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ABSTRACT. In [4) C. J. Neugebauer showed that pairs of weights be-
longing to Ap classes satisfy an extrapolation property, namely, any sublinear 
operator which is of weak type (Po, Po) for every pair of weights in Apo is also 
of weak type (p,p) for any pair in Ap,l < p ::; Po. We investigate the cor-
responding extrapolation property for pairs of weights in Ap,q classes starting 
from appropriate (Po, 00) inequalities. As a consequence we are able to derive 
some double weighted weak type inequalities from weighted results of the type 
Lpo,BMO. 

Let w(xr~ 0 be a locally integrable function defined on Rn. We denote by w(E) 
the measurewith density w(x) with respect to the Lebesgue measure, i.e. w(E) = 
iE w(x) dx. The density w(x) is called a weight with respect to dx. The space LP 
with respect to the measure w(x) dx will be denoted either by L'f" or LP(wdx) and 
its norm by Ilfllp,w. If w(x) == 1, we drop w in the notation. We shall say that 
a pair (u, v) of non-negative functions belongs to the class A(p, q), 1 ::; p ::; 00 and 
1 ::; q ::; 00, if 

sup(IQI-1 [ u(x)q dX)1/q(IQI-1 [ v(xtPI dX)l/pl = C(p, q, u, v)< 00, 
Q JQ JQ 

where Q stands for any cube in Rn. In particular, when q = 00 the condition 
(u,v) E A(p,oo) becomes 

sup(ess sup u(x))(IQI-1 [ v(xtPI dX)l/pl = C(p, 00, u, v) < 00. 
Q xEQ JQ 

Given a locally integrable function f( x), the Hardy-Littlewood maximal function 
M f (x) is defined as usual as 

M f(x) = sup(IQr1 [ If(y)1 dy). 
xEQ JQ 

F(or a pair of weights (u, v) belonging to A(p, p), the maximal function M f( x) satisfies 
th,e weak type inequality 

(1) 
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for any>. > 0 with C depending on C(p, p, u, v) only. For a proof see [2]. Following 
B. Muckenhoupt and R. L. Wheeden in [3], we shall say that J belongs to BMOw if 

sup(ess sup w(x))(IQI- 2 [ [IJ(y) -,- J(z)1 dy dz) = IIJI18Mow < 00, 
Q xEQ lQ lQ 

where Q stands for any cube in Rn. It is often convenient to express this condition 
on J by means of the sharp function J# defined as 

J#(x) = sup IQI-2 [ [IJ(y) - J(z)1 dy dz; 
xEQ lQ lQ 

in fact, it is of easy verification (see [1]) that 

(2) 

Finally, we recall some definitions concerning the Lorentz L(p, q, p.) spaces. Let J be 
a measurable function on a measure space (M, M, p.). The non-increasing rearrange-
ment J*(t) of J is defined as 

j*(t) = inf{s : p.( {x: IJ(x)1 > s}) ~ t}, 

for t > O. The function J is said to belong to the Lorentz space L(p, q, p.) if the 
quantities 

IIJlll',q,1' = (q/p lX>[tl/1' j*(tW ~t )l/q , 

wher..ever 0 < p < 00 and 0 < q < 00, and 

IIJlll',oo,1' = supt l /I'j*(t) , 
1>0 

when 0 < p ~ 00 and q = 00, are finite. For more details see [5]. 

A Theorem of Extrapolation. 

B. Muckenhoupt and R. L. Wheeden proved in [3] that the fractional integral of 
oraer 0:, 0 < 0: < n, 

satisfies the inequality 

I,J(x) = [ J(y)lx - ylo-n dy JRn (3) 

(4) 
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if and only if (w,w) E A(n/o:, 00). Taking this limit inequality as a starting point it 
can be obtained by extrapolation (see[l]) that 

IIIafllq,wq :::; Gw,p,qllfllp,wI' 

provided that l/q = l/p - o:/n, with 1 < P.< n/o:, and (w,w) E A(p,q). The 
constant Gw,p,q depends on G(p,q,w,w) only. The arguments given in [3) to prove 
( 4) can be used to show that the inequality 

IIIafllBMOu :::; Gllflln/a, 1)n/o (5) 
holds if and only if (u, v) E A( n/ 0:,00). By (2), the inequality (5) can be rewritten 
as 

