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THE MINIMUM VALUE OF THE a-CONCENTRATION OF 
PROCACCIA OF ELEMENTS IN FUCHSIAN GROUPS 

WITH ZERO-TRACE GENERATORS 

G. ACOSTA RODRIGUEZ AND M. PIACQUADIO LOSADA 

ABSTRACT: The a-concentrations of Procaccia of different elements of a fractal 
set r! have been interpreted in terms of entropic/energetic relationships between 
different states in a quantum mechanical system. But in order. to study problems 
in quantum mechanics in terms of fractal geometry, we need the set r! to be endowed 
with an infinite-word code. The limit sets of Fuchsian groups studied in [1] have 
an (a,J(a» decomposition of Pro caccia that model each (a,J(a» curve in the Tel 
classification. In this work we establish a connection between a value of a and the 
spelling of infinite words in the fractal sets depicted in [1]. 

SECTION 1. INTRODUCTION. 

SECTION 1.1. THE PHYSICAL MOTIVATION. 
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In order to construct a Cantor set K, we depart from a unit segment, take off the central 
third of [0, 1], then take away the central thirds of the 2 smaller segments remaining, ... 
and iterate this procedure ad infinitum. This is an example of what the physicists call 
a "mathematical" fractal set. We have dimH(K) = log(2)j log(3), a number strictly 
between 0 and 1, where dimH(K) is the Hausdorff dimension of the set K. On the 
other hand, there are other types of fractal sets n arising from the study of physical 
phenomena. Let us consider the forced pendulum, with internal frequency w. When 
plotting the winding number W as a function 9 of w, we have that, for a certain critical 
value of the parameters involved, W = g( w) is a Cantor-like staircase. It means that 
9 (w) is constant in the so-called intervals of resonance h, k E IN, of the variable w, 
each h producing a step of the staircase. The complement of the union of the interior 
of the intervals h, k E IN, is a fractal set n, and dimH(n) is again a number strictly 
b.etween Gand 1 [2]. This n, given by a natural process or a physical phenomenon, is 
very different from K. It does not have the regularity of self similarity shown in the 
process of formation of K. 
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Procaccia, Jensen and others [3] devised a way of decomposing a "natural" -as op-
posed to "mathematical"- non-regular n into self-similar and regular subsets no c n, 
a E [amin,amax ], a E JR. If we denote by J(a) the dimH(no), then the curve (a,J(a)) 
-heuristically and empirically found to be smooth-- is considered an important char-
acteristic of the physical phenomenon which yielded the fractal n. In recent years (see, 
e.g. [4]), it has been observed that a plurality of (apparently unconnected) physical 
phenomena yield fractals n which share the same curve (a,J(a)). When this happens 
the curve is termed "universal". 

Duong-van [.5] gave a tentative answer to the question posed by the phenomenon of 
universality. First he observed that both a and J( a) are expressed in terms of f' (a) 

-via a set of formulae [3]. Then he observed that, f we replace a, J(a), and f'(a) by 
E, Sand f3 = ~ (i.e. entropy, internal energy, and inverse temperature -normalized so 
that the Boltzmann constant is unity- in quantum mechanics), then what we obtain 
is precisely the set of connections relating these magnitudes in a quantum mechanical 
system. 

This identification suggests that, what is shared by a variety of physical systems with 
the same (a,J(a)), is a set of subtle entropic/energetic relationships, ... which are not 
apparent off hand... But in order to apply these results, i.e. in order to interpret 
quantum mechanics results in terms of fractal geometry and vice versa, the fractal 
n under study must be endowed with the so called infinite-word code for each of its 
elements [6]. 

Tel [7] has made a classification of all universal (a, J( a)) curves known so far. 

SECTION 1.2. THE MATHEMATICAL MODEL. 

