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Abstract

R. Longo’s definition of index ([L2]) is extended to the case where the
involved algebras are not factors, assuming they are of type Il,. Main
tools are generalizations of technics used by R. Longo. It is shown that our
definition agrees with that of Baillet, Denizeau and Havet for von Neurnann
algebras, and also that it is equivalent to the one given in [AS] by E. An-
druchow y D. Stojanoff. We obtain some properties about the tower and the
tunnel of the inclusion. Also the techniques involved allow us to prove some
known results, generally straightforwardly. Results obtained are applied o
inclusion of type IIl von Nenmann algebras with separable predual.

1 INTRODUCTION

In his work about Jones’ index theory for inclusions of factors ([L2, L3]), R. Longo
has developed a new definition of index and also techniques used to prove many
results, a]l based strongly on the fact that the factors involved are properly infinite.
In this paper we extend those techniques and the Index definition to the case where
the inclusion is not any more of factors, but of arbitrary type Il,, von Neumann
algebras with separable predual. This type of algebras are a natural place where to
make this extension, as they are properly infinite and they have a faithful normal
semifinite trace, both of this facts being essential assumptions for the mathematics
involved in the proofs.

The generalizalion made forces the index to be no more a scalar but a positive
invertible operator of the center of the algebra, as in the work of Y. Walatani
([Wat]) and Baillet, Denizeau y Havet ([BDH]).

Main techniques used are the canonical endomorphism of R. Longo ([I.2, 1.3]) and
the existence of a joint cyclic and separating vector for each of the algebras of
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the inclusion. This last condition is guaranteed by the property of the algebras of
being infinite. These techniques allow us to get new proofs of known results from
[BDH, Popal, and let us get more information about the basic construction, the
tower and the tunnel, in particular the relation stablished for each pair of indices of
consecutive inclusions of the tower (Theorems 4.3 and 44).

Let B C A be von Neumann algebras of type I, with separable predual. Being A
is of type I, it is well known that there exists faithful normal semifinite trace 7
on A. )

Suppose moreover that we have a faithful and normal conditional expectation I2 :
A — B, such that 7+ £ = 7. Theorem 2.1 assures that 7 is also semifinite in B.

As A and B are properly infinite, it is known by the classical standard representation
theory that we can consider A4 and B acting over a Hilbert space H where there is
a joint cyclic and separating vector 2 € H for A4 and B . We call

p=<-00>c A,, ‘ . (1.1)

and
b=¢- - Fe Al (1.2)
We call the standard cone of A the set (see [DL]): .

Po(A) = {JaadaaQ,a € A}

By [DL] A.3, there is a positive vector representing ¢, that we will note

£ € Po(A). (1.3)
This vector £ gives rise to the Jones projection in this context: we will define the
Jones projection to be the projection with range equal to [BE].
In [L1, L2], R. Longo introduces what he calls the “canonical endomorphism” of A,
noted ~, the following way:

'y(g;)zJBJAJJ.]AJB .’176./4, (14)

where J4 and Jg are modular conjugations of A and B respectively with respect to
Q.

The Index will be defined to be the Radon-Nikodym derivative (sece [PT]) of the
tracial weight 7.4 with respect to 7, in the sense of Pedersen and Takesaki ('I'heorem
2.2). This will give us an operator with the required properties, that is to he central
and invertible. ‘ ;

In Section 2 we state some results needed in many of the proofs.

In Section 3 we define the Index and show that is has the usual properties

In Section 4 we show some special properties of the Index, specially the ones
concerning the tower and tunnel ol the indusion.

In section 5 we consider the relation between the newly defined Index and the other
definitions (specially [BDH]), showing that it extends the previous considered cases.
Main Theorem is 5.6, where equivalence between the finite index notion is stated
for the case considered.

Finally, in section 6 we apply Theorem 5.6 to obtain some information both in the
type II; and type III case.
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2 PRELIMINARIES

In this section we state well known technical results that will be used troughout this
paper. : .
We start with Takesaki’s theorem stating the existence of a conditional expectation

([ Tak 2)).

