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ON REAL ANALYTIC POINCARE SERIES
OF EXPONENTIAL GROWTH

N. P. KISBYE

ABSTRACT. Let G be the universal cover of SI(2,R) , T a discrete subgroup of G of finite
covolume and x a unitary character of I'. Using an analogue of the Eisenstein series, we define
afamily M(v, g, x) of automorphic functions of non-moderate growth on G, holomorphic in the
half-plane {v € C | Rev > 1}. We prove that this family admits a meromorphic continuation
to C and satisfies a functional equation which relates a linear combination of M(v, g, x) and
M(-v, g, x) with a linear combination of Eisenstein series. We also prove that, although the
family is generically of exponential growth, the residues of M(v, g, x) in {v | Re v > 0} define
square integrable automorphic forms.

§0. INTRODUCTION.

Poincaré Series are an important object in the theory of automorphic forms. They were
originally introduced as holomorphic functions on the upper half plane satisfying a certain
transformation rule with respect to a discrete subgroup I' of SI(2,R) of finite covolume,
and a multiplier system v. Their importance stems from the fact that they generate the
space of holomorphic cusp forms of each given weight. More recently, non-holomorphic
Poincaré series have been studied, originated in the ideas of Selberg (see [S], [N], [He], [Br],
[Br2]) and have been used in the study of Fourier coefficient of real analytic automorphic
forms. There are also generalizations in higher dimensions (see for instance [CLPS] for the
group SO(n,1) and [MW] for Lie groups of real rank one with finite center).

The purpose of this paper is to show that the method in [MW] applies in the study of
L%T\G, x), where G is the universal cover of SI(2,R) and x is a unitary character of T, a
discrete subgroup of G of finite covolume. We shall define a family M(v, x) of functions
on G, via an analogue of the Eisenstein series, but using a matrix entry of a principal
series on G which transforms according to a character 1 of the unipotent subgroup N.
This series defines a one parameter family of automorphic forms of non-moderate (i.e.
exponential) growth in the half-plane {v € C | Rev > 1}. We prove that this family
admits a meromorphic continuation to C and satisfies a functional equation which asserts
that a suitable combination of M(v, x) and M(—v, x) is a linear combination of Eisenstein
series (see Theorem 7.5). Although the family M(v, x) is generically of exponential growth,
certain special values yield automorphic forms in the standard sense, namely classical
holomorphic cusp forms associated to a certain multiplier system.
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Several of the results in this paper are already present in [He| (see Chapter 9, §7) and in
[Br2]. However, our methods are very different, and follow the representation theoretic
approach in [MW], yielding, at times, more explicit information.

§1. PRELIMINARIES.
Let G denote the universal cover of Go=51(2,R) , and let 7 :G— G, denote the canonical
projection. G is generated by elements {n(z),a(y), k(6)|z,6 € R,y > 0} such that

wne) = (5 7)) men= (L) ww@y= (L0 nd) ay

4

and furthermore

n(z1)n(z2) = n(z1 + z2) z1,22 € R - (12)
a(y1)a(y2) = a(y1y2) vi,y2 € RY (1.3)
k(61)k(62) = k(61 + 62) 61,0, €R - (1.4)
a(y)n(z) = n(yz)a(y) z€R, yeRY, (1.5)
k(0)p(z) = p(n(k(6)) - z)k(@ - arg|(_n’7r] e'®(—z - sen 6 + cos 9)) (1.6)

where p(z 4 1y) = n(z)a(y) and 7(g) - z denotes the action of Gy on H = {Imz > 0} by
Moebius transformations. We will often write 7(g) = g. ‘

Set N = {n(z)|z € R}, A = {a(y)|y > 0}, K = {k(0)|6 € R} and let M =
{k(mm)|m € Z}, the center of G , and P = N - A- M. Any element g € G decom-
poses uniquely ¢ = nak, with n € N, a € A and k € K. We choose invariant measures

dy

1
dn, da, dk on N, A and K corresponding respectively to dz, —, 2—d0 where dz, dy, df
m

denote Lebesgue measure. If a = a(y), set a” = /y. On G we will normalize the Haar
measure so that

L nak)a~*"dn da
[ g =5 [ [ [ stnabaeandac s ecye) (17)

We identify g, the Lie algebra of G , with the Lie algebra of Go. Let X = <8 (1)>,

10 0
H-i4X+Y), W=X-Y. Thus X , H and W span n, a and & respectively, the Lie
algebras of N, A and K. If a = exp(H') € A with H' € q, we will write a* = e*(#") for
v € a*. Also we set p = §. Fort € R, we set a; = exp(tH) = a(e?!), so that af = . We
will usually identify a}; with C via the map v — v(H).
Denote by U(g) the universal enveloping algebra of g. and let U(g) act on C*(G) by
left-invariant differential operators. If X € g., f € C®(G), as usual let X f(g) =

Yz(o 0> andH:<1 —(1)>.Setgc=g®RCandletE+=H+i(X+Y)v E”=

d
& f(gexptX). The following formulas describe the action of E¥, W with respect to
0
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thg coordinates (z,y,8): »Ei = eiZio(Ziy% + 2ya% F ia%) and W‘= a%. The Casimir
element of G is given by C = (XY + Y X + 1 H?) = (%)2 - (%) + XY which as a differ-
tial ¢ G acts by y2 (25 + 27 ) — y32%5- Hence C C=(G/K
ential operator on G acts by y* { 377 + By? Y35.55- Hence C actson f € (G/K) by
(CHz+iy) = y*(Lr + Z=) f(a + iy), where f(g i) = f(g) and g-i = n(g) -i = z + 4.
Furthermore we have | . f(g)dg = / / ‘f(na)a—zf’ dnda = / f(z +iy) dzily-
GIK NJa H y?
From now on we let T" be a discrete subgroup of G which contains M and such that I'\G is
non compact and has finite invariant measure. Let @ be a parabolic subgroup of G . Then
Q = kPk™! for some k € K, thus Q = NgAQM, where Ng = kNk™! and Ag = kAk™!.
Q is said to be I'-cuspidal if 'NNg # 1. T' acts by conjugation on the set of such subgroups
and the action has finitely many orbits. An orbit of this action is called a cusp of T
Let Q = kPk~! beasabove, ag = Ad(k)a. If» € C, H € ag, we write k-v = r/(Ad(k'1 )H)
Fix w C Ng a compact subset, such that w +— I' N NQ\NQ is surjective. If y > 0, let
A$=y ={ac€ AQlak" >y}. A Q-Siegel set for I' is a set of the form Sq,u,y = w x Aay x K.
We next recall a basic result of reduction theory of T'\G.
Theorem 1.1. Let I' be as above. If P; = N;jA;M, j = 1...s is a complete system of

representatives of I'-cuspidal parabolic subgroups, and if for each j, w; C N; is a compact

subset such that m(w;) =TnN NJ-\NJ , then NG - (UJ’:lSpj Wit )O is compact.