In 1993 [1], a mathematical model was proposed in order to generate different fractals 
n, such that their corresponding (a,J(a)) would model each (a,J(a)) curve in the Tel 
classification. Also, each of these n has a natural infinitecword code. These fractals are 
the limit sets L( G) of minimally generated groups G of movements in the hyperbolic 
half plane III, the generators having zero trace. Let us recall that a rigid movement 
in 1H = {z = x + iy/y > O} is a transformation z --t A(z) = :;t~, where a,b,e, and 
d are real numbers and ad - be = 1. If the trace a + d of all generators of a group of 
movements G is zero, then we need a minimum of three generators -A, B, and C-
for the fractal limit set n = L( G) to be non trivial. A careful look at Fig.l will remind 
the reader how the limit set L( G) is formed (with three generators A, B, and C in this 
example) as a fractal set in the real line JR = alII. The infinite-word code for all points 
in n = L( G) c JR = aIH in terms of the generators --each generator a letter- is 
described in [1] and [8], and will be described briefly below. A natural question arises: 
given a fixed value a, what can we say about the spelling of the infinite words which 
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are points in n = L(G) sharing this value of a? The object of this work is to spelI 
words with a minimum value of a, for all L(G), where G is as in [1], i.e. minimally 
generated by movements in III with zero trace. Let W(n) be the set of finite words of 
length n (n-letters), i.e. the set of intervals in the nth approximation of the fractal (see 
below). From Cesaratto [8J we can readily infer that in order to search for points with 
a minimal value of a, we have to search for the segments of smallest size W min (n) in 
each W(n), n ~ no, no E IN, no sufficiently large; and we want this smallest n-Ietter 
word (or words) Wmin(n) to converge, as n ~ 00, to an infinite word W = W(amin). 

SECTION 2. 

The object of this section is to prove 
Therorem 2. Let G be a Fuch:;ian group minimally generated by operator:; of zero 

trace, and let L(G) be it:; limit :;et in 8IH = IR (as de:;cribed in Section 1.2). Let W(n) 
and Wmin(n) be al:;o a:; above. We will prove that there exi:;t:; an infinite word W :;uch 

that it:; fir:;t n letter:; make up a word W min (n) of the corre:;ponding covering by interval:; 

W( n) of the fractal :;et L( G). W ha:;, e:;seniially, the :;ame :;pelling independent of G. 

Furthermore, we will con:;truct that e:;:;entially unique word. 

SECTION 2.1. ABOUT NOTATION. 

As we said before, G is minimally generated, and L( G) is non trivial; let A, B, and C be 
the generators. For simplicity let us introduce a pair of abbreviations, while we focus 
on Fig.1. 

1) Par abus de langage, and when there is no danger of confusion, A, B, and C will also 
denote the isometric circles of the corresponding transformations, as shown in Fig.l.a. 
Let us recall that, if a transformation has zero trace, then it transforms the inside of its 
isometric circle onto the outside of it, and vice versa -i.e. transformations A, Band C 
transform the outside of circles A, B and C onto the inside of them, and vice versa. 

2) Words like, e.g. CA or ABC, which are elements of the group G, will, par abus de 

langage (indeed!), also denote segments C A and ABC indicated in figures I.c. and I.d 
respectively. The longer the word, the shorter the segment, as can be directly observed 
in Figs.lb ... ld: segment ABC is smaller than (and contained in) AB. Thus a correctly 
spelled infinite word indicates, unequivocally, a point on the real line, in the fractal 
L(G), and every element in L(G) can be written in this way. The set Wen) of finite 
words of a certain length n is a covering, by intervals, of L(G). From Cesaratto [8], we 
can readily infer that a point in L( G) -i.e. an infinite word- has a minimal a (amin) 
when this point belongs to the smallest segment in W(n), for n > no, no E IN is 
sufficiently large. Henceforth, therefore, we will be looking for the smallest segment in 
W(n), n large, and we will study the spelling of the corresponding word (of n letters) 
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B 
A C 

"A, Band C, as semicircles, ce.ntred in R, are the isometric circles 
of the corresponding transformations". 

B 

A C 

"Circle AB is the image of circle B under transformation A. circle BC 
is the image of circle C under transformation B ... etc·. 

.-= I 

"Segment A is the diameter of circle A. Segment AB, contained in 
segment A, is the diameter of circle AB, and so on". 

BC BA 

--I I 

"This figure is a blow up of Fig.1 c). The longer the word, the smaller 
the corresponding interval. L.(G) is precisely the limit set of the 
smaller and smaller segments, and is made up by all infinite words 
with a correct spelling". 

Figura 1. 
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which, as n tends to infinity, will give an infinite word -a point in L( G)- with a 
minimal value for Q. 

SECTION 2.2. AUXILIARY RESULTS. 

The object of this section is to prove certain auxiliary results that we will need later. 

