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MOLECULAR CHARACTERIZATION OF HARDY-ORLICZ SPACES

Claudia Fabiana Serra *

Presentado por Carlos Segovia Ferndndez

Abstract: We give a molecular characterization of the Hardy-Orlicz spaces H,,(IR"™)
(Theorem 2.18), which generalizes similar results for the Hardy spaces HP(IR") for
p < 1. This result is applied to provide a proof of the boundedness of singular integral
operators on Hy,(IR"™). (Theorem 3.10).

INTRODUCTION. The purpose of this work is to study the Hardy-Orlicz spaces
H,,. The usual Hardy spaces H? can be obtained as particular cases taking w(t) =
t?. In [V] Viviani gives an atomic decomposition of H,,. The molecular theory
can be found in [GC-RF]. Several authors have used this technique to deal with
operators defined on Hardy spaces, see for instance [C], [C-W], [M], [M-S], [T-W]

1 .

In this paper we obtain a molecular characterization for H,, with a general w,
see section 2, Theorem (2.18). Then, in section 3, we apply this result to study
the boundedness of singular integral operators on H,(IR"). One of the main
difficulties is to define a suitable gauge, that is a notion of molecular “norm”, in
the context of Orlicz spaces. The one we introduce in (1.41) it is not the same as
that considered in the papers above when w(t) = t?. However, in view of Theorem
(2.18), they turn out to be equivalent. In the first section we give the notation,
definitions and some properties that we shall use in the sequel. We introduce the
maximal spaces H,,, the atomic spaces H”9, 1 <.¢ < oo and the molecular spaces
M(p’q,e),l <g< o0, €>0.

1. NOTATION AND DEFINITIONS

Let w be a positive function defined on IR = {z € IR;z > 0}. We shall say that
w is of lower type [ (respectively, upper type [), if there exists a positive constant
C such that :
w(st) < Ctlw(s)

for every 0 < t < 1 (respectively, t > 1). It is easy to see that if w is of positive
lower type [, then lim, o+ w(t) = 0, therefore we define w(0) = 0. '

* The author was supported by: Consejo Nacional de Investigaciones Cientificas
y Técnicas de la Reptblica Argentina.

Keywords and phrases: Molecular, Hardy-Orlicz spaces.

1991 Mathematics Subjects Classification: 42 B25.

Programa Especial de Matemdtica Aplicada. Universidad Nacional del Litoral.
Guemes 3450, 3000, Santa Fe, Rep. Argentina.



204

We shall say that a positive function w defined on IR" is quasi-increasing (respec-
tively, quasi-decreasing) if there exists a constant C such that

w(s) < Cu(t)

for every s <t (respectively s > t).

We shall understand that two positive functions are equivalent if their quotient is
bounded above and below by two positive constants.

Let w be a function of positive lower type ! such that w(s)/s is non-increasing.
Then the following functions are well defined

(1.1) w™(s) = sup{t : w(t) < s} ,
(1.2) =

P(t)=;_T(t_—1) ,

(1.3) w@):/o wls) g5

S

(1.4) w1 (s) = sup{t: w(t) < s} and
-1
(1.5) :

0= G

We state the basic properties of these functions, the proofs can be found in [V].
(1.6) The lower type [ is less than or equal to one.

(1.7) w 1s of upper type 1 with constant C = 1.

(1.8) w™! is of lower type 1 and of upper type 1/1.

(1.9) @ is a continuous function equivalent to w.

(1.10) @ is strictly increasing.

(1.11) w is subadditive.

(1.12) w(s)/s is non-increasing.

(1.13) @ is of lower type ! and of upper type 1 with constant C = 1.

(1.14) @! coincides with the ordinary inverse function of W and is equivalent to
w1,

(1.15) p is a function of upper type 1/I — 1 equivalent to the non decreasing
function

p.
(1.16) p(t)/t? is quasi-decreasing for p > 1/1 —1.
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In order to introduce the atomic spaces H”*? and the molecular spaces M, 4.y, 1 <
g < 00, € > 0, we need the following definition.