Theorem 2.1 (M. Takesaki) Let N be a von Ne umann subalgebra of Lhe algebra. M
and ¢ a normal faithful semifinile weight on M. Lel of be the modular group of M
wilh respecl lo @. The following condilions arc (quuml: nl:

(i) the faithful normal weight p|N* is semifinite and of(N) = N for every t € IR;

(ii) there ezxists a faithful normal conditional expectation E : M — N such thal
p(z) = ¢(E(z)) (z€ M)

Condition (i) determines uniquely the faithful normal condilional mpcctatmn I

M—»N

Another result that will be useful to us is the Radon-Nikodym theorem of Pedersen
and Takesaki ([PT]).

Before stating the theorem we recall that given a normal weight p and a positive
selfadjoint operator k (possibly not bounded), we define

plkz) = hm p(ks ki r/hl/z),

where ks = k(1 4+ 6k)~!, and. it is known that the limit exists because the net is
increasing.
We call

M ={xeM: o)==z}

Theorem 2.2 (G. Pedersen and M. Takesaki) Let ¢ be a normal faithful semifinite
weight on a von Neumann algebra M. If ¢ is a o¥-invariant normal semifinile
weight on M then there is a unique selfadjoint positive operator h affiliated with

M°? such that = @(h-).

When ¢ is a trace, the set M*¥ is all M and the operator h is allilialed with the
center Z(M) of M.

3  DEFINITION OF INDEX

Let B C A an inclusion of type II,, von Neumann algebras. Consider an expectation
E:A— Banda falthful normal semifinite trace 7 on A such that E commutes
with 7.

We recall that we are considering A and B a.ctmg over a Hilbert space H where there
is a joint cyclic and separating vector Q for A and B. This is the main advantage
obtained in restricting ourselves to the infinite case.
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Let J4 be the modular conjugation of A and Jz the modular conjugation of B.
From now on we will also suppose that 7 -+ is semifinite. If this condition does not
occur, we will say that the index is infinite. : '
As 7y 7 -4 are normal weights and 7 is also tracial and semifinite, we can apply
theorem 2.2 to obtain a unique invertible operator, selfadjoint and positive h4,
affiliatted to center of A, such that

7-v9(z) = 7(ha2). (3.1

It is shown in Lemma 2.1 of [L2] that hs does not depend on the bicyclic vector
chosen. This operator h4 is our candidate to be the Index.

Definition 3.1 Ifthe operator hy is bounded, we will say that the expectation E has
finite indez, and we will call the operator Ind(E) = h 4 the Index of the ezpectation
E. If hy is not bounded, we will say that E has infinite Indez.

Let us define a projection :
p=(Be € B, (3.2)

with £ as-in 1.3. We will state as a Lemma, without proof, the following result, that
appears in the proof of 2.1 (see, for instance, [St], 10.2):

Lemma 3.2 With the above notations, JapJa = p.

As the state ¢ defined in 1.2 is in B, and.it is faithful, the vector ¢ is separating for -
B, and then the homomorphism '

®:8— Bp (3.3)
T Ip .

is an isomorphism.

Definition 3.3 We say that the projection p of equation 3.2 is the Jones projection
associated to the expectation E.

Remark 3.4 The projeclion p € L(H) satisfics

p(z€) = L(z)¢. : (3.4)
Definition 3.5 The extension of A by I is the algebra M =< A, p >.

Now we can extend 7 to.a trace 7 of M in the following way: as Jy = J4JgJ 4, the
same v ol A is also the canonical endomorphism of M. As h4 is invertible, we can

define, for z € M, '
Fa) = r(2(h3e). ()

Proposition 3.6 7 is a semifinite trace in M exlending 7, and 7 -7 is also a
semifinite trace.
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Proof. Consider two elements z,y € M. Then we have

Fzy) = r(v(hx zy) = r(v(AZ) (=) ().

As h7' is central in A and 7 is a trace, we have
A )

#ey) = T(1(h3')1(y)1(2)) = F(y=).