§2. CHARACTERS AND MULTIPLIER SYSTEMS.

Let x be a unitary character of I and fix 7 € (—1, 1] such that x(k(mr)) = €' for any
k(nw) € M. We then write y = x,. Let » € R; if z € C — {0} we write 2" = exp(rlogz),
where log stands for the principal branch of the logarithm (corresponding to —7 < arg z <
). ‘

If v= (Z Z) € Gy, set j(y,2) =cz +d. Let T:H(F). For ¢, g1 € Gg,.we set

1 . .
w(7771) = 5—7; {a‘rgl(—w,n] ](7771 : + a'lgl —m,m) ] 717 ) argl(~7r‘rr] J(’Y’YI»Z)} (21)

Let € R. A function v : T — S' is called a multiplier system of weight r if v(yv;) =
v(y)v(y1) exp(2mirw(y,v1), for any v, 1 € T, where w(v,7;) is as in (2.1) (see [Rn],
chapter 3). In the notation of §1, let o : Go — G be the section given by: ‘

a at+b '
U((C Z)):p(ci:—_d)k(argl(—"m](_Cl+d)) (22)

Then for g, g1 € Go, o(gg1) = 0(9)a(g1)k(2mw(g,91)), where w(g,¢1) is as in (2.1).

We now recall the correspondence between characters of I' and multiplier systems of T.
(cf. [Br], chapter 4). Let x = xr, T € (—1,1] be a character of ', and let r = 7 mod
2. Then the function v = v, : T = C given by v(3) = X( (7)) is a multiplier system on
T of weight r. Conversely, if v is a multiplier system on T of weight r, then the function
X = Xv : [ — C given by x( (’y)k(n?r)) = v(¥)e'™"" is a character of . The maps x + vy,
v +— X, are inverse to each other.
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§3. AUTOMORPHIC FORMS. _

Fix x a unitary character of T, x = x,, as above. A function f : G — C is (x,T')-
equivariant if f(vg) = x(7)f(g9), ¥ € T, g € G. For the next results we refer to [Br] or
[Ro].

Theorem 3.1. Let T = n(T'), and let x = xr be a character of T', with 7 € (=1,1]. I
r€ R withr =7 mod 2 and f : G+~ C is a (x,I')-equivariant function of weight r, then
the function F = ¢(f) : H +— C defined by F(z) = f(p(z))y~% satisfies

F(7z) =v(¥)i(7,2) F(2) (3.1)

for any ¥ €T,z € H, where v = vy Is as In-§2.

Conversely, if v is a multiplier system in T of weight r and F : H + C satisfies (3.1), then
the function f; on G defined by

fi(o(@k(nm)) = F(g-4)j(g,4) "e™"

1s (x,I")-equivariant, with x = x, as in §2. The maps f — F and F' — f; are inverse to
each other.

Definition 3.2. Let x = xr be a character of ' , 7 € (—1,1] as above. Let r € R. A
function f € C*®(G) is said to be (x,I')-automorphic of weight r if

(1) f(vg) =x(v)flg) €l geq _

(2) for any k(8) € K, g€ G f(gk(8)) = flg)e'™®

(3) f is a finite sum of eigenfunctions of C,

(4) f is of moderate growth. That is, if Q = kPk™! is a parabolic subgroup. then for
any X € g., there exist Cy > 0 and d € N such that |X f(kg)| < Cxa(g)**

We denote by A(I'\G, ) the space of I'-automorphic forms and we observe that if
,\'(k(mr)) = """ for any k(nw) € M, then A(T'\G, \) is generated by functions of weight
r, 7 =7 mod 2.

As is well known, the correspondence in Theorem 3.1 gives an isomorphism of the space
A(T\G, x) with the space of real analytic automorphic forms on H, of weight r and mul-
tiplier system v. :

Definition 3.3. Let Q be a cuspidal parabolic subgroup. @ is said to be regular (resp.
irregular) with respect to y if x‘|FmNQ =1 (resp. \|1~_qu Z£1).

If f € A(T\G, x) and Q@ is regular, then the Q-constant term of f is defined by:

falg) = / f(ng)dn (3.2)
FHNQ\NQ

If fo = 0 for any regular cuspidal parabolic subgroup @, f is said to be a cusp form.
Denote by A¢(T'\G, x) the space of cusps forms in A(I'\G, x) .
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Let f, g € L?(T'\G, x), the space of square integrable (x,I')-equivariant functions on G
with respect to the canonical inner product (f,g) = fF\G f(z)g(z) dZ, where dT is the

canonical measure on I' \G. L?(T'\G, x) defines a unitary representation of G , the action
of G given by right translations.

We will make use of the spectral decomposition of L(I'\G, x) (see [Ro], or [Br], Chapter
10). We first recall the definition of the Eisenstein series.

Definition 3.4. Let Q be a regular cuspidal parabolic subgroup of G . Let { = XlM and
let e C. If p € C®(K), g € G, define the Eisenstein series by

EQvg,6,0)= Y alv9)" " é(k(v9))x(7)™’ (3.3)

€l Q\I

It is well known ([Ro], [Br]) that the series defining E(Q, v, g, ¢, x) converges uniforinly
on compacta if Rerr > p and lies in A(T\G, x) . Furthermore E(Q,v,g,#,x) admits a
meromorphic continuation to C.

If V is a Banach representation of G we let Vo, V- and V,, respectively denote the space
of C%°, (C*,K)-finite and analytic vectors in V. We will use the following theorem of

Selberg and Roelcke.

Theorem 3.5. (Spectral decomposition) If x = x,, T as above, then L*(T\G,x) =
L3(T\G, x) ® L%\G, x), where LZ(F\G. X (1e<p. LYT\G, x)) decomposes discretely

(resp. continuously) under the action of G .