(1.17) DEFINITION. Let w be a function of positive lower type l. Assume that
b= {b;} is a sequence of functions in LI(IR"),1 < q < oo, and c= {c;} i3 a
sequence of positive constants such that

(1.18) > cjw(llbsllee; V) = A < oo
J
We define
. 1185llge; '/
(1.19) Aq(b,c):mf{/\>0:2ciw (—’/\ﬁ/+ <1%.
\ J \ / J

We observe that

(1.20) Ay(b,c) = 0 if and only if b; = 0 for every j.
If L is the lower type constant of w, then

(1.21) 0 < Ag(b,c) < maz(LA,1).

If we also assume that w(s)/s is non-increasing, we have
(1.22) 0 < A4(b,c) < maz(LA, A"

and
1185114/
(1.23) Z cjw (A b o7 =1

Moreover, arguing in the same way as in the proof of Lemma (4.7) in [V], we can
show that if a; = ||b;||s¢; 1/q/w‘l(c ), then

(1.24) Y a; < C (Ag(b,e) + )M,
J
with C independent of b and c¢. If Ay(b,c) > 8 > 0, we get
(1.25) s < Cp(Aq(b, )"
J
.where Cs depends on 8 but not on b and c.
REMARK. In the following we shall assume that
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(1.26) w 8 a function of positive lower type | such that w(s)/s is non increasing
and

p(t) is defined by (1.2).
Given G € IN, we define the G-maximal function of a distribution f on S by

f&(z) = sup|f(¥)],

where the supremum is taken over all functions ¢ belonging to C°(IR™) satisfying
dist(z, supp(v)) < |supp(s)| and

/ [4(z)| dz + |supp(x)|EH! Z / |D*(z)| dz = 1.

la|=G+1

(1.27) DEFINITION. Let G € IN such that Gl > 1.
We define

H, =H,(R") = {fES' : /w(f&(x))dm =A<oo}

I fllm, = inf{)\ >0: /w (ffl(ﬁ)> dz < 1}.

It is easy to verify that if f € H,, then
(1.28) 0 <||fllg, < maz(LA,AY,

and we denote

(1.29) [|f|lz, = 0if and only if f =0 and
fg(z) —

It is easy to see that H, is a complete topological vector space with respect
to the quasi-distance induced by || ||g,. Moreover H,, is continuosly included
in §'. Clearly, when w(t) = t?, 0 < p < 1,w satisfies (1.26) with [ = p and
H,(IR") = H?(IR™).

In this work we shall denote N = [n(1/l — 1)], where [z] stands for the biggest
integer less than or equal to z.

(1.31) DEFINITION. A (p,q) atom, 1 < ¢ < oo 8 a real valued function a on IR"
satisfying:

(1.32) /a(a;)xﬂ dz =0,

for every multi-indez B = (B1,...,Bn) such that || = P1+ ...+ fn < N, where
B — B . B2 . pBn
o =zt -z . LTl
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(1.83) the support of a is contained in a ball B and

llallg|BI7*/2 < [IBlp(IB)]™*  if g < o0, or
(1.34)
llalloo <[IBlp(IBI)]™"  if g = co.

Clearly, when w(t) = t?, p € (0,1], we have that p(t) = t?» and a (p,q) atom

is a (p, q) atom in the usual sense.

Let us observe that, in view of (1.24), if {b;} is a sequence of multiples of (p, q)
atoms such that there exists a sequence of balls {B;} satisfying supp(b;) C B; and
(1.18) with ¢; = |Bj|, then the series Y b; converges in §'.