Given z € A,
#(2) = r((h3'0)) = limr(v((h3")se) =
= mr(ha(h)) = 7).

so that 7 extends 7.

If K is the o-WOT dense subspace of A where 7 is finite, it is easily verified that
K + 3 KpK is dense in My, and then it will be enough to see that 7|x,x is finite.
Indeed, we must prove that if we have an element apb with a,b € A, there is a
net {a;pb;} in KpK that converges o-WOT to apb. By density of K in A and

Kaplansky’s density theorem, we can assume there are bounded nets {a;} and {b;}
with

‘ a; — a, b,' - b
and
‘ |ai|]| < ¢ for every i
in the o-WOT topology. So, if g is a vector in the underlying Ililbert space M,

it suffices to show convergence in the SOT topology, as all the nets and operators
involved are bounded. Then

l(apb — a;pbi)pll = |(apb— a;pb + aipb — a;pb;)p|
< (e = ai)pbull + llaip(b — b:)pll
< a = aphpe| -+ e[ (b= b)) = 0.

Now let us see that 7|kpk is finite. If a,b € K, we use the polar identity for the
bilineal map (a,b) — apb, apb = 1(a + b*)p(a + b*)* + }(a — 1b*)p(a — ib*)*, so that
apb < Y(a + b*)(a + b*)* + j(a — ib*)(a — 1b*)*. In each one of the summands, one
of the factors is in K by linearity, and if z € K, z*z € K, so that all the right
member is in K, and so 7(apb) < co. For 7 - v the dense subspace where it is finite
is 771 (Bo), where By is the 0cWOT dense subspace of B where 7 is finite. O

As 7 is a faithful normal semifinite trace of M, there exists, by Theorem 2.1 a new
conditional expectation

Eg: M— A (3.6)
commuting with 7, and a positive invertible operador h g of the center of M in a
similar manner as h4 before.
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4 PROPERTIES OF IND(E)

We start with a Lemma where we stablish general p'roperties similar to those appea-
ring in classical Jones’ Index Theory.

Lemma 4.1
1. M = JuB'Ja.
2. B = y(M).
3. Mo=A+ Y ApAis WOT dense in M.

Proof. As Jo p J4 = p (Lemma 3.2), we can reproduce the proof in Proposition
3.1.5 of [J] to obtain 1 and 3. To see 2, simply note that

7(M) = JBJ‘_AJAB’J-AJAJB f— JBB’JB — B,
O

As this Lemma does not depend on the existence of a trace, it will remain true for
general inclusion of infinite algebras. '
Considering B C L(H), Bp C L(pH), it is possible to apply the unitary implemen-
tation theorem (see [KR], Theorem 7.2.9) to the isomorphism ®(z) = zp, to obtain
a unitary operator V : H — pH such that '

O(z) =VaV™. ' ', (4.1)

This operator V can be seen as a parcial isometry of H satisfying

VaV* = op, z € B, P
and V-V = 1. Moreover,
Vz=VaV*V.=zpV =2V, - (4.3)
so that V € B'. (
M2 e A, »
E(z) = V*VE(z) = V*E()V = V*B(z)pV = V*papV. = V*z V. (d.4)

Remark 4.2 The triple (id,V,pH) is Lthe Stinespring dilation of I.
We also have (sce the proofl of Proposition 5.1 of [1.2], ) that
E(z)=V"2V = JgV*Jgv(z)JgV Jg (4.5)

If (7 - 7)|a is semifinite, we also have that 7|,4) is semifinite, and by theorem 2.1
there is a faithful normal conditional expectation

Eo: B — y(A) (4.6)
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commuting with 7; in particular we can repeat the construction made before to
obtain a projection

e € A, with A=< B,e >, eze = Ey(z)e,z € B. (4.7

Note that from the argument ‘above, the canonical endomorphism v allows us to
construct in a canonical way a tunnel for the inclusion, as the properties from the
original inclusion are preserved.