Furthermore, let {1, 72, in LAT\G,\)n (cf. [W], ch 1) be a complete orthonormal
system of eigenfunctions, Ci; = ;¥ ;. Fix a complete system of re presentatwes of regular
cuspidal parabolic subgroups {P;. - .P,}. Theun, if f € L*(T\G.,\) is of weight r, r = 7
mod 2, we have

:ZH, ¢+Zm, /H R E(Pi, A\, 6y, x) dA (3.4)

in || ||2 with f; : iC — C measurable functions, 1 < i <'s, such that [p_, _, | fe()? |dv| <
00.

§4. REPRESENTATION THEORY.
If £ € M, then é(k(m)) = €™, for some 7 = 7¢ € (—1,1]. Set

VE={f e C(K)| ftmk)=E&m)f(k) meM, keK)
with norm | - || given by ||f]|*> = fM\K |f(k)|* dk for f € VE. Let H” be the completion
of V¢ with respect to the above norm. with action of G given by

me,w(x)f(u) = a(ua:)'”’”f(k(ux)) ueK, zeqG (4.1)

where g = n(g)a(g)k(g), n(g) € N, a(g) € A, k(g) € K. When restricted to K, Hfgu
decomposes as follows: H5" = GB Cé,, where ¢,(k(8)) = e for k() € K.

r=7¢ mod 2
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As.before, let HS” (resp. Hf{") be the space of C*>°-vectors (resp. (Coo,K)-finite vectors)
in Hov; Hf(’" is a (g,K)-module, with the action of gc and K given by: E* . ¢, =
(14 vEr)prts, W- ¢, =ird, and k(6) - ¢, = e'"0¢,.
We next recall some standard facts on the Kunze-Stein intertwining operator.
(1) If v € V&, the integral A(£,v)v(k) = [ mew(snk)v(1) dn converges absolutely and
uniformly on compacta for k¥ € K and Rev > 0.

(2) the map v — A(€,v) analytically continues to a holomorphic function : C

I'(v)
{continuous endomorphisms of V3§ }

(3) If r =7¢ mod 2 one has that A({,v)¢r = ¢ (V)¢ where

_ 217" T (v)
)= p ) T ()

(4.2)

(4) If v € is generic, one has A(§,v) o e, (z) = m¢,—u(z) 0 A(€,v), for z € G.

It follows from (3) that A(¢, —v) o A(&,v) = ;61(—”) Id, where
cos —————2"("2"' . cos ——”("2_')

vsen(mv)

(1) ™ = ex(—v)er(v) = —4n

We note that this expression does not depend on r but only on £. In particular, if r = 0
(resp. r = 1) we get that pe(it) = 5= tanh (5¢) (resp. pe(it) = 3 coth (Z)).

For generic v € C, the (g.,K)-space H 5(1" is irreducible. Reducibility occurs exactly when
(14v)=7 mod 2or (1+v)=—7 mod 2. By using the intertwining operator A(¢, ) one
can determine the composition series of H fg" at each v. For such a description, together

with the classification of irreducible (g,K)-modules of G, we refer to [Pu] or [Br], Chapter
3.

§5. WHITTAKER VECTORS. _
Let (V, ) be a representation of g. Let n(n(z)) = ' be a non trivial character of N. A
vector w € V is a Whittaker vector associated to the character n if

X w=dn(X)w _ (5.1)

Let v € C. A vector u € V is said tobe conical of weight vif X-u =0and H-u = (V—l)u.

Let b = CX ® CH a Borel subalgebra of g. Let #(b) be the universal enveloping algebra
of b. Given pu € C, we denote by M(u) the Verma module M(x) = U(g) ®up) C where
the action of U(b) is given by

X-191)=0 H-181)=(k-1)(101) (5.2)

Clearly 1 ®1 is a conical vector in M(u) of weight p.

Given 7, a non trivial character of N, we now sketch the construction of a Whittaker vector
associated to n. For this purpose, we will work formally with power series in M ().
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Assume w = Y 50 ak(p)(Y ¥ ®1) is such that X -w = dn(X)w. Then 350, ar(p)X -(Y*®
1) = 3 peodn(X)ar(u)(Y* ®1). To compute the coefficients ax(p) we use the relations
(X, Y¥ =k Y*YH-k+1)and [X,Y¥]®1=XTY*'®1) -V X(1®1) =X(Y*®1),
for £ > 0. One obtains that

oo [ee]
Y a(wX (Y @1) =) arn(w)(k+1)(p - (k+1)(Y*®1) (5.3)
k=0 k=0
It follows from (5.1) and (5.3) that ag41(u) = ak(#)(_k;ﬁ:;(—f(t:)j for k > 0 or, putting
ao(p) = m, we obtain the recursion
(=D*dn)*(X)
= 4
) = T+ F 1) (5:4)
Let n = RY. Then T(k) = Y po; ak(#)Y* can be viewed as an operator mapping the

vector 1 ®@ 1 of M(u) to a Whlttakel vector in the n-completion of M(u), (see [GW], §4).
Similarly, if V' is a U(g)-module and v € V' is such that X -v =0 and H - v = (¢ — 1)v,
then there exists a Whittaker vector @ = T(u)v in the f-completion of V. We will now
apply this theory to the principal series representations.

If v € C, £ € M consider the representation (Hé*,7¢ ,) of G . We denote H” the space
of analytic vectors. Thus we have the following inclusions: Hg‘!" C HYY c HYY ¢ HE»,
with each space dense in the next.

Let s = k(7/2) and set as in [GW]
§(€,v)f = f(1) (5.5)
63(6,1/)][ = /N mew(sn)f(1)dn = (A(E,v)f)(1) = 6(¢,—v) o A(E,v)(f) (5.6)

for f € HS, Rew > 0. 1t is easy to check that §(¢,v) and 6, (¢,v) are conical vectors in
(HSY), of welght —v and v respectiv ely We fix a character n of N and we set

w(€,v) = (=) 6(6,») (5.7)
ws(€,v) = ( ) 3(57’/) (5'8)

the corresponding Whittaker vectors. We will write also w;(v) y wy(v) when € is clear
from the context. It turns out that the vectors w,(v) and ws(v) are continuous furictionals
on the space HEY (see [GW)).