Lemma 1. Let X and Y be transformations with zero trace. Let the centre of the 

isometric circle ofY be at the left of that of X -as seen in Fig. 2. Let us consider disjoint 

segments ~ and 808} in JR at the left of the isometric circle of X, 10 < II < So < 81, 
and such that II -10 < 81 - So. Furthermore, let us assume /-l (X (10, 11)) < /-l (X (80,81)) 
(f.l is the usual measure in JR). Then we have: 

/-l (Y (X (10,11))) < /-l(Y(X (80,8t})). (2.2.1 ) 

Proof. Let Y(z) = ~::~, X(z) = :;!{, and let uswriteX (U) = (to,tt}, X (8o,sd = 

(do, dt). We want to compare Y(to, tt) with Y(do, dt}, its measures can be obtained 
integrating the derivative of Y( z) between to and t I , and between do and dl respectively. 
Thus: l t1 lt1 R2 

/-l (Y (to, tt)) = y'(z)dz = Yd 2 dz, 
to to (z + c) 

/-l(Y(do,dt))= {d1Y'(z)dz= {d 1 R~d 2dz, 
} do } do (z + c) 

where Ry = 1/ c is the radius of the isometric circle of y( z) (notice that we can take c > 0 
without changing the transformation Y(z)). Making the change of variable z ---+ X(z) 

in both integrals, and reordering, we have 

where 

L + dh 
v=-~ 

!.+4 
9 c 

""( ) _ R~R~T 
'l'Z - 2' 

(z - v) 

and ( d)-2 
T = ~ + ~ 

We now assert that 8} < v. To justify our claim it is enough to prove that v> -% (the 
centre of the isometric circle of X). We have 

L + dh L + dh 
9 cg 9 cg 

V =--e--d- = - h d 
g + c -, + c 
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(recall that Y is a zero-trace operator which means that e + h = 0). Thus 

-l±eh + dh 1 h h 
gg eg 

11 = - !i d = -:('--h--d""")- - - > -- , 
- 9 + C -g + C g2 9 9 

the first equality follows from the fact that det(Y) = 1 ( eh - f 9 = 1) and the inequality 
is possible because (- ~ + ~) > 0 -and it is just the relative location of the centres 
of X and Y. Therefore, our claim ensures the situation depicted in Fig.3 .. That is, 
10 < h < So < Sl < 11, hence the area subtended by 10, h (denoted with "AI" in Fig.3), 
is smaller than the one corresponding to SOSI ("As" in the same Fig.),which implies 
(2.2.1). • 

In the next Lemma with Rx and Ry we will denote the radii of the isometric circles of 
the transformations X and Y respectively (letters X and Y will also indicate circles or 
segments, as before, in a non-ambiguous way). 

Lemma 2. Let X and Y be transformations with zero trace. Let us suppose that 

Rx < Ry, and that the corresponding isometric circles do not intersect. Then 

J.L(~)<J.L(~) 
n-letters n-letters 

for any n E IN, that is, any n-letter word (letters X and Y only) starting with X is a 

segment smaller than the corresponding one starting with Y. 

Proof. The general proof follows by induction on the length of the word. The case 
n = 1 (e.g. J.L( X) < J.L(Y)) is just the hypothesis. To show the technique we will sketch 
the case n = 2, and what remains is left to the reader. Then our purpose is to prove 
J.L(XY) < J.L(Y X). Let 

Y(z) = az + b 
cz+d 

and 

From the preceding Lemma we can write 

j -dle+1/C R'i 
J.L(XY) = 2 dz 

-die-lIe (z + ~) 

X(z) = ez + f 
gz +h 

as before. 

and j -hI9+l/9 R~ 
J.L(YX) = 2 dz 

-hlg-llg (z +~) 

(Recall that· we can suppose that e and 9 are positive, and then lie and 11g are the 
radii of the respective isometric circles). Solving the integrals, we have 

and 
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y 
x 

I 

So 51 

Figure 2. 

~(z) 

====--. 10 

~ 
21,---;:---l 

So 

Figure 3. 
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where (recall that the isometric circles do not intersect) s = - ~ + ~ > Rx + Ry. We 
only need to prove (recall Rx = 1/ c, Ry = 1/ g) 

(2.2.2) 

Indeed 

(S2 - R3.;) 

(s2 - R~) 
R~ - R3.; R~ - R3.; + 1 = Ry (2Rx + Ry) Ry 
(S2 - R2y) + 1 < ( ) R (R 2R) < Rx' (Rx + Ry)2 - R~ x x + y 

which gives (2.2.2). The Lemma follows. • 

The following Lemma is elementary. The proof is left to the reader. 

Lemma 3. Let X be a zero-trace operator, let tot1 C IR be a segment outside circle 

X, and let c be the centre of the isometric circle of X. Then p, (X (tot1)) increases if 

either Rx or t1 - to = P, (tot1) increases, and decreases if Ic - tottll increases. 

SECTION 2.3. 

The object of this section is to prove a somewhat simpler version of Theorem 2. 

In what follows, with RA, RB, and Re we denote the radii of the isometric circles of 
A, B, and C. Also, finite words made up ofletters A, B, and C will consistently denote 
segments like the ones indicated in Figs.Lc and Ld. 

