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Abstract

The objective of this work is to interpret the formula:

l&lu

1
rgt= g

from the point of view of Nonstandard Analysis. The validity of this identity

in the classic sense was established in [1]. For this purpose, we use Takeuchi’s

space G of nonstandard functions,([2]). This space is an algebra and it con-
tains,in some sense, the classical distributions of Laurent Schwartz ([9]).

1 Preliminaries

We explain here the nonstandard basic concepts. According to Robinson’s theory,
the system of real numbers IR may be view as a subficld of a more ample field,
totally ordered called the hiperreal system numbers IR*,

In order to make this we have included the basic definitions and propertics of the
theory of filters.

1.1  Filters and Ultrafilters

Definition 1.1 : A non-empty set F of subset of a non-empty set X is called a
filter if it has the following properties:

(i))IfE€F and ECF=FeF.
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(i) IfE,Fe F=ENlIelkF.
(i) 0 ¢ F.
Moreover, a filter F is called ultrafilter iff ,
() IfE C X then E € F or X — E € F,(but not both, by (ii) and ().

Example 1.2 : If X is an infinite set, the set:
F={AC X\X — Ais finite}
is a filter called filter of Frhchcf..on X. ‘
Definition 1.3 : A filter F on X is called free if Nger E = 0.
| Remark 1.4 : If X is an infinite set, the Fréchet filter on X is free.
The following result shows the existence of free ultrafilter:

Theorem 1.5 : For every filter F on X exists an ultrafilter U on X which contains
to F. .

Corollary 1.6 : If X is an infinite set then it exists a free ultrafilter on X.

1.2 The system of hiperreal numbers

Let IN be the set of positive integral numbers and let IR be the set of every
sequences of real numbers. Let < ry,7ry,... > or simply < r; > denote the
clements of IR™. We define in IRY the operation of addition and multiplication in
the following way:

Ifr,selRN r=< 7> s =< 8 >,
rds=<1r;+ 8 >;
TO8=<7;.8 > .

Thus, IRY be a conmutative ring with an identity < 1,1,... > and a zero <
0,0,...>.

We introduc: in IR" a equivalence relation “ ~ ¢ which makes IR" /~ a linearly
ordered field. In fact, let U be a free ultrafilter on IN:

Definition 1.7 : If r = (r;) and s = (s;) are in RY, then r ~ s iff
{i€ IN:s;=r;} €U . We then say thai (r;) = (s;) almost everywhere (a.e).

Remark 1.8 : The relation ~ is an equivalence relation of IR™ .
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Definition 1.9 : Let IR* denote the set of all the equivalence classes of IR" induced
by “ ~ “. The equivalence class containing a particular sequence s = {s;) is denoted

by (s). A
Elements of IR* are called nonstandard or hyperreal numbers.

Definition 1.10 : Let r,s € IR* ; r = [(r;)] ; s = [(s:)]. Then:

(i) r+s = [(ri +si)]
(%) r.s = [{ri.85)]

(fi)r<siff (i€ IN:r;<s;} €U, andr <siff r<sorr=s.

‘Theorem 1.11 : IR* with the operations defined in 1.10 is a linearly ordered field.

We define now a mapping * : IR — IR* as follows:
Deﬁnition 1.12 : Ifr € IR, we define () = xr where xr = [< r,7,... >|

Thus, IR* contains a isomorphic copy to IR because * : JR — [R* is an order-
preserving isomorphism. If (IR), = {*r: r € IR} then (IR). is the set of standard
numbers of IR* and we will identify with IR. IR* contains numbers other than stan-
dard numbers, for example w = [< 1,2,3,... >] and L.

Definition 1.13 : If s € IR*, we define the absolute value of s as follows:
|s|={ s if 520,
—s if s<0.
Definition 1.14 :
(i) A number s € IR* will be called infinite numbér if| s|>mn foralln € IN.
(i) A number s € IR* will be called finite number if | s|<mn for anyn € IN.

(iii) A number s € IR* will be called infinitesimal nunber if | s |< L for all
n € IN,

Definition 1.15 : Let 2,y € IR*, we say that z and y are infinitely close and we
denote x =~ y if £ — y is an infinitesimal number.

