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Abstract: In IRn, given, E [0, n) andp E (1, nh), it is well known that wq E Ar, 
with 1/q = lip - ,In and r = 1 + q7' is a necessary and sufficient condition 
for the boundedness of the Maximal Fractional Operator M"( between LP( wP) and 
Lq(wq) spaces. In this work we study the dependence of the operator norm on the 
constant of the Ar condition. The result extends the obtained by S. Buckley for 
the Hardy-Littlewood Maximal Function (i.e.: ,= 0). 

§1. 

Let p, be a positive Borel measure in IRn. For each I in (0, n), the fractional 
maximal operator M"( with respect to p, is defined by 

(1.1 ) 

for IE L}oc (dp,), where the sup is taken over all cubes in IRn containing x. It is 
well known that for each pin (1, ni,) there exists a constant C, independent of 
I, such that the inequality 

(1.2) 

holds with 1 I q = 1 I p - I I n for every I in LP (wP dp,) if and only if w is a weight in 
the A (p, q) class with respect to p" that is, w is a non negative function satisfying 
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where the sup is taken over all cubes in lRn and p' = pI(p-l). From the classical .. t'. 
proofs of the above result, it can be obtained that the constant C in (1.2) depends 
on Kw,q,p, but they do not show explicitly the dependence. In 1993, S. Buckley 
([B]) solved the problem for the Hardy-Littlewood maximal function (i.e.: 'Y = 0 
in (1.1)). The purpose of this work is to extend that result to the general case of 
the operator in (1.1). Actually, our main result is the following theorem. 

(1.4) Theorem: If 0 :s; 'Y < n, 1 < p < nh, l/q = lip - 'YIn and W M a 
nonnegative function on IRn such that, for every cube Q, (1.3) holds, then 

The power K~,~~;::;) is the be.st possible. 

As it can be seen in §2, our techniques to prove the above theorem are extensions 
of those used by Buckley in the case 'Y = O. An important point in order to 
obtain these extensions is to recall the obvious relation between the A (p, q) classes, 
defined as in (1.3), and the Muckenhoupt's classes Ar with respect to {t. In fact, 
since a weight w is in Ar , 1 < r < 00, when 

where the sup is taken over all cubes in lRn , it is clear that w belongs to A (p, q) 
if and only if w q belongs to A1+q/p" with p' = pl(p - 1). Moreover, we have 

Bw. ,I+q/p' = KYv,p,q' 

§2 
As in the case 'Y = 0, we are going to prove theorem ( 1.4) by using an argument 
of interpolation. For this reason, let us first to state the following version of the 
Marcinkiewicz's interpolation theorem with respect to a positive Borel measure {t. 

(2.1) Theorem: Suppose that a quasi-linear operator T is simultaneously of weak 

types (PI, qd Y (p2, q2), 1 :s; Pi, qi :s; 00, ql i=- q2, with norms Ml y M2 respectively 

(i.e.: {t({x : Tf(x) > a}) :s; (~llfIILP.(dll)f', i = 1,2). Then for any (p,q) 

with 

~ = ~ + (1 - t) 1 t (1 - t) -=-+---, 0< t < 1, 
p PI P2 q ql q2 
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the operator T is of strong type (p, q), and we have 

Proof See [Z], p. 111, vo1.2 .• 

(2.2) Remark: From the proof of ( 2.1) in the case PI S P2 Y ql < q2, it follows 
that 

To apply the above theorem we need weak type inequalities for M"( . They wIll be 
given by the next two results. The first one was proved by S. Buckley and provides 
an estimate concerning a known property of Ar classes. The proof of the second 
one is due to B. Muckenhoupt and R. Wheeden ([MW)). However, accordingly to 
our purpose, here we are going to examine carefully that proof in order to obtain 
a more precise conclusion. 

(2.3) Theorem: If w satisfies Ap then w satisfies Ap-e with c '"'-J B~-:{ and 
Bw,p-e S CBw,p, where C= C(n,p). 

Proof See [Bl, p. 255, lemma 2.1.. 