J

(1.35) DEFINITION. We define HP9 = HPI(IR"), 1 < q < oo, as the linear
space of all distributions f on S which can be represented by

(1.36) F=Yb in S8,
J

where {b;} is a sequence of multiples of (p,q) atoms such that there exists a
sequence of balls {B;} satisfying supp(bj) C B; = B(zj,rj) and (1.18) with
cj = |Bj|. We denote b= {b;}, B = {|B,|} and let

||fHHp,q = 1nf Aq(b, B),

where Ag(+,-) is as in (1.19) and the infimum is taken over all possible represen-

tations of f of the form (1.36).

(1.37) REMARK. It can be proved that H,(IR") = H”(IR"), 1 < ¢ < 0co. More-
over, if we define HP%9* k> N, as in (1.35) but taking atoms satisfying (1.52)
for all |B| < k, we also have H,, = HP%* 1 < g < oco. In particular, this implies
that definition (1.27) does not depend on G. The atomic descomposition of H,,
and the density of L? in H,, will be important tools in this work.

The Remark can be proved following the lines of [V]. However, in our case, since
the space of homogeneous type involved is IR", it is possible to consider Hardy-
Orlicz spaces for a larger range of p, ¢, by using atoms with vanishing moments as
in (1.32). The necessary modifications can be carry out.

We are now in conditions to introduce the main object of study of this work, the
(p, g,€) molecules and the molecular Hardy-Orlicz spaces.

(1.38) DEFINITION. Assume that € > 0,29 € R" and 1 < ¢ < 0. A (p,q,€)

molecule centered at zo 13 a real valued function M on IR™ satisfying

nle -1,-
(1.39) 1M ||| Mp(] - —zo|™)| - —2o|"F37)|, < C,
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where ¢' = q(¢ —1)71, and
(1.40) /M(m)zﬂ dz =0

for every multi-indez B such that |B| < N.

Given M, a (p, q,€) molecule centered at z,, and B, a ball with the same center,
we denote

M®B = MXg and
n(e+L
_ MXcpp(] - —zo|™)(| - —mo|" T
- 1
p(IB)|BIF* 7

MCB

(1.41) DEFINITION. Assume 1 < ¢ < o0 and 0 < €. We define M, 46) =

Mpq,e)(IR"), as the class of distributions f on S which can be represented by

(1.42) f=> M, in S8,
J

where {M;} is a sequence of (p,q,€) molecules centered in {z;}, such that there
ezists a sequence of balls {B;} = {B(zj,r;)} satisfying

B; — CB; —
> 1Bslw(l1M, 7 || B4l 1/q)+Z|Bj|w(||Mj [1gBj1 1) < oo

J J
Let MB = {M;"}, M® = (M P} and B = {|B;|}. We define
||f“M(p,q,c) = inf(Aq(MB7 B) + A(I(MCB’ B)a )

where Ag(-, ) @s as (1.19) and the infimum is taken over all possible representations

of f of the form (1.42).
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2. MOLECULAR CHARACTERIZATION OF H,,

In order to prove the molecular characterization of H, (Theorem 2.18), we need
some previous lemmas. Let us observe that, in view of the equivalences stated in
(1.9) and (1.14), we can assume, without lost of generality, that w satisfies (1.9)
through (1.13). -

(2.1) LEMMA. Assume that p is a Borel measure on IR" and E 1s a bounded set
such that u(E) = 1. Suppose that {2} q|<m 18 linearly independent on E and V
is the linear space generated by {z°Xg(z)}a|<m- If u € LY(E),1 < g < oo, then
there exists a unique v € V such that

(22 [@)Xs@) ~ o(@)e du(e) =0, for cvery B, 18] < m.

@)= Y / u(y)Xs(y)y™ dily) - va(),

la|<m

where vy, 1s the unique element of V which satisfies
(2.3) /v“(x)ﬂﬂﬂd#(z) =ba,5  for every B, |B| <m.