Remark 1.16 : By definition 1.15 we conclude that if s € IR* is infinitesimal then
s = 0.

Theorem 1.17 : If z € IR* is finite, there is a unique standard number r € IR with
the property z =~ r. :

Definition 1.18 : If z € IR* is finite, the unique standard number r € IR with
z = r we call standard part of z and we denote st(z) = r.
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Definition 1.19 : )
(i) We call G(0) the subset of IR* of all finite numbers.
(i) We call standard part map, the map:

st:G0) - IR
T —  st(r)

Theorem 1.20 : The map st is an order-preserving homomorphism of G(0) onto
IR, i.e:

(i) st(z £ y) = st(z) £ st(y),

(i) st(z.y) = st(z).st(y),

(iii) st(Z) = %2, if st(y) # 0,

(iv) st(z) < st(y) if z < y.

The following lemma, shows that there is a reasonable relationship between the
asymptotic behavior of {a,} and the value of a = [< a, >],
a € R*.

Lemma 1.21 : If a sequence of real numbers {s,} has limit L then
L~s=[<s, >

1.3 The algebra G of Generalized Functions

Definition 1.22 :
(i) A sequence {A,} of subsets of IR defines a subset (A,) of IR* by:
[< zn >] € (An) iff {n:z,€ A} €U4.
The subset of IR* which can be obtained in this way is called internal.

(i) A sequence of functions {fn}, fn: IR — IR, defines a function
(fa) : IR* — IR" in the following way:

(fn)([< Tn >]) = [< fn(za) >],

and any function on IR* which can be obtained in this way is called internal.

A function [ : IR* — IR" is called nonstandard function.

Our interest will be to study the nonstandard functions obtained from a sequence
{fn} of real functions, i.e, the nonstandard internal functions defined in 1.22.
According to Yu Takeuchi in [2], we define:
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Definition 1.23 : We called G the set of all nonstandard internal functions.

Thus, if g € G then there exists a sequence { gn} of real functions, g, : IR — IR, so
that g = (gn).

Theorem 1.24 : Let f,g € G, { = (fn) and g = (gn). Then, the following state-
ments are equivalent:

G)f =g,
(“) {'n:fn=gn} €U,

(i4) There are sequences of real functions { fa) and {in} so that [ = ( f») and
9 = (gn) and fn = gn for alln € IN.

We define addition, product and product by a number in IR* in G, in the following
way:

Let f = (fa), 9= (9n), 7 € IR", then:
o fHg=(faton)

o f.9=(fngn),

o 7.f = (enfn) if 7 = [{en)].

Moreover, if we consider a sequence of functions {f,} where for each n,

fn(z) = 1 for all z € IR, then I = (f,) is the unit in G. The function 0 € G
generated by the sequence of null functions is the neutral element of the addition.
In this way G is a commutative algebra with a unit and zero.

Example 1.25 : Let f : [R — IR. The map f* € G generated by the sequence
(fyf,...) will be called "canonical extention of f”.

Example 1.26 : The functions g : IR* — IR* defined by g(z) =, v € IR*, where
7 is fized, belong to G. In fact if v = [(c,)] then g = (gn) with
gn=cnVn € IN, Vz € IR.

Example 1.27 : Let § : IR* — IR* defined by:
if —e<7<e¢g

5(T)={ if 71> e,

where € = [(e,)] is a positive infinitesimal number (= 0 in IR*). Then § = (6,)
where §,, : IR — IR are defined by:

o~

A if —en < T < ep;
— Qe,, n ny
bn(@) = { 0 if |z|>en.

The function thus defined is by mo means the canonical extention for some real
function.
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Remark 1.28 : There exist nonstandard functions which are not in G (cf.[2], The-
orem 1, p.124). '

Theorem 1.29 : Let f € G, f = (fn): If fa converges to fo uniformly in [a,b] then
f(7) = fo(7) forany T € IR* , a <7 < b, (a and b are not necessarily finite).

1.4 Continuity of functions in G

Let f : JR — IR be a real function. In Nonstandard Analysis the continnity of a real
function is equivalent to the following fact:

[a+e)=f*(a) Vewm0

where f* is the canonical extension of the real function f.