The following Theorem stablishes a relation between different, indexes from inelu-
sions in the tower. Briefly, it is proved that the expectation I “moves down” the
index one level. In particular, it shows that the downward construction inherits the
finitness of the index. ,

Theorem 4.3 If E has finite Index , then the ezpectation Fo defined in equation
4.6 has finite indez and Ind(Eo) = E(Ind(L)).

Proof. 1t is enough to see that if z € B,
r(E(ha)z) = 7(E(haz)) = 7(haz) = 7(x(2)),

and that E takes elements from the center of A in elements of the center of B. By
[PT] hg is unique, so that E(h4) = hs. m]

The following result justifies that it is possible to construct the Jones’ tower of the
inclusion preserving the main properties: it is shown that finite index in one level
implies- finite index in every level of the tower. In 1.2.2 of [Popa] one can find a
somewhat analogous version of these results related to the weak index.

Theorem 4.4 If I has finite Indez, then the expectation E4 defined in equation
3.6 has finite Indez, and moreover || Ind(EA)|| = ||Ind(E)||. '

Proof. We will show that 7.4 < ||h4||7, this implies that huy is bounded with norm

lower that ||h4|| by the first part of the proof of Theorem 5.12 of [PT].

Given z € M, '
(7-7)(2)

r(1(=))

lim r(7(ha(h3")ex)) <
il i 7 (4 (7))
Ik allr(1(h3'2))
|hall7 ().

We have shown then that ||Aam|| < ||ha||, but we also have, by the previous theorem,
that

IA

l2all = I Ealhaoll < [[hpall,
thus proving the equality. . m]

In the usual Jones’ Index Theory for inclusions of factors, it is satisfied the relation

E(p) = Ind(£)™,
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where Ind(E) is in that context a real number greater than 1. The following

proposition is the generalization of that result. The limitation ‘appearing with

respect to the factors’ case is the possibility of Ind(E4) and Ind(E) not te be equal.

Note that when they are equal, that is when Ind(FE) belongs to.the center of B,
Proposition 4.5 expresses exactly the mentioned result.

Proposition 4.5 If IX has finite Index, then
Ea(Ind(E4)p) =1
and '
Ind(E)Ea(p) = 1.
Proof. As V € B, JgVJg € B, so that if z € A,"
T(E(z)) = 1(JsV*Jpy(z)JsVIs) =
} = 7(y(z)JsVIsJsV*Js) = T(V(z}.’).),
because p = JapJa. Now, y(zp) € B, as zp,is in M, so we can write, using that
7(z) = 7(£(2)), |
7(z) = #(v(pz)) = F(hmpz) = F(Ea(hmpz)) = 7(Ea(hmp)z).
We have then, as E4(hmp) € A and 7((1 — Ea(hmp))z) =0 ‘for every = € A, that
E.A(hMP) = 1. .
To see the second assertion, let z € A. Then
7(Ea(p)z) = 7(pz) = 1(v(h4'pz)) = T(v(pzh3')) = 7(E(zhy') = 7(h3'z),
thus proving that E4(p) = h3'. IS

(4.8)

Lemma 4.6 If E has finite Index; then Mp = Ap.

Proof. The set K = {ao+Y_; a;pb; : a;,b; € A} is WOT-dense in M. Given z € M,
we have anet {4 }o € Mp such that z, — = with the weak operator topology. Tt is
trivial then that xzap — ap. For cach element x, there exists an a, e A'wilh Ao =
zap (using that pyp = E(y)p for every y of A). By Kaplansky’s density theorem,
we can assume that the net {z,}, is norm bounded, that is, ||z.]| < ¢, ¢ € IR, for
every a. Then we can write

QaD = ZTap )
EA(aaP) =" Eq (:tap)
acEa(p) = Ea(zap)

aa = EA(p) ' Ea(zap).
So, : ‘ ,
Mlaall S NEAP) T I Ea(zap)ll < el Ealp) ™.

