and this is a contradiction #

(3.10) Theorem. Let {p:}o<i<1 a family with properties (I)-(VI) of section 2 and
moreover assumnie that the condition of Theorem (3.9) is in force. Then, for every g, €
o, (f /C) the net (g:) converges uniformely to the natural best approximant m,, for t

tending to G.
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Proof. This theorem is a direct consequence of Theorems (3.8), (3.9), (2.12) and

Arzela Ascoli’s theorem B
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