PROOF. Let v(z) = ¥jj<m ca®®XE(2), ca € R. Clearly, v satisfies (2.2) if and
only if -

T N f P 2 - . f N 4 o ~ VoA .

b ca/ z%zP du(z) = j u(z)z? dp(z), for every S, || < m.

lal<m 7 F B

Then, since {Z4}|a|<m is linearly independent on the bounded set E, there exists
a unique v € V which satisfies (2.2). On the other hand, arguing as before, we

have that for each a, |a| < m, there exists a unique v, € V which satisfies (2.3).
Thus, if Z|a|<m dove =0, do € IR, we have

dg = Z dqo /Ua(z)zﬂdp,(:c) =0, for every S, |8 < m.
laj<m

Therefore, {vq4 }ja|<m is a basis of V and we can write v = E|a|<m GoVq, @y € IR.
Finally, in view of (2.3) and (2.2), it follows that

ag = Z do | va(z)2z? du(z) = [ v(@)zP du(z) = [ v(2)XEe(z)z? du(z)
X / /

for every £, |8| < m.

(2.4) LEMMA. Suppose that M i3 a (p,q,€) molecule centered at xo, with 1 < ¢ <
oo and € > 1+ — 1. Let o be a positive constant and By = B(zo,2%0), with k a
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non-negative integer.  Then there ezists a sequence of multiples of (p,q) atoms
{br}, supp(br) C By, such that

(2.5) M=) b S,

k>0
(2.6) llbolly < ClIMPe||,  if k=0, or
(2.7) llbklly < CIIMCEBo||, 27™EFk >

where C' 13 a constant independent of M and . When w(t) = tP,p € (0,1], we
have, without restriction for € > 0, (2.5), (2.6) and

1 1

(28) belly < CIIMCBell 273 =DE for k> 1.

PROOF. Clearly, we can suppose that M is a (p, ¢, &) molecule centered at 0. Let
Ey = By, Eyx = By — Bg_1,k > 1, and My = MXE,. Let Vi be the linear space
generated by {z*Xg, }|a|<n- From Lemma (2.1), with E = Ex, dp = Iflﬂ dz,m =
N and u = My, there exists a unique Px € Vi which verifies

(2.9) /(J\/Ik(:c) — Pi(z))zP dz =0
for every 8,|0] < N. Moreover,
1
: Py = —— | Mi(z) z%dz. Quk
>0 k IO:IES:N'|Ek|/ {e) o do. Qoo

where ),k is the unique element of Vi such that
(2.11) /Qak(m) 2P dz = |E|64p for every B,|B| < N.

If we denote mqr = ﬁ J Mi(z)z* dz, then we can write

M(z) = Mi(e) =) (Mi(z) = Pa(2)) + ) Y marQak(2).

k>0 k>0 k>0 |a|<N

Since Y, 5 |Er|mar = [ M(z)z® dz = 0, applying summation by parts, we obtain

3 Y makQui(@) = 3 S makl Be)(|Bx 7 Qui(2))

k>0 |a|<N |a|<N k>0
= Z E(EmorlEr|_ Z Mar Er)(|Ek| 7 Qar(2))
|| <N k>0 r>k r>k+1
= > > (1Bl Qarra(e) = 1B Qar(2)) Y marlErl
[a|<N k>0 ' r>k+1

= . D fakRei(z) |

|a)<N k>0
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where nqr = E Mmar|Er| and Rak(x) = |Ek+1|_1Qak+l(m) - |Ek|—1Qak($)-
r>k+1

Then, since supp(Mi — Pi) C Ex and supp(fakRak) C Ex U Eg41, it follows that

(2.12) M=) (My—P)+ > Y nokRak, locally in LY.
k>0 la|<N k>0

Clearly, by (2.9) and (2.11), My — Pi and nqkRok are multiples of (p,¢) atoms.
Furthermore, by (2.11), we get

(2.13) |Qak(z)| < C(2%0) 1ol

Thus, by using (2.10) and Holder’s inequality, we have

P(e)] < c/%dm <c (_/|Mk(a:)|“lg—i|)%,

which inmediately yields
(2.14) |My, — Pi||, < C||Myll,, for every k > 0.