Choosing’a subnet of {aq} that converges to an a € A, we have clearly that ap = zp.
a

Remark 4.7 The preceding proposition is stablished in [AS] for the case where the
inclusion has finite weak indezx. In our approach, this is nol useful to us, because
we want to deduce this fact from our own (Longo’s, strictly speaking) definition of
indez.
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5 RELATION BETWEEN IND(E) AND OTHER DEFINI-
TIONS OF INDEX

We are interested in comparing the following numbers:

A =max{\: E(z) > Az, z € Ay}

A2 = max{A : ||E(z)|| = A||z]||, z € Ay}

Az = max{A : E(z) — Az es completamente positivo, = € Ay}
M =inf{||E(g)ll : ¢ € P(A),}

that in the finite factor case are equivalent definitions of Janes’ index ([PiPo-1],
section 2).. In the case considered in [AS] they use AT' as definition of index. This
number A; coincides with the weak indez of £ of [BDH],

Ind,(E) = A, . ‘ (5.1)

‘It is well known ([BDH]) that when the index is a scalar and the algebra B if properly
infinite, it happens that
' A =X =A= A

The following lemma, also from-Baillet, Demizeau y Havet, proves that A = \,.

Lemma 5.1 ([BDH]) For every positive z € M and A > 0, ||E(z)|| > A||z| if and
only if E(z) = Az.

Proof. The reverse implication is clear. To see the other, let y € M™, A > 0 and
suppose that .
~NEE) = Allall.

For every n € IN, let b, = (E(y *y) + 1/n)~"/2. Then

bay*ybn < |10ny yball < lly7wllfI072)] <
< ATNE@IINE@ YY) + /)M < A,

and we can write
¥y < AYE(y*y) +1/n) for evéry n € IN

and
My < E(y*y)

As a general observation, it is seen easily that A; < Ay,

Lemma 5.2 If Ay > 0, or if E has finite Indez, then the set M = {apb: a,b€ A}.



172

Proof. Let us call
Mo = {apb: a,be A}.

It-is trivial that Mg is a *-subdlgebra. By Lemma 4.6, it suffices then to show that
the identity can be reached, and in the context we are working it is easily seen that
1 € My. To see this note that V € B’, so that Vo = J4V J4 is an isometry of M
satisfying:

‘ VeVo=JaV dadaVip=J4VVIg=1 (5.2)

‘/()‘/J:JAVJ.AJAV*J_A:JAPJA:p. (5.3)

So, 1 = VypVs, and it is shown in [AS] that if Ay > 0 then Mp = Ap (with the
hypotesis of h4 being bounded we have the same result by Proposition 4.6), so there
exists m € A with V;*p = mp, and 1 = mpm* € M. a

Proposition 5.3 If E has finite Index, then E(z) > ||Ind(E)||"'z for z € A,.

Proof.
By the preceding Lemma, 1 = mgem{;, mo € B, and by 4.6 there is an a € B with
z'/?moe = ae. Then,

z = /215172 z?meemiz'/? = aea*
aa* = aE(hse)a*

IhallaE(e)a” = ||hall E(aea®) = ||hal| E(z).

INIA

As I is normal, the inequality is stated [or every x in Ay.
We have then that z < ||h4|| E(=). ’ . a

Proposition 5.4 I[[ £ has finite Indez, then Ind(IY) coincides with the index of
Baillet, Denizeau y Havet. Reciprocally, if the expectation I has finile index in the

sense of [BDH], then [ has finite Index.

Proof. Taking m from lemma 5.2, it is easily seen that (m,m*) is a quasi-base for
A, because if z € Ay,

zp = mpm*zp = mE(m*z)p
pr = pampm* = pli(xm)m*

As I is faithful, we can deduee that 2 = mE(in*z) = E(zm)m* lor every 2 € Ay
and, by linearity, for every z € A.
On the other side,

mm* = mE (hpmp)m”™ = Eg(hpmpm™) = Ex(hm) = ha,

so we have that h4 is the index of E.
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To see the reverse implication, let {m;}; be a quasi base for A Wc, will show that
ha =3 m;m}. As in the proof of 4.5, we have, for z € A,

H(Smimiz) = ligr(Ba((has)r) S mimiz) =

= SlimrmBal(ha)p)mic) =
= ZlimT(FA((hM)Emipm'm)) =

IHTIT(FA ((Aam)e(Y mipm)z

E%T(LA((}lM)em)) =

i 7 (o)) =

T(hmz) =

= 7(v(z)).

and the assertion is proved by unicity of Theorem 2.2. a

Proposition 5.5 If Ay > 0, then E has finite Index.

