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Abstract: In IR", given+y € [0,n) and p € (1,n/7), it is well known that w? € A",
with 1/¢g=1/p—v/nandr =1+ q%l, is a necessary and sufficient condition
for the boundedness of the Maximal Fractional Operator M, between LP(w?) and
L%(w?) spaces. In this work we study the dependence of the operator norm on the
constant of the A, condition. The result extends the obtained by S. Buckley for
the Hardy-Littlewood Maximal Function (i.e.: v = 0).

§1.

Let p be a positive Borel measure in IR". For each v in (0,n), the fractional
maximal operator M, with respect to u is defined by

1
(1.1) M, f () =:ggm/ |f1 du,

for f € L1, (dp), where the sup is taken over all cubes in IR" containing z. It is
well known that for each p in (1,n/v) there exists a constant C, independent of

f, such that the inequality

(1.2) ([ (sl du)% <c ([ arwy du)% ,

holds with 1/¢q = l/p; v/n for every f in LP (wPdp) if and only if w is a weight in
the A (p, ¢) class with respect to u, that is, w is a non negative function satistying
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where the sup is taken over all cubes in IR" and p' = p/(p—1). From the classical
proofs of the above result, it can be obtained that the constant C in (1.2) depends
on Ky 4., but they do not show explicitly the dependence. In 1993, S. Buckley
([B]) solved the problem for the Hardy-Littlewood maximal function (i.e.: v =0
in (1.1)). The purpose of this work is to extend that result to the general case of
the operator in (1.1). Actually, our main result is the following theorem.

(1.4) Theorem: If 0 < vy < n,1 < p < nf/y,1/g =1/p—v/n and w is a
nonnegative function on IR™ such that, for every cube Q, (1.8) holds, then

1 1
as) ([ oswyrae) <orllT ([ a)

(1=3)

The power Kﬂ,,p,q /13 the best possible.

As it can be seen in §2, our techniques to prove the above theorem are extensions
of those used by Buckley in the case v = 0. An important point in order to
obtain these extensions is to recall the obvious relation between the A (p, ¢) classes,
defined as in (1.3), and the Muckenhoupt’s classes A, with respect to p. In fact,
since a weight w is in A,, 1 < r < oo, when

1 1 ) r1
1.6 By,,=sup| — | wd — [ wTr1d o0,
(19) e (g fo o) (igp [ mam) - <

where the sup is taken over all cubes in IR", it is clear that w belongs to A (p,q)
if and only if w? belongs to Ay y,/p, with p' = p/(p — 1). Moreover, we have
By 1tq/p = Ky pq-

§2

As in the case 7y = 0, we are going to prove theorem ( 1.4) by using an argument
of interpolation. For this reason, let us first to state the following version of the
Marcinkiewicz’s interpolation theorem with respect to a positive Borel measure .

(2.1) Theorem: Suppose that a quasi-linear operator T is simultaneously of weak
types (p1, 1) ¥ (P2,42), 1 < Piy¢i < 00, q1 # g2, with norms My y Mj respectively
a ) 9
(i.e.. u({z : Tf(z) > a}) < (%—L ||f||L,i(d”)) , t =1,2). Then for any (p,q)
with
1 (1—1t)

t
- = —+ s
b D1 D2

t 1—t
:—+( ), 0<t<l,
q1 q2

|
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the operator T is of strong type (p,q), and we have

ITf N ocany < H MM | fll o ag
Proof: See (Z], p. 111, vol.2.a

(2.2) Remark: From the proof of ( 2.1) in the case p; < p2 y 1 < g2, it follows
that

HY =294 ((pl/p)ﬁ- n (pz/p)%%)

9—qQ q2 —4q

To apply the above theorem we need weak type inequalities for M, . They will be
given by the next two results. The first one was proved by S. Buckley and provides
an estimate concerning a known property of A, classes. The proof of the second
one is due to B. Muckenhoupt and R. Wheeden ([MW]). However, accordingly to
our purpose, here we are going to examine carefully that proof in order to obtain
a more precise conclusion.