Then, for k > 1, since p is increasing and of upper type 17 — 1, we obtain

LAY "@+%0
1My Pelly < Cl[Mil, < ¢ ezl DLl
(215) (10 )Y (2t 10)

< C||MOBo| 27"k

On the other hand, applying Hélder’s inequality, (2.15) and the restriction on &,
we have

ekl <Y /|Mr(m)|z||°‘|dx

r>k+1

1
< S M |lg(27 ) |7
(2.16) r>k+1

< Colel||MOPo||y Byl Y 2rtlel=ne)
r>k+1

< Col*l||MOPe] || Bo| 7 211,

From (2.13), we get
Rai(2)] < C(2k0)lo1n

and, applying (2.16), we obtain

=1 5—n(e
Iak Raklloo < C|IMEE0|y|Bo| T 27+ DE,
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Hence, since supp (Nak Rak) C Bk+1, it follows that

(2.17) |7k Raklly < C||MOBe]|, 27k,

Finally, if we define by = My — Py, by = ZIGISN NaoRao, bk = My_1 — Pr_1 +
2o lal<N Nak—1Rak-1,k 2 2, by (2.12), (2.14), (2.15) and (2.17), we get (2.5), (2.6)
and (2.7). When w(t) = t?,p € (0, 1], we can improve (2.15) and get

My = Pillq < C|[Milly < C|[MOPol]y 27"+~ 0% for k> 1.
Thus, arguing as before, but without restriction on €, we have
InakRaklly < Cl[MEPel, 275 =05 for k> 0
which proves (2.8).

(2.18) THEOREM. Assume that w is a function of positive lower type | such that
w(s)/s 1s non increasing. Let p(t) be the function defined by p(t) =t~ /w1 (¢71).
Then Hy = My qe) with1 < g<oo ande > 1 —1. When w(t) =t?,p € (0,1],
we have Hy = M, 4.6 for 1 < ¢ < oo and every € > 0.

PROOF. By (1.37) is sufficient to prove that H”? = M, .).

Furst inclusion: H?? C M, 46)- Let f be a distribution in H?9. Assume that
b = {b;} is a sequence of multiples of (p,q) atoms such that f = 3°.b; is a
representation of f as in (1.35). Clearly, b; is a (p, ¢,€) molecule centered at z;.
Moreover, if we denote M; = b;, in view of (1.35), (1.38) and (1.41), we have

11| Mepgey < Ag(MP,B) + A,(M®,B) < A (b, B).
Thus, we have that f € M, .y and

A Mg ey S [IF M0

Second inclusion: M, 4.y C H”?. Let f be a distribution in M(, ,.). According
to definition (1.41) suppose that {M;} is a sequence of (p, ¢,€) molecules centered
at {z;} and {B,} is a sequence of balls, B; = B(z;,r;), such that

2.19 f=Y M; inS8 and 0 < A,(MB,B)+ A, (M®B B) < .
i V) q 9

J

In view of (1.20), we can assume that A,(M®B,B) > 0 and A,(M®B,B) > 0.
Applying lemma (2.4) to each M; with ¢ = r;, from (2.19), we have

(2.20) F=3340 &,

i k>0

where bfz is a multiple of a.(p,q) atom, supp (b)) C 1_13_1 = B(xj,zkrj), and ||b}]], <
ClM ||y if & =0 or [|b}ll; < ClIM; P |27 % i k > 1. Let > 1 be a
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constant to be determinated later. Since w is an increasing function of lower type
l and of upper type 1 we have

LA
ZZIB < (Aq(MB,B)+Aq(MCB,B))]1/I)

J k>0
B.
C [ M;7 g |B;| /1
< ; I:Z]: |Bj|w ( Aq(MB,B)l/I

kn(1—(e1)D) 1M ] |By| /e
+222 |Bj|w A,(MOB B)/! ’

7 k>1

which, by the restriction on ¢, is less than or equal to
B; - CB;j —
¢ (<, Py 1B s (1M 1B 2c
\/_4' A (MB,B)/! - \ A,(MCB B)1/l = n

Choosing n = 2C, we get

o (BB
(2.21) 2D |Bilw <[2C(Aq(MB,Ilc3) + fk\q(MCB,B))]”’> =t

i k>0

From (2.20), (2.21) and the observation above (1.35), we obtain
(2.22) 1fllres < C(A((MP,B) + A,(M®, B)).