Definition 1.30 : Let { : IR* — IR* a function in G. Then [ is continuous in
a € R* if:

fla+e¢ = f(a) Ve =~ 0.
Remark 1.31 :

o The canonical extension of a continuous real function is continuous.

o The nonstandard function generated by a sequence of equicontinuous real func-
tions, is continuous. :

1.5 Differentiation of functions in G

Definition 1.32 : Let [ = (f,), then [ is &iﬂerentz’able if

{n: [, s piecewise smooth} € U.

We assume that a function g is piecewice smooth if it is continuous and differentiable with contin-
uous differential except for a finite number of point, in which we consider g’(¢) = lim,_,g+ g'(2).

Definition 1.33 : If f = (f,) is differentiable, the function [’ € G defined by:
/= (fn)
is called the differential of f.
Example 1.34 : Let:
1 if % <z,

My(z)=( nz if 0<z<?i
0 if z < 0.



83

Then H = (H,) € G is given by:

1 if 3<T,
H(t)={ A if OST<'}(
0 i 71<0

where A = [(n)]. Then; it is valid:
a1 ) A if 0<7< ,\7
”(T)“{ 0 if T<0and7 >1

We observe that H' is not a continuous function because '(0) = X and H'(—$) =
0 and —5 =~ 0.

»

1.6 Integration of functions in G

Definition 1.35 : Let f € G, [ = (fn). If
{n: fn is integrable in any interval } € U,
we shall say that the nonstandard function f is integrable.

Definition 1.36 : Let f = (fn) € G be an integrable function. For o = [(a,)] and
B = [{Brn)] with a < B, we define the definite integral of f in the following way:

Aﬂ f(r)dr = [(L[:“ Ja(2)dz)].

Example 1.37 : Let

[N if 0<7 <A,
é(r) = { 0 in any other case,

where A is an infinite positive number. Then:

g p,
/ 6(r)dr =1 and / §4(r)dr = ),
[+7 @

foranya < 0,8 > 0 non infinitesimals.

1.7 Primitive of a function in G

Definition 1.38 : _
"o A differentiable function F € G is a primitive of the function f € G if:
M=,
o A function F is called primitive of order k, k > 0, of the function f if:

F® =7
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1.8 NonStandard Model of the Dirac’s delta function

Definition 1.39 : A function § € G is ¢ NonStandard Model'of the Dirac’s delta
function if it has the following properties: '
(i) §(r) 20, VY7 €R* and §(r) =0 V7 non infinitesimal.
(ii) [P 6()dr ~ 1 for o, € IR*,a < 0 and B > 0 non infinitesimals.

. Theorem 1.40 : If f € G is of finite value (i.e f(z) € G(0),Vz € IR*) and con-
tinuous in 0 then:

[ 15 = 5(0)
" where st(c) < 0,st(d) >0

1.9 NonStandard representation of Distributions

The following theorem deals with the sufficient conditions which must be performed
by a nonstandard function in G in order to determine a distribution:

Theorem 1.41 : (Takeuchi,[2], Teor.9,pg.1{4) Let h € G be a nonstandard funé-
tion so that given a finite interval exists some primitive bounded in it (of order
k,k > 0). Then the function h determine a distribution by:

oo .
(h ) =st [ h(r)g*(rdr ey
where ¢* is the canonical extension of ¢ € D. » ’

Theorem 1.42 : Let b € (! be a (O nonstandard function which satisfies the
conditions of Theorem 1.41, thus h determines a distribution by formula (1). Then
the differential of order i of the distribution h, h) € D' is equal to the distribution
determined by the nonstandard function D'h € G, that is:

(h(’) )= st/ I’)’h(T [*(r)dr,
where f* is the canonical extension of [ in D.

Remark 1.43 : There exist nonstandard functions h € G which are not distri-
butions. For example, if § € G is a nonstandard model of the Dirac’s delta, then
§2,8%,..... are functions in G which are not distributions.

The following theorem asserts that all classic distributions can be represented by a
function in G.

- Theorem 1.44 : Let T" € D', then it exists a nonstandard function h € G such
that: '

Q]’f—st/ T)f*(1)dT

for all f € D, where f* is the canonical extension of f.