Theorem 1. Let A, B, and C be the zem-trace generators of a minimally generated 

group G (see Fig. 1). Let RB 2 R A , RB 2 Re. Then for every n E IN we have: 

a) p,(ACA9A ... ,)::::: p, (every word ofn leiters starting with A or B). 
n-letters 

b) p,(CAC jC ... ,) ::::: p, (every word of n leiters starting with C or B). 
n-letters 

Proof. Before proving the theorem, let us notice that taking the smallest of these 
last two words ---e.g. if p,(ACACA ... ) ::::: p,(CACAC ... )- we have the smallest of all 
possible words of length n. Moreover by Lemma 2 we can assert that if RA ::::: Re (or 
if Re ::::: RA) then the smallest word of length n is ACA9A .. ., (or CAC.;:tC ... ,). 

n-letters n-letters 

Now we can prove Theorem 1: We do it by induction on the length of the word. The 
case n = 1 is merely the hypothesis. The case n = 2 follows immediately by Lemma 
3. Now we can suppose the theorem valid for words of length n. The location of the 
words is not arbitrary (see Fig.4) and the proof hinges on this fact. Our first claim is: 
p,(ACAQ ...... ,,) ::::: p,(A~) (e.g. ACAC.; ..... ." with n + 1 letters, is smaller than 

n -let tela n -let tera n -let tel. 
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every other word of n +1 letters staxting with A). We assume (inductive hypothesis) 
that 

p;(CACy4C ... ,) ~ p;(~) and p;(CACy4C ... ,) ~ 11(~). 
n-Ietters n-Ietters n-letters n-Ietters 

(2.3.1) 

Every word of n + 1 letters staxting with A is of the form A~, or A~. 
, n-Ietters n-letters 

From this, Eq.(2.3.1), and Lemma 3 we immediately conclude that every segment-word 
of n letters Zn located at the left of segment CAC ~C ... , fulfills 

n-letters 

p;(ACACy4C ... ,) ~ p;(AZn) . 
. n-Ietters 

(2.3.2) 

Eq. (2.3.2) is not obvious for a segment Z located at the right of segment CACy4C ... " 
n-letters 

for, even if Zn is larger that CACy4C ... " it is also further away from segment A. Nev-
, n-Ietters 
ertheless Zn = C(Xn-d, where X n- I is an (n - I)-letter word starting with A or B, 

and since CACy4C ... , = C(ACAq ....... ,) is a segment left ofC(Xn-d, then, perforce 
n-Ietters (n-I)-letters 

segment AC-,!p ... , is left of segment X n - I (see Fig.5). We axe inside all hypotheses 
(n-I)-letters 

of Lemma 1; therefore: 

p;(ACAQAC ... ,) = p;(A(C(ACAQ ..... ~ ... ,)))~ p;(A(C(Xn-d)) ~ P;(A(Zn». (2.3.3) 
(n+I)-letters (n-I)-letters 

Eqs. (2.3.2) and (2.3.3) yield: 

p;(ACAQAC ... ,) ~ p;(~), 
(n+I) -letters (n+I) -letters 

(2.3.4) 

where ~ means "any (n+ I)-letter word starting with A". In the same way, 
(n+I)-letters 

step-by~step, we can see that 

p;(CAC1CA ... ,) ::; p;(~) , 
(n+I)-letters (n+I)-letters 

(2.3.4') 

where ~ means "any (n+ I)-letter word staxting with C". It remains to prove 
(n+l)-letters 

that segment ACA9A ... , is shorter than any segment given by an (n ::f-l)-letter word 
(n+l)-letters 

staxting with B, ... ditto CACy4C ... , shorter than any~. 
(n+l)-letters (n+l)-letters 

Now, either RA ::; Rc or Rc ::; RA. Let us assume the first of thf! pair. First, we will 
show that segment ACA9A .... is shorter than any (n + I)-letter segment staxting with 

(n+l)-letters 
BC: 

p;(ACA9A ... ,) ::; p;(BC~) 
(n+l)-letters (n-l)-letters 

(2.3.5) 



10 

Since RB 2:: RA, then for any n-letter word ~ starting with C we have 
n-letter 

Jl(A~) ~ Jl(B~) 
n-letters n-letters 

by Lemma 3. Eqs. (2.3.4) and (2.3.6) yield 

Jl(ACA9A ... ,) ~ /L(~) ~Jl(B~), which is (2.3.5). 
(n+l)-letters (n+l)-letters n-letters 

Let us show that 

(2.3.6) 

(2.3.7) 

where X n - 1 is an arbitrary word with n - 1 letters. We have that RB 2:: RCi therefore 

(2.3.8) 

From Eqs. (2.3.4') and (2.3.8) we get 

Jl(CAC}.C ... ,) ~ Jl(CA Xn-d ~ /L(BA Xn-d· 
(n+l)-letters 

(2.3.9) 

Let us recall that RA ~ Rc. Then by Lemma 2 and Eq. (2.3.9) we have: 

which gives (2.3.7). 