§6. RELATIONSHIP BETWEEN WHITTAKER VECTORS AND WHITTAKER

FUNCTIONS.
For k € R, s € C, the Whittaker differential equation is given by

2
k 4 -s

'(y) + {—1 +=+

prie it b w=0 yso (61)
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Equation (6.1) has a solution, Mk ,(y), defined for s € C — (—2)N, given by

i _ = (l +s— k)n n
Mys(y) =y*tie7 ) ——;,(1 .Y (6.2)
n=0 ) n

with (a)o = 1 and (a), = H?z—ol(a-i—j) for n > 1. It has exponential growth as y — oo and
|Mi,s(y)] < y3*Ret asy - 0.

Another solution of equation (6.1) is given by

T'(2s)

i o)

Mk,——s(y) + Mk,a(y) (6'3)

r (l —s— k)
This function has exponential decay when y — oo, in fact |Wk s(y)| < y¥e~% asy — oo,
and exponential growth as y — 0. The following integral formula will also be needed:

oo

Wk,a(y) — 71,—1223—1F(1/2+ s+ k,)y%—s/ e—%i.ry(l + xZ)—%—SGZik arctanz .. (64)
— 00

We will now look at certain matrix entries of the principal series representations. Let

£ € M, v e C,nanon trivial character of N and let w € (H$")' be a Whittaker vector

-associated to 1. Denote by 1(g) the matrix entry ¥(g) = w(m¢,.(9)¢-), for g € G, ¢r €

H&". We observe that, if g = nak, withn € N, a € Aand k € K, 1(g) = n(n)"'(a)é-(k).

If C denotes the Casimir operator, then 1) satisfies the differential equation Cy = "—2;1:—1 P

Proposition 6.1. Let t € R, a; = exp(tH). Let n(n(z)) = €'**, with o > 0. Let w €
(H&Y)' be a Whittaker vector associated to n~'. If z = 2ae?, let. F(z) = w(me,u(a:)dr).
Then '

?

(1) F(z) satisfies the Whittaker differential equation (6.1) with k = % and s = %,
(2) if Fi(2) = wl(l/)(7rf,.,(at)¢r) and Fs(z) = ws(l/)(WE,,,(at)qu) then
(201)-"—3—_1 (20{)”;l
F = ——<M:r Fy(z) = ————c(V)Mz _» 6.5
()= T Mis () P = e M () (69)
where My s is as in (6.2) and c-(v) is asin (4.2).
Proof. We have
d d , ,
Sl wlmealac expls)) = | w(meu(acs)ér) = ¥(a) = 2P'(2)z
Sls=0 Sls=0

w(me,,(as - exp(sH))¢r) = =" (ar) = 2(F"(z)z + F'(z)). Now, since

s=0

Y = X — W, we compute

d2
dSl d32

RNy

Similarly, ( dis) 2

w (Wf’y<at)7rf’y ((81 + Sz)X)d)r) — (iQCZt)zzp(at)

81 =32=0
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d2
dSl d.32

w (g, (ar)me (51X )me(s2W)r) = (iae™)(ir) ()

31=82=0

Since ¢ = (&)° - (&) + XY and Cy(ar) = w(ﬂf,,,(at)we,;(C)(gbr)) we get that ¥(a,)
satisfies id)"(at) - %t/)'(at) + (—(ce®)? + r(ae’))y(ar) = -

2

1(a¢), which in terms of

F(z) becomes F"(z)+ {—% + lzz + 1—_—;4,——”—} F(z) = 0, the Whittaker’s differential equation
with k = 2, s = 2.
We briefly verify (2). By (5.7), wi(v) = Yoo ak(—=)Y¥(8(&,nu)) with ap(—v) =

(—1)’°(dn“)’°gxz. Using that (=Y) - 6(&,v)(f) = 6(&,v)(Y - ), we have that:

KT (v+k+1

oo

Fi(z) =Y ar(—v)6(&, v)(me,u(Y)ome(ar)gr) =

k=0
i (ia)k Lik,
k=0‘k!F(1/ +k+ 1) dsk o=

i me,v (exp(sY)as) ¢-(1)

A computation shows that if we set 6(s) = arg|_, (1 — ¢s), then

r d¥

dk 4 - — 2t
(e (exp(s¥)ar)6,(1) = ()" =

k
dsk | _,

a1z ) o0 (H609)

PIAL

s=0
vtp oo ok

_ at 3 (—Qe

Thus w(v)(me(00)ér) = 77753 ;) B t1) (4 8)

PEsY
= (i) ? and ag(r,v) = 1, we arrive at

ak(r,v) for some coefficients

ax(r,v). Since a;

_ (2a)7F

vl
I‘_(u—+—1—)z {1+ ¢(z,v)} (6.6)

Fi(z)

where ¥(z,v) = O(z) as z — 0. By using the asymptotic behavior at z = 0 we see that

(20)~

Fi(z) = P—(;TI)_ z,

(2) (6.7)

ol

To compute Fs(z) we use (5.7) and (5.9):

Fy(2) = T(v)8s(&,v)(me,(a)gr) = T(v)(8(6, —v)) (me,—v(ar)er(v)ér)

(2a) 2
F(—r/ + 1)

= Cr(”)wl(_”)(”ﬁ,—"(at)¢r) = cr(v)M: _%(z)

2

The vectors w;(v) and w,(v) generate the space of Whittaker vectors in (H5")'.
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Let n(n(z)) = *** be a nontrivial character of N, let £ € Mandv e C. If f e HY,
s = k(n/2), consider the integral )
Teol )= [ n(m) relsm)f(1) dn

In particular,

oo
.75,,,(#5‘,,‘(a)¢,) — g Re u+Pei(7r/2)T/ e—i”“‘zp(l +$2)—1’—,'3;—16irarcta.n1: de

— 0o

7rei(1r/2)r A.v=1 )

T EZ ? Wi £ (2Xa7) (6.8)
This integral is convergent for Rev > 0 and analytically continues to a continuous func-
tional on HS”, for Rev > 1. J¢, is a Whittaker vector associated to n~!, the Jacquet-
Whittaker vector. We will often write J(v) in place of J¢,,. As a functional on HS",
J(v) can be expressed as a linear combination of wy(v) and w,(v) and this combination
corresponds to the expression of the Whittaker function Wy , in terms of M} , and My _,.
To conclude this section we recall some facts on the Jacquet-Whittaker vector (see [GW]).