(2.4) Theorem: If O:S; 'Y < n, 1 < p < nh, 11q = lip - 'YIn, 0: > 0, EO/ is the 
set where M"(f> 0:, and w is a nonnegative fu.nction on mn satisfying (1.;)) then 
there is a C , independent of f , such that 

(2.5) 

Proof Fix M > 0 and let EO/,M = EO/nB (0, M). It is clear that for each x E EO/,M 
there exists a cube Q containing x such thai 

Using Besicovitch.'s theorem we can choose a sequence {Qd of these cubes such 
that Ea,M C UQk and no point of mn is on more that C = C (n) of these cubes, 
i.e. E XQk S C. Then, since pi q S 1 and w satisfies (1.3), we have 
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::; ]{!:',p,qC (r IflPwPdp) 
a P JIRn 

Finally, letting M -t 00 we get (2.5) .• 

Now, we are able to proceed with the proof of our main result. 

Proof of Theorem ( 1.4): In the next, for the sake of simplicity, we are going to 
denote ]{w,p,q by ]{. As we said in §1, the fact that w satisfies (1.3) implies wq 

belongs to Ar with r := 1 + q/p' and Bwq,r = ]{q. Then, from (2.2), there exists 

c; rv ]{q(l-r') such that wq belongs to As with s =r - c; > 1 and Bwq,s ::; C]{q , 
C = C (n,p, q). Now, we choose numbers PI and ql such that 1 < PI < p, l/ql = 
l/Pl - 'Y /n and s = 1 + qdp~· So wq/ ql satisfies A (PI, qI) with ]{wq1ql,Pl,ql < 
C]{q/ql, C = C(n,p, q). Then, by theorem (1.4), 

(2.6) 

By defining Tg(x) = M"{ (gv::;' (x)), with v = w q ,and taking f = gv::;' (x), it is 
clear that (2.6) can be written in the form 

(2.7) 
!l. r v dp ::; C ~: (r n IglPl VdP)· Pl 

J{Tg(x»a} a JIR 
In the following step of the proof we shall asume c; ::; l n~"{ • This hypothesis can 

be ensured by taking c; min (1, i n~"{) instead of the original c; in the choice of PI 

and ql (note that this change preserves the relation between c; and K ). Now, we 
can pick q'l. and P2 such that l/q - 1/q2 = l/ql - 1/q and l/q2 = llp2 - 'YIn. 
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It is clear that 1 + q2/p~ > 1 + q/p', so, v E A1+q2/P~ with BV,1+q2Ip~ :=:; CKq 
C = C(n,q,p). Then, by reasoning as before, we get 

(2.8) 

Since there exists t E (0,1) such that 

! = ~ + (1 - t) and 
p PI P2 

1 t (1 - t) 
-=-+--, 
q ql q2 

theorem (2.1) allows us to obtain, from (2.7) and (2.8), the inequality 

(2.9) 

where C = C(n,p,q) and H is as in (2.2). From our choice of ql, P2 and q2 and 
the assumption on e, we have 

en 
ql =q- --, 

n-,,( 

q en 2 
- qqI _ - n=:y < q _ 2 

q2 - 2' - q 2en - 2 /4 - q, ql - q q - n-,,), q - q 

nq2 
P2 =:=:; 2q. 

n + ,,(q2 

Then, H can be estimated as follows 

The above inequality, (2.9) and the fact that e '" Kq(l':"'r') allow us to obtain 

IITglllq(v) :=:; CKqr' Ilglllp(v) = C Kq(~)llglllp(v)' 
with C = C(n,p,q). Finally, (1.5) follows from the definition of T by taking 
g=fw-q ::;; andv=wq . 

To see that the power of Kin (1.5) is the best possible, we give an example in IR 
(a similar one works in IRn for any n). Let r = 1 + q/p', where p and q are as in 
the hypothesis of the theorem, and (j belonging to (0,1). By a simple computation 
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(r-l)(1-6) 1-r 

we can see that w(x) = Ixl q satisfies A(p,q) with Kw,p,q ~ o-q-, when f..L 

is the Lebesgue measure. Then, from (1.5) with this weight, we have 

(2.10) 

Now, we take f (x) = Ixl(o-l) X[O,l) (x). It is not difficult to prove that 

C 
M .. rf(x) 2:: (; Ix I')' f(x), 

for every x E 1R, where C is independent of o. Then, the above inequality and the 
fact that Ilflllp w P = o-q/p allow us to get the estimate , 

where C is independent of o. Finally, we complete the proof by combining the 
above inequality with (2.10).-
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