Then, since we have (2.22) for every possible representation of f in the form (2.19),
we get

fllmee < CllFlMep,q.0r-

Note that the restriction ¢ > % — 1 was only used in the proof of the inclusion
Mp,qey C H?9. When w(t) =t?,p € (0, 1], we can apply (2.8) and, following the
same lines as above, we get H,, = M, 4.) withe > 0and 1 < ¢ < co.

3. APPLICATION OF THE MOLECULAR CHARACTERIZATION OF H,,
In this section we shall assume that T is a singular integral operator in IR™ with a
kernel K of class C¥*! outside the origin with k¥ a non-negative integer, satisfying

(3.1) |/ . K(z)de|<C, O<r<R,
<|z|<R

(3.2) lim - K(z)dz exists, and
. r—0 7‘<|.‘E|<1
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(3.3) |DPK(z)| < Clz| "7 1A1,

for every multi-index 8 such that |8| < k+1, and every z # 0. It is well known that,
under these conditions, T is a bounded operator on LY, 1 < ¢ < co. Moreover, if
we define the maximal operator '

T*f(z) = sup |Tsf(=)] ,
5>0

where

Tof(o) = [ K@fe-v)dy,
6<|y|
we have that T™ is bounded on LY, 1 < ¢ < oo and

(3.4) Tf(z)= %i_rg Tsf(z) ae. z

The purpose of this section is to show the boundedness of T on H,,. The main tool
will be the molecular characterization obtained in section 2. In [H-V], Harboure
and Viviani, using another technique, proved a similar result in the context of the
spaces of homogeneous type. In that work, the cancellation property of the kernel
K is stronger than (3.1). Moreover, since in our case the space involved is IR",
we can impose more regularity to the Kernel and by using atoms with vanishing
moments as in (1.37), it is possible to consider Hardy Orlicz spaces for a larger
range of w.

(3.5) LEMMA. Let w and p be as in theorem (2.18). Let T be a singular integral
operator with a kernel K satisfying (3.1), (3.2) and (3.3) with k+1 > n(§ — 1).
Assume that b is a function belonging to LY, 1 < q < 0o, with vanishing moments
up to the order k and supp(b) C B = B(zo,r). Let0<e<1—1+ k%, then T'b
is a (p,q,€) molecule centered at xo and

(3.6) ITbllq < C1lbllg,

(3.7) T p(| - —zo|™)| - —ao"F37 |, < Cp(IB]) |BIT7 |Ibl]

where C 18 a constant independent of b.
PROOF. Since T conmutes with translations we may assume that b is supported
in a ball B = B(0,r). Clearly Tb satisfies (3.6). Let B = B(0,2r), then
ety
ITb (1 ™)L M1

B (/ <. ) ITb(z) plJe|")lel" |7 dz = I + 1.
B CB

Since p is increasing and of upper type, applying (3.6), we have that I; is bounded
by
1
Clp(1BI) IBIF7 [[b]]]°.
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On the other hand, if z € CB we have

Th(z) = /B (K(z — ) — P(z — y))b(y) dy,

where P is the Taylor polynomial of K at z of degree k. The typical estimate for
the remainder in Taylor’s formula for this function, (3.3) and Holder’s inequality
yield

Jyl*+! 1Bl B+ * 7 o
(3.8) |Tb(z)| < C |b(y)|| [ FETT dy < CW ,# €CB.