Proposition 6.2. Let n(n(a:)) = ¢'®% be a character of N witha > 0. Let £ € M, v € C
and J(v) as in (10.2). Then one has that

T () = a(v)wi(v) + b(v)ws(v) (6.9)
with
v 1'(1r/2)rC0S W(V;r)'
a(v) = —2a"re m and bv)=T(-v+1) (6.10)

Furthermore J(v) satisfies the functional equation
TJ(=v)o A(&,v) = ve(v) - T(v) (6.11)
where v¢(v) = 207" (™/DTT(v) cos ﬁ"z—_r—)

§7. THE SERIES M(v).

Let ' C G be a discrete subgroup as in §1 and let x be a character of I'. Let P=N-A- M
be a I'-cuspidal parabolic subgroup. We write I'p =T'N P, 'y = 'N N. Fix n a character
of N and £ a character of M. We shall assume that we have the compatibility conditions
Nry = Xlry and x|,, =¢. IfveC,ve H%" and g € G we write

M(E,v,9,v) = w(,v)(meulgly) (7.1)

where w(¢, v) denotes the Whittaker vector associated to ™!, as in (5.7).

In what follows, when some variable is understood it will be omitted. For instance, if £, v
are fixed, we will write M(v, g), w(v) and m, for M(¢,v,g,v), w(é,v) and m¢ ,, respectively.
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As seen in (6.6), if w is a compact subset of {v | Rews > 1}, there exists a constant Cw-> 0
such that
|M(€,v,9,v)| < Cua(g)te¥*? (72)

for v € w, a(g)? < T. Now, if X € U(g), XM(& v, g9,v) = M(€ 1,9, Xv), hence XM
satisfies a similar estimate. Thus, it follows from (7.2) and the convergence of the Eisenstein
series, that the series

M(E,v,9,0,X) =y X(v)M(E,v,79,v) (7.3)
Y€l p\T

defines a C* function in {Rer > 1} x G, helomorphic in » (note that the summed function
is invariant under I'p = T'N M N). We shall call this series, the M-series.

One of our goals will be to study the meromorphic continuation of the M-series and to
show that it satisfies a simple functional equation, connecting the values at v and —v. We
shall also study the poles of this meromorphic continuation for Re v > 0.

We now define a truncation M(f, v,9,v,X), which will be very useful for our purposes.

Let T € R, and let ¢ € C°(G) be left N-invariant and right- K -invariant and such that
¢(a) =1ifa€ A7, ¢(a)=0ifa € A%, and 0 < ¢ < 1. Here A7 = {exp(tH) |t < T}
and A%, = {exp(tH) |t > T+ 1}. We define

M(E, v, g,0,%) = D $(v9)M(E,v,79,v)x(v ™) (7.4)
~ETp\T

We observe that M — M is locally a finite sum of translates of M. Hence M is defined
and C'® in the same region as M (the parameter T will be usually understood).
Now let A\, = (#* —1)/4 be the eigenvalue of C in HS”. We now define the auxiliary
function )
M(£77/1gvv)X) = (C_/\V—[)M({’V791v7X) (75)

Lemma 7.1. (i) If Rev > 1 and X € U(g) then XM(v, g, x) is bounded in absolute value

and holomorphic in v.
(ii) M(v, g) can be analytically continued to a C* function on C x G, holomorphic in
v. Furthermore, the support of |M(v)| is a compact subset of I'\G, independent of v.

Proof. Similar to that of lemmas 2.2 and 2.3 in [MW].

Let k € K be such that Q = kPk™! is a (x,')-cuspidal parabolic subgroup. For v € C, let
(k-v)H = v(Ad(k~'H)) if H € ag. Let L(k) : H®" v H&*” be the G -isomorphism given
by L(k)f(z) = f(k~'z). Then f — E(Q,kv,g,L(k)f,x) defines an intertwining operator
from Hf\l" into A(T\G, x) -

We fix {Py,...,Ps}, a complete system of representatives of regular cuspidal parabolic

subgroups, with P; = kiPk,”! k; € K, (:=1,2,...,8) and P, = P.
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Now, if A € G, [ReA| < 1, then E(Q, k), L(K)f,x) € L'T\G,x) where defined (by
the analog of [MW] A, 2.1 in our context). Thus, if Rev > 1, the integrals defin-
ing (M(v,v, ), B(Q, —kX, L(k)f,x)) and (M(v,v, x), B(Q, —kX, L(k)f, X)) converge ab-
solutely for Rev > 1, off the poles of E(Q,—kA, g, L(k)f, x), by Lemma 7.1.

Lemma 7.2. (i) Let Q be a regular-cuspidal parabolic subgroup, @ = kPk~!. Then

(M(V: ér, X)a E(Qv _k—)-‘.v L(k)¢r7 X))

can be meromorphically continued to Cx C. The singularities lie in the set Cx DU{(v, }) |
(v £X) € {0, 2, 4,...}}, where D is a discrete subset of C that contains the poles of
E(Qu —k/\a ¢r, X), 76(_)‘) and Cr(_/\)-

(ii) The inner product

dQ(V’A) = (M(V’ ¢r7X)aE(Qa_kX> ¢T’X)> (76)

has a meromorphic continuation to C x C, with singularities containing in the set C x D
where D is a discrete set of C containing the poles of E(Q,—k), g, ¢r, x). Furthermore, if
v is not a pole of y¢(—A), E(Q,—kX, ¢r, x) nor of c;(—X) then

do(v,v) = -1 (Q, —v) a Ve /DT o5 MVT—T) (7.7)

) (Q ) 2—Vei(1r/2)r
=-T v v—r1 v
T () T ()

do(v,—v (7.8)

where r,(Q,A) is the P-Fourier coefficient of E(Q, k), ¢,¢r,x). In particular, if r is an
odd integer, dg(0,0) = 0.

