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ABSTRACT :

The purpose of this paper is the introductibn of new theoretical
solutions about urban transportation. During the last two decades there
have been many contributions, such as those of Patrikson [3] , Thomas [2],
Bennet [1] in order to mention a few of them. They have developed models
using only heuristic approaches and then with important limitations.

In this paper, we propose a linear model which is based on the assumption
that the characterization solutions depend on the existence or nonexistence
of cycles. From this idea, we develop an a]gorlthm which finds all the
solutions of the problem.

The mathematical formulation correspondmg to 1t, depends on the set of
linear equations and on the matricial formulation of the problem. The
obtained numerical results show that the proposed model might manage a
great number of data. Moreover it may be of interest, in concrete for the
transit behavior of real cities.

1. INTRODUCTION

Planning of urban transit and transport, as well as the analysis of related
problems (for example Improta [4] , Allshop[5], [6], [7], etc.) motivated an
important research branch in Applied Mathematics.

The basic theory of the assignment in transport has been developed
extensively by Patrikson[3], Bennet [1], and Thomas [2]. The main
assumptions considered in our network are :

1-1 The movement of each vehicle is performed between an initial and a
‘final node. This situation generalizes the situation of the other classical
consideration of having the source and the sink with the important result
of Ford-Felkerson [8] (see also Rockefeller [9]).
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In the path of movement of each vehicle, there exist passing compulsory
nodes, which the drivers must choose. They restrict the flow of the entire
network.

1-2 The number of vehicles that might pass through the compu]sory node
is not restricted.

1-3 The vehicles found in the initial nodes_pass through intermediate nodes
and then all arrive at the final destination.

1-4 All drivers have knowledge of all the characteristics of the traffic net
and transit graph.

1-5 The trip times over all the paths used are less than those possible of
paths which might be experienced by a vehicle in any other unspecified
way. _

1-6 The model is static in time and deterministic.

The figure I shows the expression of the graph of transit in the case n=3

-
fig. I |

2. INTERPRETATION AND PROBLEM MODEL
Traditionally, in the general theory of transportation, its flow in between
part (initial nodes of the transit net or graph) and as final destination (final
nodes of such graph). A different approach is that of Ford-Felkerson [8].
- Now if we introduce among all the ports and destinations an intermediate
step, which is represented by deposits (compulsory passing nodes), then
we obtain a new transportation problem, known as the problem of two step
transportation. The treatment of this situation is rather important, since it -
will allow the solving of new trivial problems of urban planning. This
model was introduced by Marchi and Tarazaga in [15]
Formally, a problem with m ports, n deposits and p,destmations in which
it is assumed that
= The totality of the amount available in the ports is distributed.
n In the deposits the capacity is not bounded
» There is no accumulation in the deposits

might bé modeled as follows :
r, - capacity of the port i.
1, :capacity of the destination k.
x; :units to be transported fron port i to the deposit j, which are assumed to

be a real non negative number.
x%, :units to be transported from deposit j to the destination k and with a
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The description of the problem is completed with the formulation of the
objective function or cost function

f( )=c'x'+c’x —ZC..x..-i-Zcf.kxzk
J.k

which will be minimized or maximized dependmg on the economic content
described by the transportation model.

3. MODEL ANALYSIS
The problem of two step transportation, described by 1), 2 ) and 3)
together with the payoff function is a linear programming problem.

If the cost function is non linear it will become a non llne’li‘ program ; see
Mangarasian [13] and Farkas [14].

For the analysis in the general context rélated to the existence of optimal
solutions it is possible to use the traditional result of Farkas[14],

or Tucker, or Gale, etc.(See for example Mangara51an (13 1)

But given the general characteristics of the model, we will study the model
from a more adequate perspective, allowing us to find a general algorithm
for finding the extremals-and therefore to obtain in ar easier way the set of
optimal solutions.

In the first place, note that it is trivial to prove:

Proposition 3-1. The.set. of possible Solutions of 1), 2), 3) is a convex
polyhedron.

3.2. MATRICIAL REPRESENTATION
The matricial representation of the problem, has the f(jrm:

Ax=Db
where A is the matrix of order (m+ p+n)x[(m+ p)n] given by:



151

1 J=G=Dn+ 1,
% ={0 :  otherwise
fori=1,...m+p and | 4
! j=i=(m+p)thn k=0,...n—1
a; = -1 5 ( j=i—(m+p)+(m+k)n k=0,...;1)—1
0 otherwise

fori=m+p+1,..,m+p+n.

