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ABSTRACT. A completely mixed bimatrix game (A, B) has a uniqne equilibrium 

strategy. The values of this game for ~ach play~r, a.r~ d~fined by VI = x T Ay and 

V2 = xT By where (x, y) is an equilibrium strategy. We give a formula for computing 

the completely mixed equilibrium strategy when the bimatrix game has zero-value. 

1. INTRODUCTION 

For the zero~sum tVlo-person games Kaplansky (1945) introduced the notion of 

completely mixed strategies and showed that in games where both players have only 

completely mixed optimal strategies, the payoff matrix is square and each player 

has a unique optimal strategy. Raghavan (1970) extended this result to the non

zero-sum bimatrix games. Also Kaplansky (1945) gave a necessary and sufficient 

condition on the payoff matrix for a game of value zero to be completely mixed. He 

showed that if the value of a game is different from zero, then the payoff matrix is 

nonsingular and gave a formula for computing this value. Jansen (1981a, b) showed 

that in completely mixed bimatrix games with A > 0 and B < 0, the matrices A 

and Bare nonsingular. He also extended the formulas for computing equilibrium 

strategies and the values for completely mixed bimatrix games. 
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Completely mixed bimatrix games have unique equilibrium strategies. The value 

of these games are defined to be the payoffs that the player receive when they play 

equilibrium strategies. In this paper we try to see how far the results can be extended 

to bimatrix games with zero value. 

2. GENERAL RESULTS 

A bimatrix game with m pure strategies for player 1 and n pure strategies for 

player 2, where 1 ~ m, n < 00, is specified by two real m x n matrices A and B. If 

player 1 chooses pure strategy i and player 2 chooses pure strategy j, the payoffs t~ 

players 1 and 2 are ai,j and bi,j respectively, for i = 1, ... ,m, and j = 1, ... ,n. Let 

Pn = {x E ~n : Xj 2': 0, i = 1, ... ,n, and t Xi = I} 
.=1 

and P': = {x E Pn : Xi > 0, i = 1, ... ,n}. Vectors are assumed to be column vectors, 

and T denotes transpose. The vectors in Pn are called mixed strategies and denoted 

by x 2: 0 where 0 = (0, ... ,0). The vectors in P': are called completely mixed 

strategies and denoted by x> o. A pair (x,y), where x E Pm and y E Pn is defined 

to be a equilibrium strategy of the game specified by (A, B) if 

for all ~ E Pm 

for all 'fJ E Pn 

Nash (1950) proved that this equilibrium strategy exists. Let E be the set of all pairs 

of equilibrium strategies. We say that E is completely mixed if the elements of E are 

completely mixed pairs. Let (x, y) E E be v(x, y, A) = xT Ay and v(x, y, B) = xT By 

are called equilibrium values of the bimatrix game (A, B). 

Let 

S(y) = {x E Pm: (x,y) E E} 

T(x) = {y E Pn : (x, y) E E}. 

We say that S(y) is completely mixed if all elements of S(y) are in P:;. A similar 

definition applies for T(x). 
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Theorem 1 If the set e is completely mixed and v(x, y, A) = v(x, y, B) = 0 then 

z. A and B are square matrices and rank(A) = rank(B) = n - 1 

ii. Ai,j, Bi,j denotes the cofactor of a;,j and bi,j' Then there exists an i with 

1 ~ i ~ m such that Ai ,l,"" Ai,n are different from zero and have the same 

sign. There exists a j with 1 ~ j ~ n such that B1,j,"" Bn,j are different 

from zero and have the same sign. 

uz. E;,j A,j i- 0, and E;,j Bi,j i- O. 

Proof. The necessity of (i) is an immediate corollary to Theorem 1 and 4 from the 

paper of Raghavan (1970). 

Let (x, y) be completely mixed equilibrium strategy. Let A;,j be the cofactor of 

a;,j' Since x > 0 and (x, y) E e implies that 

Ay=O. 

Then 

Y1 Y2 Yn (1) Ai,l - Ai,2 - ••• - A;,n' 

Since rank(A) = n - 1 then there exists i,j such that A',J is different from zero. 

As y is a completely mixed strategy this implies in (1) that for i = z, and for all j, 

A"j have the same sign. A similar remark applies to B. Hence the necessity of (ii) 

is proven. 