We have to prove now Eqs. similar to (2.3.5) and (2.3.7) for word CACy4C ... , instead 
(n+l)-letters 

of AC A9 A .. .,. That is, we need to show that 
(n+l)-letters 

(2.3.5') 

and that 
(2.3.7') 

The proof of Eq. (2.3.5') is analogous, step by step, to the proof of Eq. (2.3.5). It 
remains to prove Eq. (2.3.7'). Repeating step-by-step the argument that took us to 
Eq. (2.3.3) we obtain 

Jl(B(C Xn-d) > /L(B(CAC}.C ... ,)) 
n-letters 

(2.3.3') 
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which is an equation similar to (2.3.3), with B taking (in (2.3.3')) the place of A in 
(2.3.3). Since RA :::; Re, we have (Lemma 3) 

Il(CAGfG .. Of) 2: Il(AGA9 A ... ,). 
n-letters n-letters 

(2.3.10) 

Now AGA9A ... , is contained in A, which is far away from Gj also CAGj.G .. Of is con-
n-letters n-letters 

tained in G, not so far away from B. Besides RB 2: Re. 

These considerations, Eq.(2.3.10), Lemma 3, a glance at Fig.6, and a moment of reflec-
tion are sufficient for us to conclude that 

Il(B(CAGfG ... ,)) > Il(G(AGA9A .. Of))' 
n-letters n-letters 

(2.3.11) 

Eqs. (2.3.3') and (2.3.11) yield Eq. (2.3.7'). The proof is complete. • 
SECTION 2.4 THE GENERAL CASE: SKETCH OF THE PROOF. 

Theorem 1 states that, if RB 2: RA, and RB 2: Re, then the correct spelling for Wmin(n) 
is AG AG AG ... , or GAG AG A ... But, as can be verified directly, with A( z) = ~:~~, 

B(z) =: =~~t~ and G(z) = ~;~~, we have RB < RA = Re, and the spelling for Wmin(n) 
is BAG-,!GA .. Of, or BGAQAG ... ". Therefore, except for a possible finite number of 

n-letters n-letters 
letters, the spelling of Wmin(n) is still AGA9A .. Of, or CAGfG ... ". This finite number 

n-letters n-letters 
of letters do not change the value of a, that is 

How much smaller can we make RB -when compared with RA and Re- in order to 
maintain, except for a finite number of letters, those AG A9A .. Of or CAG fG .. Of speiling 

n-letters n-letters 
for Wmin(n)? The equations 

and (2.4.1 ) 

can be generalized to 

and (2.4.2) 

We proceed by induction as before with Eq. (2.4.2) in lieu of Eq. (2.4.1). The proof 
is technically of the same order of difficulty but somewhat long. If Eqs. (2.4.2) are not 
simultaneously fulfilled, then AGA9A .. Of (or CAGfG .. Of) is no longer the spelling of 

n-letters n-letters ' 
Wmin(n). If Eqs. (2.4)) are fulfilled, then Eqs. (2.4.2) trivially follow. 
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t 
'Words starling wfth A: 

'ACACA..' 
n-1 letters 

A 

:ACACA. .. ' 
n - letters 

12 

B 

ItS 'Words starl~ wlh C.' 

, Words starling wfth BC. ' .-, W-or-ds-sta-'rI-in-g-W-ft-h-B-A-'. ' 

Figure 4. 

'CACAC .. .' "'" Z;-n----,!,-C(X=-n-~1)' 
n-1 letters 

Figure 5. 

B 

06 
n - letters 

Figure 6. 
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Equations 

Rc 
> RB and Rc > 

RA (2.4.3) 
(Gc - GA)2 (GB - GA)2 (Gc - GB)2 (GB - GA)2 

RA > Rc and RA > RB (2.4.4 ) 
(GA - GB)2 (Gc - GB)2 (GA - GC)2 - (GB - Gc)z 

are conditions for AB1B ... , and BG 1!,G ... , respectively, to be the spelling (except for 
n-Ietters n-Ietters 

a finite number of impurities, Eqs.l do not allow impurities) of Wmin(n). 

This completes the sketch of the proof of Theorem 2. • 
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