Proof. (compare [MW], Lemma 2.4)
The integral in question equals

/F\G > $(r9)M(v, 9. 6 )x(v T VE(Q, —kX, g, L(k)¢r, x) dg =

vel'p\T

/ ¢(1')1M(]/,x’¢‘r)E(Qu_kxava(k)gﬁT?X)dI =
Trp\G

/ / / dla)n(n™ )M (v, au, ,)E(Q, —kX, nau, L(k)é, x)a~** dn da du
rv\N Ja Jung
now ([MW], Proposition A, 2.5) implies

/I" \N 77(n)E(Q7 —kX, nwt, L(k)¢T’ X) dn = T’?(Q, —X)j(—X)(w_;(m)qu)

Thus, the inner product we are computing equals

— a P ¢(a)w(v)(my(a)dy ) (7_5(au)d,) dadu
ra(Q, A)/A]M\K Blayw()(m(a)8.) T (~N) (n_x(au),) dad
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[e o]

____1__ v+p ko A .
F(u + 1) @ ;C"xk(qﬁr)a , with ¢, 0 =1

the series converging absolutely and uniformly on compacta of C x sop ¢. Using (6.9) we
have that the above equals

Proposition 6.1 implies that w(v)(7,(a)¢,) =

_ =) = _
=\ 2p a( ) y B v=A+2p+(k+l)a
(@, =) [/A é(a)a 1"(1/+ 1)1"(—/\ T 1) kgoc kCoal @ da +

—2p_ W(=Ner(=N) At 2p (k41
¢(a)a=?" Cuk Cx @ TAT2AF(HDa g,
/ T(v+1)T(\ +1) g;o

Interchanging summation and integration, we obtain for (v, ) such that Re(v + A) > 0,
Re(u - /\) <0,

r - o T+1
FWE?; 1);) {75(/\) Y cur(#r) cori(gr) </T $(ar) et(=t20k+0) gy

k, =0
T o
/ et((u—A)+2(k+l))dt +er(=N) Z Cu,k(¢r) C,\,I(¢r)><
—oa k,l=0

T+1 T
</ b(aq) €t (0 +2(k+D) dt+/ et((u+A)+2(k+1))dt>}
T oo

Tn(Q )\) (U A)+2( k-H))
v, Fr(v,—A
F(l/+1 L[ZOC k(dr) c—xul B ~}2k+l)+ ki(v, —A)

(0 +20k+0)
r /\) Cul. r C)\l ) + F l(’/a/\) (7.9)
el Z AN 2kl

k,1=0

where F (v, A) is a holomorphic function in C x C.

We briefly sketch the proof of the last assertion. By approximating suitably the Eisenstein

series by C* compactly supported functions, one concludes that

2 _ 2
4 (

In particular, if 1/ is not a pole of y¢(A), r,(@, —A) nor of ¢,(—A) we get, by the proof of

i),

dQ(U,/\) = M(V7¢T7X)>E(Q7_kx7 d)Tx Y))

N -2 —
(M(V> ¢1‘, X)! E(Q’ _k’\v ¢r7 X))

22— 21 (Q,—A) eT(("“’\)) 3 v ye(v)
Jm 1 F(V n 1) 7e(A) - = —1y(Q,—v) 5 2T (v+1) (7.10)
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v ocr(v)
2 T(v+ 1)’
odd, then dg(0,0) = 0. The lemma now follows from (6.10).

Similarly, one computes dg(v, —v) = —r,(Q,v) = We observe that if r € Z is

Theorem 7.3. (i) M(l/,g,x) and M(v, g, x) can be meromorphically continued to C.
They define C* functions on (C—D)x G, (D a discrete subset). Moreover, M(v,g,x) has a
pole if and only if M(v, g, x) does, and the principal parts coincide. Finally, M(u,g, X) has
moderate growth where defined and lies in L2 *(T'\G, x), Va > 0 if Re v > 0 (respectively
in L2 (T\G, x) if Rev > 0, Im 1 # 0) and v is not a pole.

(ii) If vy # 0 is a pole of M(v,¢,é-,x), Rey > 0, then 14 is a simple pole and

Resy=y, M(v, g, ¢+, x) is a square integrable automorphic form.

Furthermore, if 1y = 0 is a pole of M(v,g,¢.,x) then it is of order at most 2, and
lim, o »? M(v,g,#r,Xx) Is a square integrable automorphic form. If it is a simple pole,
then

Res,=o M(v, ¢, ér,x) — 2" "2 cos % Z m;ry(P;j,0)) E(P;,0,v,9,¢r,X)
=1

is a square integrable automorphic form.
If 119 is a pole of M(v, g, ¢,,Y) and Revy < 0, then

Resu:uo {M(V g, X)

2 5 z(1r/2)r 7"(” r) S —y 1
( a) - 14v+r T Zm 77 17 7/)(;) : F( +l/_ﬂ> E(P1>7V7g7¢1‘7>()+

r <_'—Z—+—r) E(P17 7/7gw¢T7.Y)]}

124

wls

(P,,l/)(

[CRe]

)

is a square integrable automorphic form. Here m; (resp. r,(P;,v)) is as in (3.7) (resp.
(7.7)).

Proof. 1f Re v > 1 then M(u.,g,x) = I\./Id(u,g,x) + Mc(l/,g,x), where Md(l/,g,x) €
L3(T\G, x), Mc(v,g,x) € LXT\G,x) (see Theorem 3.6).

The meromorphic continuation of 1\7[(1 and the fact that Md lies in LZOO_(F\G, X) are proved
by the same argument as in [MW] 2.5. We will thus concentrate on M(1, g, X ).

Z

As usual, we fix a complete system of cuspidal parabolic subgroups, {P,..., P} where P;
is regular (resp. irregular) if 1 <1 < s (resp. s+1<1<r). If Q =kPk™" is a regular
cuspidal parabolic, we will write E(Q, A, g, ¢, x) in place of E(Q, k), g, L(k)¢, x).

As seen in §3, there exist a meromorphic function on C2, d;(v, A), and ¢;(», A) holomorphic

for (v,A) € {v | Rev > 1} x iR such that

- mz

MC(I/vg): /R e ’/ /\)E(PH/\g ¢r7 )
e 0

‘77rz

~ m,
M) =323 [ el VB 608
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Using that M(1, ¢, x) = (C—),)M(v, g, x) one arrives at d;(v, \) = ’\22"2 ci(v, A), hence
ci(v, A) also admits a meromorphic continuation to C x C. Thus, to continue M(v, g, x)
it is sufficient to continue each term

d,‘(l/, /\)

It(’/7g)_AeA=0 )\2_V2E(P"/\’¢7'7X) d)‘ (711)
The holomorphy of d;(v,\) on C x iR implies that I;(») is holomorphic off the imaginary
axis. We claim that I;(v) is holomorphic for € iR, v # 0. Denote by I; () (resp. I; ;(v))
the holomorphic function I;(v) restricted to the halfplane {v | Rerv > 0} (resp. {v | Rev <
0}. Let € > 0 be such that E(P;, A, ¢,,x) has no poles in {\ | |Re A| < €}. Given a > 0,
we modify the contour of integration along the imaginary axis, substituting the segment
[—ta,ia] by the three sides of the rectangle with vertices in {—ia; e — ia; € +1a;1a}. Let T,
be this contour. Let

di(v, A\
Ii'e("»9)=/r ﬁ(_—ygE(Pﬁ/\,ﬁﬁr,x) dA (7.12)

thus I; ((v) is holornorpﬁic away from the set C, =T U —T..
Let R, be the rectangle with contour C¢. Then, if » € R, Rev > 0