Since rank(B) = n - 1 then rank(cof(B)) = 1 where cof(B) is the matrix in 

which the (i,j) elements are the cofactors for bi,j' Without loss of generality we 

assume that the cofactor of bn,n, Bn,n i- 0, then 

n-1 
b1,1 b1,n-1 Et·b1 . 3 ,3 

j=l 

B= n-1 
bn- 1,1 bn- 1,n-1 E t jbn- 1,j 

j=l 
n-1 n-1 n-1n-1 
E(-A;)b;,l E( -A;)bi,n-1 E E( -Ai)tjb;,j 
;=1 . ;=1 ;=1 j=l 
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and 

-tn- 1 An-1 Bn,n 
-tn- 1Bn,n 

where Ai = Xi/Xn. If E Bi,j = 0, implies that 
i,j 

n n n n n n 

E E Bi,j = E E Ai( -tj)Bn,n = Bn,n E Ai E( -tj) = 0 
;=1 ;=1 i=l j=l ;=1 j=l 

where tn = -1, then 

n n-1 

E(-tj) =0 or E(-tj) = l. 
j=l 

Since the system 

j=l 

I: {wTBw = OT 
~O 

has a solution x, we '11 show that the system 

(where 1 is the column-vector of length n with every element equal to 1) has a 

solution. In fact, ifthe system (II) has not a solution, by Alternative Theorems (see 

Mangasarian book, page 34, Table 2.4.1) then (by Theorem (6) Farkas) the system 

II(l) : { Bz ::; 0 
IT z > 0 

has a solution z. Therefore the system 

has a solution s = -z. 

It suffices to analyze three different case: 

a) If s fulfills that 

Bs> 0 

then (by Theorem 5 (Gordan)) the system (I) has not any solution. This is a 

contradiction. 
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b) If s fulfills that 

Bs=O 

since rank( B) = n - 1 and tT = (tt, ... , tn-I, -1) fulfills that Bt = 0 and 

then t = cs, but 
n n 

0= Ltj = c LSj # O. 
j=l j=l 

This is a contradiction. 

c) From a) and b) there exists i l and i2 such that 

L bi1 ,jSj > 0 
j 

and "b· 'S' - 0 L.J ~2,j J -
j 

Let 

and 
j j 

We denote by B II (B 12 ) the submatrix of B formed by the row i E .h (i E h). 

Then S is a solution of system 

but (by Theorem 2 (Motzkim)) the systems 

has not any solution. This is a contradiction since VII = Xlt, fh2 

Xh = {Xi: i E Id and Xh = {Xi: i E Id) is a solution of this system. 

From a), b) and c) the system (II) has a solution. Let v a solution of systems 

(II), and v = vi L.i Vi. It is clear that v E Pm and is different from x. 

Finally, we are showing that (v, y) E E. 

for all ~ E Pm 

it holds true because Ay = O. 

for all 'I] E Pn 
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it holds true because fjT B = IT. 

Thus (x, y), (ii, y) E E. This contradicts that a completely mixed bimatrix game 

has a unique equilibrium strategy. Hence Ei,j Bi,jf. O. 0 

Corollary 1 If the set E is completely mixed and (x, y) E E then 

detA 
v(x,y,A) = E .. k. 

t,) ttl 

detB 
and v(x, y, B) = E .. B- . 

t,) I,) 

the denominator is always different from zero.' 

Proof. By Theorem 4 of Raghavan (1970) we easily s~e that the pajr (x., y) is a 

unique equilibrium strategy. Let 

v(x, y, A) = Vl and v(x, y, B) = V2 

then the game (C,D) given by 

andd;,j = bi,j - V2 

is completely mixed, (x, y) is equilibrium strategy and 

v(x,y,C)=O and v(x, y, D) = 0 

In particular by Theorem 1 det(C} == det(D}= O. 

det(C) = det(A) - Vl LAi,j and det(D)= det(B)- V2 L Bi,j 
i,j 

By Theorem 1 LCi,j f. Oand L Di,j f. O. The case Vl = 0 or V2 ~ 0 obviously 
iJ i,j 

need not be considered. Hence we have det(A) f. 0 and det(B) f. o. 0 

Proposition 1 If for the bimatrix game (A, B) there exi$t Vl; t12 such,that, for any 

(x,y) E E, 

Ay = v1l 

and if (i) and (ii) of Theorem 1 hold true, then E is compMteiyinixed.· 
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Proof. By hiphotesis A is square, rank(A) = n - 1 and there exists i such that 

(Ai,l, ... ,Ai,n) have the same sign. Then the vector fj (f}j = A,j / L A,k) belongs to 
k 

P;;. Similarly we choose x E P;; (Xi = Bi,i/ L Bi,k). It is clear that (x, fj) E [. and 
k 

v(x, y, A) = v(x, fj, B) = O. Since x > 0, it follows that if y* E T(x) then Ay* = O. 

But rank(A) = n - 1 assures us that y* =fj and y* > O. Let (x, y) E £, then there 

exists VI, V2 such that 

Thus (x,y),(x,fj) E E. By the argument above we have x x,y fj and 

x> O,y >0. D 
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