' Therefore
mn pn
. |
.1 . S
1...1 ) m
1...1
l...1
A= p
l...1
1 ] ] ] 1 ]
1 1 -1 -1 -1 n
1| 1 N 1 1 B
V‘rlj
tl
b=
t,
0
0]

From the descriptions: of the matrix A, it is possible to compute the
dimension of the subspace generated by its row vectors in the matrix, from
which we obtain ' ' ‘
Proposition 3-2-1 The rank of A is m+ p+n-1.
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m+p4n
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F = (@,
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Since r(A)=dimS,, we will prove that dim S, =m+p+n—-1. In order to
show it we will prove that B= {F2 ,...;E"+I,+,.} inabase of §,.

Indeed

3-2-2-1 B is a set of generator of §,, since

m+p+n m
K= 3 F-3F,
i=2 -

i=m+1
andF, (for 2<i<m+ p+n) it is possible to trivially write it as a linear
combination of elements of B.

3-2-1-1 B is a set of linearly independent vectors because if one takes

m+p+n
S =0
. i=2
it turns out a system of m+ p+n=lunknowns and (m+ p)nequation of the

form:

m+p+n m+p+n
ha, + Ia, =0 fori= !,...,(m+ p)n
i=2 i=ma-p+1

Splitting the system into blocks of n equations from the first block of n it
turns out that ' '
el oo = h,, pin =0
and from the latter
h, =0
and consequently
=0

hm+p -
As a consequence of 3-2-1-1 and 3-2-1-2 the proposition is proved.
As a final part of this paragraph we wish to point out, for the use given in
the next considerations, A can be partitioned as

A0
A=| 0 4,
u, b,

3-3 EXTREMAL CHARACTERIZATION, ,

As it was said, the model is linear, . and as a consequence, the
characterization of the extremals of the convex polyhedron of possible
solutions (op. cit. prop. 3-1) will hold, if it is not empty, to the obtention of
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the hull optimal solution (see Dantzig G.B. [11]). Given the particular
characteristic of the problem, which is reflected in"the matrix A, we
conjecture that the extremal characterization can be derived from itself.

On this line, as a first result we present :

Proposition 3-3-1 Each ertremal of the convex polyhedron of
‘admissible solutions of the problem given by 1), 2) and 3) has at most
m+ p+n—1 positive elements.

Proof :
Let ee S (op. cit. prop. 3-2-1), eextremal. Then esatisfies
Ae=B
From the proposition 3-1, let Bbe a non singular submatrix of A. of order
m+ p+n—1.Consequently
[B,N][e” ] =
ey |

and, from the general theory of matrix algebra, if we takee, =0, at most
the m+ p+n~1components of e, are positive.

Proposition 3-3-2, If s—(s“, LI "I,)IS an element of S, such that

for each 1<i<m, 1<k < p, there exists a unique j (1 < j<n) such thats)
and s}, then s is extremal.

Proof :

Let s be a solution such that it satisfies the hypothesis and assume that s is
not extremal. Then

3-3-2-1 there exist s'and s solutions, such that sis a convex combination -
s=As+(1=2)s" with 01 <1
3-3-2-2 (v @) [fsi=n)alsh=0 if 1%)]
3-3-2-3 i) @) [ =n)ald=0if ne))]
From 3-3-2-1, 3-3-2-2 and 3-3-2-3 it results that
s=s'=s"
contradicting the assumption that s is not extremal.

In order to characterize all the extremals, we oberve that if we have a
solution :

(s;l > 9,,,,, :t 9” ’ ’spn) )
of the two step problem, indeed we have the solution of each one of the
two linear problems defined by 4, and 4,, respectively.