(2.3) Theorem: If w satisfies A, then w satisfies A,_. with ¢ ~ Bf‘;pp' and
By p—e < CBy,p, where C = C(n,p).
Proof: See [B], p. 255, lemma 2.1.5

(2.4) Theorem: If 0<~vy<n, 1<p<n/y, 1/¢g=1/p—v/n, a >0, E4 is the
set where M f > a, and w is a nonnegative function on IR™ satisfying (1.3) then
there 1s a C , independent of f , such that

(25) ([ wraw)' scBers ([ puran)’

Proof- Fix M > 0 andlet Ey pr = EqNB (0, M). It is clear that for each z € E, m
there exists a cube @ containing z such that

1
—_— d 1
@ Jp 11>

Using Besicovitch’s theorem we can choose a sequence {Qi} of these cubes such
that Eo m C UQk and no point of IR" is on more that C' = C (n) of these cubes ,
i.e. 3 xqQ. < C. Then, since p/q <1 and w satisfies (1.3), we have
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Finally, letting M — oo we get (2.5).m

|/\

(L)

AN

IA

Now, we are able to proceed with the proof of our main result.

Proof of Theorem ( 1.4): In the next, for the sake of simplicity, we are going to
denote Ky p 4 by K. As we said in §1, the fact that w satisfies (1.3) implies w?
belongs to A, with r = 1+ ¢/p' and Bys , = K9. Then, from (2.2), there exists
e ~ K91=™) such that w? belongs to A, with s =r —¢ > 1 and Bye,s < CK?,
C = C(n,p,q). Now, we choose numbers p; and ¢; such that 1 < p; <p, 1/¢q; =
1/p1 —v/n and s = 1+ q1/p}. So w¥/" satisfies A (p1,q:1) with Kyilar pg <
CK9/% C = C(n,p,q). Then, by theorem (1.4),

K1 o
(2.6) / widpy < C (/ Tis wqpl/‘hd#)
(M, f>a) aft \JR®
By defining T (z) = (gvn (z)) with v = w? , and taking f = gv= (z), it is
clear that (2.6) can be wrltten in the form
a
P1
(2.7 / vdu < C (/ lg|** vd,u)
: {Tg(2)>a) ot \VR"
In the following step of the proof we shall asume € < £ -"- . This hypothesis can

be ensured by taking € min (1, y Ervo 7) instead of the orlgmal € in the choice of p;

and ¢, (note that this change preserves the relation between ¢ and K ). Now, we
can pick g and p; such that 1/g — 1/q2 = 1/q1 — 1/q and 1/q2 = 1/p2 — v/n.
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It is clea.r that 1+ g2/py > 1+ q/p', s0.v € Aj4g,/p, With Byiyg,/p < CKT,
C = C(n,q,p). Then, by reasoning as before, we get

92
q 2
(2.8) J vdp < CX ( S el vdu) ’
{Tg(z)>a} o \JR"
Since there exists t € (0,1) such that
1 t —t) -
1t 00 1t (en
P M b2 9 @ 92

theorem (2.1) allows us to obtain, from (2.7) and (2.8), the inequality

(2.9) ITgl12 10y < CHIK lgll%, o)

where C = C(n,p,q) and H is as in (2.2). From our ch01ce of q1, p; and ¢y and
the assumption on €, we have
en

Q=9 )
n—7v

a9 ‘I_F;E—L-y q’

2en

5 =4q S =
21 — ¢ 99— 7=y q—2q/4

q2 =

"2 <9
P2 = —F/"——3X4q
n+7q

Then, H can be estimated as follows

2 a 2g
HY =2 (p2/p)7> + (p1/p) M 9443 (2_q) F i1 (n —'y).
929 . a0 9—q p En

The above inequality, (2.9) and the fact that e ~ K a(1-7') allow us to obtain

IT6%0c0) < CKT Nlgllt oy = C KT fgld,

with C = C (n,p,q). Finally, (1.5) follows from the definition of T' by taking
g=fw 7% and v = wl.

To see that the power of K in (1.5) is the best possible , we give an example in IR
(a similar one works in IR" for any n). Let r = 1+ ¢/p’, where p and ¢ are as in
the hypothesis of the theorem, and § belonging to (0,1). By a simple computation
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!r—l“l—ﬂ =T
we can see that w(z) = [z| ¢ satisfies A (p,q) with Ky pq ~ 617, when p
is the Lebesgue measure. Then, from (1.5) with this weight, we have

(2.10) Myl Loy S C6™ I F Lo ury -

Now, we take f(z) = |:z:|(6_1) X[0,15 (z). It is not difficult to prove that

c
Myf (@) 2 S lal" f(a)
for every z € IR, where C is independent of §. Then, the above inequality and the

fact that || f||75 ,» = §-9/7 allow us to get the estimate

1My ey = €670 = C5~ 1% uny

where C is independent of §. Finally, we complete the proof by combining the
above inequality with (2.10).
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