From this estimate and (1.16) we have that I is bounded by
k411491 f (el _kEtl 1 _
Cl(BNIBI ) [ Jajremi= gy,
cB
Then, sincee < 1 — % + %’;—1, I, is less than or equal to

Clo(IB) |BI** [[8]l]7

which completes the proof of (3.7). In order to prove that T'b has vanishing
moments up to the order k we shall use the following partition of unity. Take
functions ¢;(t), 7 = 0,1,2,...,C* in (0, c0) satisfying ¢; > 0, Z] 0 ®i(t) =1
for every t in (0, 00). Moreover we can assume that supp(dg) C [O 2r], supp(¢;) C
[277tr,20% 7] for j > 1 and |¢§-k)(t < Cyt™* for every t > 0, every k =0,1,2,...
and every j, with Cj depending only on k. Now, we define for each j, K;(z) =
K(z)¢;(|z|), and observe that all the K’s satisfy the same estimates as K with a
uniform constant. Moreover, we have

szupp(Kj*b)(m) <4, at each z € IR".
>0

Then we can write

(3.9) /Tb(z)wﬂdw = /ZK]- x b(z)zP dz, for every B, |B| < k.

720

Clearly,
1> Kjxb(a)z?| <Y 1K xb()lle|Plxg(2)+) | |K*b(@)l|z|Plxp5(2) = Ai+As
=0 =0 j=0

For j > 1, by Holder’s inequality, thete exists a constant C, independent of j, such
that

“Kj *b|foo < ClBI—I/q”b”q .
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On the other hand, arguing as in (3.8), for z € CB, we get

|lbllg|B] =+

|K; +b(z)| < C |z[nFrH

for y >0,

where C' is again independent fo j. Thus, since the overlap of the supports of
K * b is uniformly bounded we have that )

Ay < C(|Ko *b(z)| + |[bllg| BI7/9)|2|Plx 5 (=)

and i1 )
|b||q|B| n 1/

|
A2 =C |z [P RFI=1A] Xc5(2)-

Then, by (3.9) and the dominated convergence theorem, we obtain

[Tt az=0, <k,
since K * b has vanishing moments up to order k.

(3.10) THEOREM. Letw and p be as in theorem (2.18). Let T be a singular integral
operator with a kernel K satisfying (3.1), (3.2) and (3.8) with k+1 > 2n(} —1).
Then there exists a constant C such that

T fllm., < ClIfllA,-

PROOF. By (1.37) and (2.18) it is enough to show that

(3.11) ITf M a0y < Cllfllm00x

foreveryf€L2ﬂH”’q’k,Where%—1 <e< 1—%+k% and 1 < ¢ < co. Let
f € LN H»?* and b = {b;} be a sequence of multiples of (p,q) atoms with
vanishing moments up to the order k, sup(b;) C Bj = B(zj,rj), such that

(3.12) f=) bins"
i

From the previous lemma we have that T'b; is a (p, g,€) molecule centered at z;
satisfying (3.6) and (3.7). Let M; = Tb;. Arguingin a similar way as it was done
in the proof of Theorem (2.20) in [H-V], it can be shown that

(3.13) Tf=> M; in§"
j

Let 1 a positive constant to be determinated. In view of (1.35), (1.38) and (1.41),
applying (3.6), we have

1M ||| B;| /9 (C||b-|| |B.|~1/q)
B.|lw J < Bilw EALL L .
2.1 ( g, By ) < 21\ o b, By

J
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Then taking n = C' we obtain
A, ((M)B,B) < C'A,(b,B).
In a similar way, from (3.7), we get
Aq((M)CB,.B) < C'A (b, B).
Then, by (3.13), we have
T f1l(p,q,y < CAg(b,B),
which completes the proof of the Theorem.

(3.14) REMARK. When w(t) =t?, p € (0,1], since from (2.18), H,, = M(p,q,¢),
with € > 0, we have that T 1s a bounded operator in H,, with the only restriction
k+1>n(;—1).
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