(6) 
By analogy with the one weigh case inequality (5) suggests the search of an extrap-
olation theorem giving new inequalities taking (5) or (6) as a starting point. It is 
easy to get convinced that the inequalities involving A(p, q) weights that can be ob-
tained shall be of weak type. It is pertinent to mention at this point a result due 
to C.J.Neugebauer [4], who proved that if a sublinear operator T maps Lpo(uPodx) 
weakly iilt<LtJ'ivPodx) for ev.ery pair (u, v) E A (Po , Po), then T maps LP(uPdx) weakly 
into LP(vPdx) for every pair (u,v) E A(p,p), with the restriction 1 < p < Po. Taking 
into account the behaviour of (laf)'#- stated in (6) and other instances that shall be 

. presented as illustrations, the extrapolation theorem that seems appropriate for our 
1>urpose is the following one 

Theorem (of weak extrapolation). Let T be an operator defined on Ggo with 
values in the space of measurable functions. Let us assume that it verifies 

"~ IT(Af)1 = IAIIT(f)I, IT(f+ g)1 :::; IT(f)1 + IT(g)l, and 

2;" for given rand p, 1 :::; ,.. < P :::; 00 and for every pair of weights (a, b) such that 
(aT,bT ) E A(p/r, 00) 

IlaT(f)lloo :::; Gllfllp,bl! 
with a constant G depending on G(p/r,oo,aT,ljr) only. 

Then, if r s: p < p,' l/q = l/p - l/P and (UT,VT) E A(p/r,q/r), there exists a 
constantG which depends on G(p/r,q/r,uT,vT ) such that 

uq( {x: ITf(x)1 > A}) :::; G(A-P J IfIPvPdx)q/p 
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holds for every>. > O. 

Proof. Let f E C8"', 0 < m = JlflPvPdx < 00 and (ur,vr) E A(p/r,q/r). We set 

{ 
I/(x)IP/,8-1 v(x)p/,8m1/ q if If(x)1 > 0 

b(x) = 

e'rlxI2/Qv(x) if If( x) 1 = O. 

Since v(x) > 0 a.e" it turns out that b(x» 0 a.e. on Rn. Moreover, b(x) satisfies 

(i) IIfvllp = Ilfbll,8 and 

(ii) J b-q v q dx ~ 2 

In fact, they are inmediate if f3 = 00 and for f3 < 00, we have 

and, 

J 1/1,8 ~ dx = J Ifl,8 IfJP-,8 vPm,8/q dx 

111>0 

J b-q vq dx < J Ifl(l-P/,8)q v(1-p/,8)qm-1 dx + J e-1I"1x12 dx 

111>0 

N ow let us define 
a(x) = [M(b-r(,8/rl')(x)tl/r(,8/r)/. 

Then, it follows inmediately that (ar,br) E A(f3/r,oo) and C(f3/r,oo,ar,br) ~ 1. Let 
us consider the set E>. = {x: ITf(x)1 > >'}. Then, we have 

uq(E>.) = J uq(x) dx 
EA 
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In order to estimate the second factor above, we observe that 

(8) 

Since (ur,vr) E A(p/r,q/r) implies (U9/S,V9/ S ) E A(s,s) for s = 1 + (q/r)/(p/r)', from 
(8), (1) and property (ii) of b(x) we get 

A9+1 J a u9 dx < CA9A-r({J/r)'s J b-r({J/r)'s v9 dx' 

{x:a-1(x»A} 

= C J b-qvq dx ~ 2C 

This implies that Ila-1 1Iq+1,oo,auq ~ (2C)I/(q+1). Let us now estimate IlxE~ I h+1/q,q,auq. 
The non-increasing rearrangement of. XE~ (x) with respect to the measure auq dx is 
equal to the characteristic function of the interval (0, R), R = IE~ auq dx. Then 

IIXEJI+1/q,l,auq = (q/(q + 1)) foR tq/(q+1) dt/t = Rq/(q+l). 

On the otner -hand, 

R = J auq dx ~ A-I J IT(J)lauq ~ A-I IIT(J)alloo J uqdx ~ A-I Ilfbll{J J uq dx. 
E~ E~ E~ E~ 

Then, 
IlxEJl+1/q,l,auQ ~ [A IIfbll{J u(EA)]q/(q+1). 

Collecting our estimates on the factors of the last term of (7) and property (i) of b(x), 
we obtain 

uq.(EA ) ~ (2C)q+1(A-P J IflPvP dx)q/p, 

as we wanted to show. 0 

Illustrations. 