Li(v)— I (v) = 1:/—idi(;/, VE(P;,v, dr, X) (7.13)

Thus (7.13) gives a meromorphic continuation of I; ;(v) to {v | Rev > —e€}, which is

holomorphic on :R — {0}. If v € R, Rev <0

Lio(v) = Li(v) = _?d,-(,/, —V)E(P;, —v, 67, x) (7.14)
./
Hence )
Li(v)— 7ﬂ{di(v, V)E(P;, v, ¢r, x) + di(v, —v)E(P;, —v, ¢r, X)} (7.15)
v

is a meromorphic function in the halfplane {~ | Rev < 0} which coincides in the strip
{—€ < Rev < 0} with the meromorphic continuation of I; ~(») given by (7.13). This implies
that MC(I/, ¢) has a meromorphic continuation to C, holomorphic in the clos~ed halfplane
{Rev > 0} with the exception of a possible simple pole at » = 0. Also, M.(»,g.\) is
of class C* in (v,¢), where defined (see [OW, pp 113-118]). We note that the explicit
formula for d;(v,v) and d;(v, —v) are given in (7.7) and (7.8).

We nowkprove that M(I/,,X) is of moderate growth. We have seen that My(v) €
L2 (T\G,x), Viv € C — Q(¢,). To estimate M.(»,g) we analyze the functions I;(v,g)
defined in (7.11). - Let D be a compact subset in {v | Re » > 0}. Then there exists a

4, ) < Cpldi(v, A)| for all v € D, A € :R. Thus

constant C'p > 0 such that :
A2 — 2

. di(v, A)
. — Y
Ii(v,9) /Re o N0 E(P;, )\ g, x) dX

lies uniformly in L%(T\G,x), for v € D. Since C*My(v,g) and C*M.(v,g) lie in
L*(T'\G, ), for any k > 0, it follows that I;(v,¢) € L% (T\G, x).
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Now suppose vg € iR — {0}. We must then estimate
e
Ii,f(uag)_ Tdi(’/)’/)E(Piﬂ/’g,(ﬁraX) (716)

We choose a > |vg| and we write T'c = {it | |t| > a} U~.. Then

A [ i,
L-,E(u,g)_:ﬁTilA OAz(V LB(P X, g ) dA 4 AZ(” Y (P A, 61 x) dA

v?

Let D be a closed disc centered in vo with radius § = min{3, J%l, a—*%ﬂl} By an argu-
ment similar to that in the case when Rev > 0 one shows that the first integral lies in
L2 (T\G, x). On the other hand, the second integral (over 7.) is estimated in absolute

value by sup{l‘i‘z(—f:‘,l‘ a(g)'™ | A € 7., v € D} for any ¢ in a Siegel set S;, associated
to the parabolic P;. Since the second summand is bounded, in absolute value, on any
Siegel set associated to Pj, j # i, 1 < j < r, one easily concludes that this term is
uniformly in L2;%(T'\G, x), @ = a(e). Letting ¢ tend 0 we get that, for vo € :R — {0}, ™
Ii(vo,g) € L25*(T\G, ), for any o > 0.

Now the term "id {(v,v)E(P;,v, g, x) is estimated in absolute value by Cp a(g)'*¢, Vv € D,
and also its derlvatlves It then follows that M(v,g) € L*~*(T'\G, x), Va > 0 if Riu >0,
v#0. .

Finally, if Re v < 0, we must estimate
e
Ii,l(yv g) - _’/_{di(”7 I/)E(P,’, v,q, \) + di(V7 _V)E(Pi, -9, /\)}

The first term is holomorphic and lies in L2 (I'\G, x) by the above argument, while the
second term has moderate growth where defined. The assertion is now proved since any
function in L2 (T'\G, x) has moderate growth if 1 < p < oo.

We now study the principal parts of 1\7[(1/ g) at the poles. Assume first that vy #£ 0 is a

pole and Revy > 0. We have seen that M(l/ g) is holomorphic in 1y and g is a sxrnple

pole of M4(v, g).

_ ~ d;

Let p = Ay, = 54—1. Then My(v,g) = Z ——]ﬂ
Hi=nr T "

and {1;}$° is as in (3.7). As (v — v9)Mc(v, g) — 0 pointwise, when v — 0, one has ([MW]

Theorem 2.5) that

¥;(g), where d;(v) (M(VJ) 1r/’J)

- . d:
RCSyzuo M(V, g) = 3%(” - VO)Md(Vag) = - Z 'J?(Vl:)o_)"lb_’l(g)

Hj=p

Hence the residue at vy is-a square integrable automorphic form.
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If o = 0 is a pole, it is at most a double pole. It is a double pole only if d;(0) # Q for
some j such that p; = Ag. In this case, by an argument similar to the above we get that

lim v*M Z d;(0)¥;(g)

v—0
B =Xo
is a square integrable automorphic form. If vq = 0 is a simple pole, then
~ o Y , _ U .
Res,—o M(v,9,x) = lim vM(r,9) = = > d;(0);(9) ~ Zz mi di(0,0) E(P;,0,9, )
ki =Xo
Since M(v, g, x) — M(v, 9, ) is given locally by a finite sum of entire functions, M(», g, X)

has a meromorphic -continuation to C, with the same poles as M(;/,g, x) and the same
principal part at each pole.

Proposition 7.4. Let Q be a regular-cuspidal parabolic subgroup, @ = kPk™, k € K.
Then there exist meromorphic functions, Dy(Q, P,v) and D(Q, P,v) such that

/ M(v,n',6,) dn' = Dy(@Q, P,v)er () - 6r(k)er
Fng\Ne

/I‘ w E(Q,k-v,n,L(k)¢,;) dn = vol(FN\N)qﬁr + f(k(—w)) D(Q,P,v)ce(v)d

&

IfRev > 1
1
Dy(Q,Pv) = o—— ,x(é_l)n(nl(ék))ﬁ(m(ﬁk )a"+’J
U (v + 1) bES(XP,:NQ) ok
D(Q,P,v) = Z V(6)E™ (m(8k))alt?
§€S(P.Ng)

where S(P, Nq) is a set of representatives of I'p\(I' = I'p)/I'n,.
Proof. Similar to that of Proposition 2.7 in [MW].