2 Validity of the formula ,“vp%& = ——%‘6’_“ in the
nonstandard space G

The classic formula is due to A. Gonzélez Dominguez and R. Scarffiello [1]. They
have considered singular kernels {g,} which satisfy:

(1) li?n,;_,oo 200 gn(z)dz = 1,
(i) S | gn(z) | dz < M,

(iii) limp—oo J7 | gn(z) | dz = 0 for all interval I so that 0 ¢ I.

Moreover if

(iv) Ry

— gale) wupl = J%, 2Way,

J—00 T—y

we order that | zh,(z) |< M and that g, has a bounded derivative for every n.

. To turn the formula ”vp%ﬁ = —%5”’ into nonstandard language we have to
see under what conditions a sequence that verifies the conditions (i), (ii) and (iii),

generates a nonstandard model for Dirac’s delta, according with the model proposed
by Yu Takeuchi ([2], §6, pg. 139).

Proposition 2.1 : The conditions (i) and (iii) involves that [P 6(r) ~ 1 where
§ € (6= (gn),a <0 non ‘nfinitesimal and 3 > 0 non infinitesimal.

Proof. Let a,8 € IR" of the form a = [—n|,8 = [n] where n € IN. We shall
show that:

st /ﬂé(r)dr =1 : (2)

By definition: ,
[ srar =1 gatr)an)] Q

For each n, we have -
/_7; gn(2)dz = /_: Gn(z)dz — /Ir|>n gn(z)dz, (4)

then

| le>ngn(l‘)d.’r I< /MM | gn(z) | fix = /_w | gn(z) | d +/n | gu(z) | dz.  (5)
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Wechoosea € IR,0 < a < 1, then a < n,Vn € IN. Taking mto account (—oo,—n) c
(—o00, —a) and (n,o0) C (a,00), then:

[ a@ s+ [T lan@) 1da < [ on(@) [dz+ [T 1 oal@) a2 (6)

The inequality (6) holds for every n € IN so, that passing to the limits in both sides,
we obtain that the left hand side tends to zero (from (iii)), and we deduce that

lim gn(z)dz =0 | )

n=00 Jz|>n
Theén, we obtain from (4) and (i):
n
dim [ gn(z)dz =1 (8)
and so (2) holds.}

“We shall prove now the other condition required in order to the nonstandard
function § = (g,) be a nonstandard model of Dirac’s delta, i.e:

§(r)=0,V7, 70, 7€ R" : (9)

For it, the sequence {g, }nen must converges uniformly to the null function on
each interval I that 0 ¢ I. This last fact involves the validity of condition (iii); i.e:

lim [ jgn(z) | dz =0, for all interval I so thatQ ¢ I.

n—oo Jr

So, we asume the uniform convergence of the sequence {g,,} for all interval I so that
0¢ I Letber € IR*,71 % 0. Then | 7 |> ¢,c € IR*. Given the uniform convergence
of {gn} in [c,00), by theorem 1.29 we obtain:

5(r)~0,VT € R*, T > c.

The same happens if 7 < —c. So, (9) is valid. Moreover, if the singular kernel {g,}
satisfies the condition g,(z) > 0, Vz € IR then §(7) > 0, V7 € IR".

To conclude, if the singular kernel {g,} satisfies the additional conditions:
e go(z)>0,Vz € IR
e gn — 0, VIsothat0 ¢ [
the funtion § € G, 6§ = (g,) is a nonstandard model of Dirac’s delta, according to the

definition (1.39). We consider now the scquence {h,} (iv) which converges weakly
to vpa%_, ie:

,}i_{go/: ha(z)é(z)dz = (‘UP%MP); supp¢ C (—a, a).
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This means that the nonstandard function Vp = (hn) € G is a nonstandard model
to the distribution upi in the sense that:

st [~ Vaet(n)ar = p=,9)

where ¢* is the canonical extension of ¢ € D. According to the definition of product
in G, we obtain:

8.Vp = (gn)(hn) = (gnhn),

the sequence k, = g,.h, converges weakly to ~%6’ ,(cf.,[1]). Then the nonstandard

function K € G, K = (ky) is a nonstandard model of the distribution —}6', and is

valid: :
SVp=K
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