Now, we shall illustrate our theorem considering some particular cases for the 
ol\erator T. 
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1. Let 0 ::; a < n, 1 ::; r < 00 and let us define 

M~/(x) = sup(IQI<>/n-l [ I/(YW dy)l/r. 
xEQ JQ 

When r = 1, this operator is the fractional maximal function of order a and we 
denote MOl = M~; moreover if in addition a = 0 it reduces to the Hardy-Littlewood 
maximal function, i.e. M = MJ. It is simple to verify that M~ = T satisfies the 
hypotheses of the theorem for fJ = nr/a. In fact, if (ar,br) E A(fJ/r, oo) and Q is a 
cube and x E Q, by Holder's inequality, we have 

( ) 
1/(n/OI)' 

IQIOI/n-l/l/lr dx::; IQI OI /n- l (J I/l rn/OI brn/OI dX) OI/n I b-r(n/OI)' dx 

Then, if t is a Lebesgue point of a and t E Q, we have 

a(t) (IQI OI/n- l JQ lilT dx) I/T 

::; (J I/ITn /o bTn /OI dX) OI/nT ess sup a(y) IQI- 1 J b-r(n/a)' dx ( ) 
l/r(n/OI)' 

yEQ Q 

::; [C(n/a, 00, aT, bT)]I/T I/wn/a dx , (J )a/nr 

if (aT,br) E A(fJ/r,oo). Taking the supremum for all cubes Q such that x E Q it 
follows that 

Applying the theorem, we obtain that if a pair of non-negative functions (u, v) satisfies 
that (u T , vT ) E A(p/r,q/r) with l/q = lip - aim, r < p < nr/a then . 

uq( {x : M~/(x) > A}) ::; C(A-P J I/lPvP dx )q/p, 

for every A > O. This result is well known. Moreover, it is known that the condition 
on the weights is also ne~essary. The only purpose for including it here is to show that 
the results on M~ can be reduced to very basic properties of the Hardy-Littlewood 
maximal function. Observe that in the proof of the theorem only weak type properties 
of the Hardy- Littlewood maximal function have been assumed to be known. 
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2. Another interesting illustration arises from inequality (5). As we mention before, 
it was precisely this inequality (5) which induced us to ask the question of what 
inequalities could be derived by extrapolation from it. The verification of (5) can be 
done as in the case of one weight, i.e. when u = v. Therefore, the operator T f = 
(10,1)#, where 1", is defined in (3), satisfies the hypotheses of the theorem with r = 1 
and f3 = n/a and it follows that if (u,v) E A(p,q), l/q = l/p-a/n, 1 < p < n/a 
then 

(9) 

holds for)' > 0 and a constant C depending on C (p, q, u, v) only. A careful analysis 
of the proof of (5) given in [3] shows the pointwise estimate 

wich is underlying in their argument. Clearly (9) could also be derived from this 
inequality. The same considerations are valid for an operator slightly more general. 
Let 8 ~ 1 and let 9 be a locally integrable function. We define 

g#'S(x) = !uP (IQI-2 J J Ig(y) - g(z)IS dy dZ) I/s 

EQ Q Q 

If we set T f = (1",J)#'s, the same argument indicated for 8 = 1, shows that this 
operator satisfies the hypotheses of the extrapolation theorem for r = 1, as long as 
1 ~ 8 < n:",' The exponent n/(n - a) comes in because we are using that 1", satisfies 
the weak type inequality (1, n/(n - a)), which in turn implies that la is of strong 
type (1,8) over bounded sets if 8 < n/(n - a). Thus, if (u,v) E A(p,q), l/q = 
l/p - a/n, 1 < p < n/a, then 

(10) 

holds for every). > 0, with C depending on C (p, q, u, v) only. 
Next, we shall prove that the conditions on the pair (u, v) are also > necessary for 

(10) to hold. In fact, let Q be a cube with diameter d and let Q be the cube with 
the same center and sides of lenght 12d. We denote by Ql and Q2 the translates of 
Q defined by Q + et, Q + e2 with lell = 2d and le21 = 5d. It is simple to verify that 

(ii) For every y E Qll Z E Q2 and t E Q 

Iy - tl ~ 3d and Iz - tl ~ 4d. 
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Now, let f 2 0 be a bounded function with support contained in Q. For x E Q, we 
have 

(I.N·· (x) > (I£:W' f f 11./(y) - 1./(z) I' dy dz r' 
> (IQI-2!! ! f(t) {Iy _ tl,,-n -Izc- tl,,-n} dt S dy dZ) l/s 

Q2Ql Q 

From (ii) we obtain 

therefore, for x E Q, 

Choosing f = XQvi/, where Vk = v + 11k, we get 

J IfIPvI' dx ~ k Vi/'p+p dx = k V;;pl dx < 00. 