In figure II the reader might visualize a graphic arrangement for such a
situation, where in the inferior part we have exchanged rows by columns.
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From such an arrangement of Fig. II, which we will use each time that we
refer to a solution, it was possible to find a characterization of the
extremals. In order to illustrate such point we will consider an example.
For the problem
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are solutions

fa—

and



n 12
12 5i2
3/2 32
/2 32

from which the first is extremal, and the second is a convex combination of

1 1
5 ; 5
and
3 3
3 3

We note if we call support of the solution to the set

s ={(i.j.k)1 20 A x2)0} |

we see that such solutions are possible and they behave in differént ways
on the possible supports. In the second of them there exists a support
subset on which it is possible to have a path beginning from one positive
entry (from now on vertex), arriving to such an entry ,

Definition 2-3-3 Let S =(s',s*) be a solution of the problem, a cycle in

the support of s is a sequence of indexes
i‘ll j’ll ”'j’h 1‘1; illn jlln '"i‘ll
in the support of s, where it is possible that :

I)j‘Ir # j‘ln A l‘I: = i‘ln = k‘7u

Il)j‘h = j‘ln A ]‘h = k‘lu A l‘ln = i‘ln

We remind that

Theorem 3-3-4. If a solution does not have cycles in the support there
necessarily exists

(i,j,k) such that 0 A xh=0 for =/

or
2

2
x; )0 A x;

,=0 for j=j

The proof is trivial using the contrareciprocal proposition. The fact that the
extremals do not contain cycles has a reason :

Theorem 3-3-5. A solution of the problem defined by 1), 2), 3) is
extremal if and only if it does not contain cycles in its support.



Proof.

The condition is necessary. Indeed, let e be an extremal of the problem and
assume that e contains a cycle in its support. Let

V= {(h, ,l,) (hu l")}

be the set vertices of such a cycle and besides suppose that the cardinality
of such is even (if this were not true, it is always possible to consider a
subset of such a set of even cardinality which determines the same cycle).
Let s and s" be the solutions which are obtained using ein the following
way :

if (hq,lq)EV

elr’l,,
Sigly = | Eng, TE if q is odd
e —¢€ otherwise
'lq"' '
o (n,)ev
Ehy, if ( 4%
Suty = | €ng, TE if q is non
e, —€ otherwise
Il"’q
for € < {min ey, }
l 1 ' (N}
Then e=—s+5s

contradicting the assumption that e is extremal.

In order to prove that a solution of the problem defined by 1), 2), 3) which
has no cycles in its support is extremal we will proceed by induction on the
number m+p.

Consider in the first place m+p-2. Let 9=(V:u Lsh.s2hnsh)  be a

solution with the hypothesis conditions and assume that s 1s not an
extremal. Therefore
T.3-3-5-1 s =S,2-| Cj=1..n

J

T.3-3-5-2 There exists a unique ; such that

sy=n and s =1

T.3-3-5-3 s=As+(1-A)s" (s and 5" solutions).
From T. 3-3-5-2 and T. 3-3-5-3 it turns out :

s=s=g"



contradicting the assumption that s is not extremal.

Assume now that the assumption is valid for m+ p. For the case m+ p+1
(which in terms of the model means that we add a port or a destination), let
s:{s,‘,, I L PH} be a solution with the hypothesis conditions and

assume that s is not an extremal :

T.3-3-5-4 ~ s=1 s+(1-A)s" (s' and 5" solutions).
Besides, without loss of generality, suppose
T.3-3-5-5 s =
From T. 3-3-5-4 and T. 3 3-5-5 it holds true
T.3-3-5-6 st=g"=5"=0 for j=j
Since ;=0 (respectlve]y s = 0) for j= j’,and s'(respectively s')

isa solution Necessarlly we have :
S =r, (respectively s = n) -

When we eliminate the row i, we obtam a problem of less dimension. In it
by induction hypothesis, any solution without cycles is extremal. Adding
the eliminated row, we get'a solution s with no cycles which is 1den11cal to

(]

s' and s'", contradicting the assumption.

3-4. DETERMINATION OF SOLUTIONS

We have just solved the characterization, of the extremals of the
transportation problem in two steps, using the cycles. Now remains the
computation problem. With such a purpose we propose an algorithm which
generalizes the powerful Jurkar and Ryser algorithm of the classical
transportation.

This is determined as follows :

Algorithm to determine the extremal in the transportation problem of
two steps.

Step O : to determine the variables
Step 1 : 1.1 To select a 3-uple (i, j,k)
1.2 Determine if it forms a cycle with the already chosen.
1.2.1 Ifitis not, compute min (r,z,).
1.2.1.2 Assign such a min to x; and x5,
1.2.2 If it is yes, go back to 1.1.