Theorem 7.5. (Functional equation) M(v) satisfles the functional equation

a(v)M(v, dr,x) + b(V)er(v)M(—v, ér, X) =

D(Pi, P,—v) -
(V)er(—v) Z vol (P IV ) E(Py, kiv, L(k:)$r,x)  (T.17)
where Py, P,,... ,Ps is a complete system of representatives of regular cuspidal parabolic

subgroups, P; = kiPki'l, ki€ K 1 =1...s) and Py = P. Furthermore D(F;,P,v) =
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I(—v + 1)D,(Q, P,v) with Dy(Q, P,v) as in Proposition 7.4 and a(v) and b(l/)>a.re as in
(6.10).

Proof. The left hand side of (7.17) equals
a(v)Mz(v,g, ¢, x) + b(v)e,(v)Mr(=v,9, 6+, x)
+ Y (1= ér(va)T(W)((m(vg)dr)x(v71) (7.18)
YETp\T

Let us consider its growth on a Siegel set associated to P. If g € A;Z and tg is sufficiently
large, then

Yo (1= 44(x9)T ()(7u(19)8r) = T (v)(mu(a)$:) (7.19)

Y€l p\I'

Now, M(V, x) has moderate growth and J(v)(m,(a)¢,) decays exponentially as a? — co.
Using reduction theory, we conclude that (7.18) is an automorphic form. We compute the
constant term along each regular parabolic subgroup P; = k,'Pki_l. Let @ be such a F;,
and write k in place of k;.

By Proposition 7.4, the constant term along @ is given by
¢-(k) {a(v)Dy(Q, P,v)A(§, v)¢r + b(v)er (v)Dy(Q, P, —v)A(€, —v)¢r }

where v¢(v) is as in (6.11). Let a' € Ag, then, applying (7.18) to m¢ ,(a')$. we get

or(k) {a(v)Dy(Q, Pv)(a')*+krc (1) +

b(v)er(v)Dqy(Q, P, —1/)(a')k"+k")c,(—l/)¢r}

Now. the coefficient of (a')*¥'***# of the constant term along Q of E(Q,k-v,a',L(k)dr, X)
is 1'ol(F,\rQ\_7\7Q). Therefore, if we subtract
b(v)Dy(Q, P, —v)

vol(Tng \Ng)

from the left hand side of (7.17), the constant term of the resulting function will only
1I\—k-v+kp
) ’

E(Q,k'l/7ga¢rvx)

cr(v)er(—=v)

involve (a
It is now clear that if the second term of equation (7.17) is subtracted from the left hand
side, we obtain an eigenfunction of moderate growth with eigenvalue ”24_1 for each v € U,
U an open set in {v | Rev > 1}. Now, since C has real eigenvalues in L%(T'\G, x), this

difference must be identically zero in U, and by analytic continuation, in all of C.

Writing explicitly a(v), b(v) and c¢,(») the functional equation reads

(205 () Mo, = o) T (25 ) M 6r,3) =
2, 2mi >\ D(P;, P,—v)
(3) T (1=rtr) Zvol(l"Ni\N,-)

&

E(P;, kiv, L(ki)$r, x) (7.20)

=1

where n(n(z)) = e'*® is the character on N.
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Remarks.

The family M(v, g, ¢, x) yields generically eigenfunctions of C' on C*°(I'\G, x) which are
of exponential growth. However these are useful in the study of automorphic forms since,
on the one hand, as we have seen, the residues in the closed right half plane do define
automorphic forms (see also [Ne], [MW]). On the other hand one also get automorphic
forms by taking certain special values of M(1, ¢, x). Actually one can verify that if r > 2,
M(r—1,g, ¢r, x) corresponds-precisely to the classical Poincaré series of real weight r and
multiplier system vy, in the notation of §2 (c.f. [Rn]).

The above family has also been studied by a different approach in [He], [Br], [Br2] and,
previously, in the particular case when r = 0, in [Ne].

(Br]
(Br2]
[CLPS]
(GW] |

(He]

(Sla]

[Wa)

REFERENCES

R. W. Bruggemann, Fourier Coefficients of Automorphic Forms, Lecture Notes in Mathematics.
865 (1981).

R. W. Bruggemann, Families of Automorphic Forms, Basel, Boston, Berlin, 1994, Monographs
in Mathematics V88, Birkhauser.

J. Cogdell, J. S. Li, I. Piatetski-Shapiro, P. Sarnak, Poincaré Series for SO(n,1), Acta Math.
167 (1991), 229-285.

R. Goodman and N. R. Wallach, Whittaker vectors and conical vectors, J. Funct. Anal. 39
(1980), 199-279.

D. Hejhal, The Selberg Trace Formula for PSL(2,R) II,, Lecture Notes in Mathematics. 1001
(1983).

R. Miatello and N. R. Wallach, Automorphic Forms Constructed from Whittaker Vectors, J.
Funct. Anal 86 (1989), 411-487.

H. Neunhofer, Uber die Analytische Fortsetzung Poincaré-reihen, Sitzb.Heidelberg Akad. Wis-
sent., 33-90.

S. Osborne and G. Warner, The Theory of Eisenstein Series, Academic Press. New York, 1981.
W. Roelcke, Dus Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I,
Math. Annalen 167 (1966), 292-337.

W. Roelcke, Das Eigenwertproblemn der automorphen Formen in der hyperbolischen Ebene, [,
Math. Annalen 168 (1967), 261-324.

R. A. Rankin, On Modular Forms and Functions, Cambridge Univ. Press, London/New York,
1977. )

A. Selberg, On the Estimation of Fourier coefficients o f modular formms, Number Theory: Proc.
Sympos. Pure Math. 8 (1965), 1-15.

L. J. Slater, Confluent Hypergeomelric Functions, Cambridge Univ. Press, London/New York,
1960.

N.R.Wallach, Real Reductive Groups I, Academic Press, San Diego, 19838.

Facultad de Matematica, Astronomia y Fisica, U. N. C.
Haya de la Torre y M. Allende, (5000) Cérdoba

Recibido en marzo de 1995.