Then, taking into account (10), we obtain 

uq(Q) ~ uq ({x: (/"f)#'S(x) > A}) 

< C (>. -, f Vk" dx r 
~ cc;:,~ IQI(·-·"l, (f vk" .Ix) ," 

therefore, if 11q = lip - aln, it follows 
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By Fatou's Lemma, this inequality implies 

(IQI-1 h uq dX) l/q (IQI-1 h V-pi dX) lip' :s e, 

which shows that (u, v) E A(p, q). 

3. We shall give a third illustration of the theorem which consists in taking TJ = 
(HJ)#·T for r > 1, and H standing for the one dimensional Hilbert transform, 

100 f(t) 
H f(x) = p.v. -- dt. 

-00 x - t 

the argument given in the proof of Feffermann-Stein inequality also show that 

ITf(x)1 :s eTMT(f)(x) a.e., 

and by the first illustration above this implies that the operator (II J)#,T is of weak 
type (p,p) for every pair of weights (u,v) such that (UT,VT) E A(p/r,p/r), r < p < 
00. 

We shall show that the conditions on the weights are also necesary for the weak 
type (p, p) of (H J)#.T, r > 1. We shall need the following lemma: 

Lemma. Let f ~ 0 be a bounded function with support contained in a Finite interval 
I. There exist two constants PT and en depending on r only, and an interval Jsuch 
that 

1. Ie J and 111 = PT III 

2. J If(x)IT dx :s eT JJ IH f(x)l' dx and (11) 

3. JJHf(x) dx = 0 

Proof. Let Xo be the center of I. By Riesz's inequality, we have 

J If(x)!, dx :s AT J IHf(x)IT dx 

= AT J IH f(x)IT dx + AT J IH f(x)l' dx. 
( 12) 

Ix-xol<6 Ix-xol>6 



If 6 > 2111 and Ix - xol > 6, it follows that 

IHf(x)1 < J f(y) dy 
Ix-yl 

< 21x -: xol-1 J f(y) dy 

< 21I11/ rl IIfllr Ix - xol-1 

then, 

J IHf(x}r dx ~ 2T III T- 1 IIfll; J Ix - xorT dx 
1"'-"'01>6 1"'-"'01>6 (13) 

= 2T(III /6Y-l IIfll; (r - Itl. 
We choose s ~ 2 such that AT2Ts1- T /(r - 1) ~ 1/2. Then if 6 = slJl, it follows by 
(12) and (13) that 

Ar J ·IHf(xW dx ~ (1/2) J If(xW dx, 
1"'-"'01>6 

and J If(xW dx ~ 2AT J IHf(xW dx. 
1"'-"'01<6 

Moreover, if t satisfies It - xol < III, then for Ix - xol < 6 we get Ix - tl < 26. 
Therefore J If(xW dx ~ 2AT J IHf(xW dx. 

1",-tl<26 
On the other hand, since 

J . fix - t + 26 1 Hf(x) dx = - f(x)log x _ t _ 26 dx == c/>(t), 
1",-tl<26 I 

it turns out that c/>(t) is a continuous function. From 

1 1 x - t + 26 1 { ~ 0 if x ~ t and 
og x _ t _ 26 $ 0 if x ~ t, 

we see,that if I = (a, b), then c/>(a) < 0 and c/>(b) > 0 implying the existence of to E I 
such th~t ,c/>(to) = O. Summing up, if J = (to - 26, to + 26), 6 = slJl, properties 
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(1), (2) and (3) of (11) hold for Cr = 2Ar and p = 48. This ends the proof of the 
Lemma. 0 

Now, we can prove the necessity. Let Vk = v + 11k. Then V;;l is bounded and 

f(x) = XI(X)Vk(Xr(p/r)l, 

is a bounded non negative function with support contained in 1. By the lemma, we 
have that for x E J, 

(Hf)#,r(x) > ( r IJ-21! IHf(y) - Hf(z)lr dy dz 

(IJ-'I/ 
r r > Hf(y) -pr1 J Hf(zY dz dy 

J 

> ( r P-11!IHf(y)lr dy 

> ( r C;l p-:;l 111-1 ! If(y) Ir dy 

= >. 
Since we assume (H f)#,r to be of weak type (p, p) with respect to the weights uP and 
vP , we get that for this value of >. 

uP(I) ~ uP( {x : (H f)#,r(x) > >.}) ~ C >,-P J fPv P dx. 

However, J fPvP dx ~ i v:-(plr)/p dx= J r dx < 00. 

Thus, after some computations, we get 

(111-1 i(ur)plr dx rIP (111-1 i(v'iJ-(Plr)1 dx r/(Plr)' ~ Co. 

By Fatou's lemma, this condition implies that (ur , vr ) E A(plr,plr), as we wanted 
to show. 0 
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