Step 2 : If r and ¢ are zero for all the values of i,k . Stop the algorithm.
In such a context, a rather important result is



Theorem 3-4-1. The previous algorithm converges to solution of the
two-step transportation problem.
The proof is not given since it is trivial.

Corollary 3-4-2 The product solutions by the algorithm are extremals
to the two-step transportation problem.
Proof. Trivial using theorem 3-2-4-1 and 3-2-3-3.

Theorem 3-4-3 Given an extremal of the problem defined by 1), 2), 3),
it is always possible to construct it by using the algorithm.

Proof.

We will prove the preceding by induction on m+ p

3-4-3-1 For m+ p=2. Since the problem is feasible r, =1, it turns out that
the proof in the case is trivial.

3-4-3-2 Assume that the property is valid for problems with dimension
less or equal to m+p (m+p fixed ).

Let ebe an extremal of the problem. Because e does not have any cycles in

its support, it is possible to assume, without loss of generality, that there
exist i,, j, such that x,, =r and x,, =0 for j= j,.

Then it might happen :

3-4-3-2-1 <t forany k
making :

Xy =1, =0

SIS for k, such that x?, )0

t, =1, k#k, 'xfk—x for j+# jo.k#k,.
ro=r, i, 3 'xp=xp for j# jo,i#i,.
We obtain a problem of less or equal dimension of m+ p, for which
1, _ ]t 112 . .
e—{xu,;\ } for i#i,
is an extremal, where by induction hypolhwls is constructed by the
reconstruction of the algorithm.
Now taking i, and k, we have that r, {j, , then for ijj, mal\mo :
m= r"o = xl'o]'

we obtain

[ T
oo = Xigig T
2

x}o‘o

x +m

Joko
and in this way we reconstruct eusing the algorlthm
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3-4-3-2-2. there exists k,such that xi, (X

indo *
Let
12 o_ 2 2 _
x!'nkn - xl'nkn x]nko =0
‘x‘ = x‘ - X
injo — TioJo 7 Joko
o2
T = Vo ™ Xioko
1, _ 2
t"o - tkn xjn"n
1, _ .
=1, k#k
1. _ .,
r,. = r. 1# Ly
11 _ C e
Xy = X5 J# Jor L# I

1.2 _ 2 . .
Xy =Xu  J# oo k # kg

Then it might happen :

3-4-3-2-2-1 ~'t,, =0 (fig 1II). In such case we get a problem of
dimension less or equal to m+ p for which :
.e|={|xi;_’*x;k} i,j,k?ﬁko

is an extremal, which by induction hypothesis, is computed by the
reconstruction of the form of the algorithm.
Making

m= mm{r,.o o1 }

[

Xivio= Xioo +m
2 _1.2
Xjoko = Xjoky T

Now taking i,j.k, we conclude using ¢ to reconstruct that e was obtained
using the algorithm.

3-4-3-2-22. "1, )0 (figIV)
Suppose 'x;, ('xj, foreach k # k, such that 'x}, )0.
Making

2.0 _ 1l 1
x’n]o = Xig x"n/o

2.2 _t. 2 _1.1
xi«" 1 x!n"l x"o]n

2. 1, 1.1

’ tkl_ tkl xinlil

2. _1 ..
r,— r, 1 #* ly

="t k #k,
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2x;='x' J# o 00y -

Xy = xlk J# Jok #k,

we obtain a problem of dimension at most m+ p for which

2e={2xi’i,2xfk'} i#iy, k#k,
is an extremal which by induction hypothe31s is-a consequence of the
algorithm.

Making
m = miu{'x.,'o] = r,; 'xfn,m = tk”}
Txl,= x,m +m,
Tt =0, +m
results
Tx? e = X e and T X X

Repeating the previous procedure with
m, = min{x'nlo ’ x]o"o }
2 g0 .
ijk x“ +m2 N Tx,ojn=‘,tx,njn,+un2
we reconstruct e.

fig, 11T | fig. IV

4. CONCLUSIONS

We have developed a mathematical model for the described problem. We
have proposed a theoretical solution to it and we have developed an
algorithm for its solution. Up to now we have obtained some preliminary
numerical results, which show their effectivity and applicability.

Such an algorithm was written in C language. We have spent some time on
the numerical efficiency analysis.

We will in the near future compare and extend our results related to other
similar transportation models, as for example Marchi [15].
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