Proof. We take again m from the proof of.lemma 5.2. We know that mm* belongs
to the center of A for being (m, m*) a quasi-base. Proceedlng again as in the proof
of 4.5, we have, for z € A,

T(mm*z) = lmr(EA((hM)cp)mm‘m)=
= limr(mBa((han)p)m’a) =
= i r(Ba((hag)empm®s)) =
— limr(Ba((ha)ea)) =
= {igr((han)a) =
= T(/I.MT)—
= 7(y(x))

Once again, by unicity in Theorem 2.2, it has to be hq = mm*, so thal hy is
bounded. _ a

Next theorem, conclusion of this section, stablishes that in the context we are
working we can take any of the numbers \; as an “scalar definition” of index, and
the notion of finite index agrees with any choice of the definition, and also w1th our
extensuon of Longo’s defintion.

Theorem 5.6 Let B C A be type Il, von Neumann algebras, E : A — B a
faithful normal conditional expectation commuting with a trace 7 in A. Then they
are equivalent:

(i) E has finite weak indez.
(i) A2 > 0.
(iii) A3 > 0.
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(i’l,’)v/\q > 0.
(v) VE’has finite Indez.

(vi) E has strong finite indez in the sense of Baillet, Denizeau y Havet.

Proof. 1t only remains to prove that Ay > 0 implies that E has finite weak index,
but if Ay > 0, then h4 is bounded by Proposition 5.5, and so E has obviously finite
weak index. ’ O

6 AN APPLICATION: GENERALIZATION TO INCLUSIONS
~OF TYPE II; AND TYPE III ALGEBRAS

6.1 THE TYPE II; CASE

First of all we consider an inclusion B C A of type II; von Neumann algebras with
an expectation £ commuting with the canonical trace of A. In order to apply
the ideas used troughout this paper, we can use the known trick of making tensor
products with some type I, factor, obtaing thus an inclusion of 1l, algebras. This
construction preserves the Index, in the sense that if the inclusion has finite index
in the sense of [BDH], then we have Ind(E ® id)- = (IndgpuE) ® 1 (see below).
Moreover, the results stablished in 4.3, 4.4 and 4.5 are satisfied. :

Let I* be a type I, factor and define

A=AQF (6.1)

and 3
B=BQ®F (6.2)
with the expectation I ® id. So we have an operator index Ind(l2 @ id) € Z(A).

Now observe that being A a tensor product, its center is also the tensor product of
the centers of the algebras, so

zMy:am®C, - (6.3)

as I is a factor. So the operator Ind(F ® id) is only an amplification & @ 1 of an
operator h € Z(A). This provides us with a way to define the index of a II; inclusion
even though there is no quasi base.

6.2 THE TYPE III CASE

We consider now an inclusion B € A of type III von Neumann algebras with
separable predual, and a faithful normal conditional expectation E : A — B. In this
context we will be able to stablish a result concerning equivalence of the “scalar”
definitions of index. Tt is not obvious to state a definition of Index in the sense of
Longo here because of the lack of a trace, which is essential in the definition and
properties of Ind([).
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- Following the construction in section 4 of [L.2], we consider a faithful normal state
" ¢o € B.. The state ¢ € A, given by ¢ = ¢ - E has modular group o that leaves B
stable and we have an inclusion of semifinite von Neumann algebras A C B, where
B = Bx,%IR, A= Ax,¢IR, are the crossed products of B y A respectively by
their modular groups with respect to the states ¢g and #. R. Longo proves that the
inclusion B.C A does not depend on ¢g up-to isomorphism, because if 1o is anoLhcr
faithful state of B and 1 = 1o E, then the Connes cocycle

(D‘.[’ . D¢)t = (D¢o : D¢o)t

is in B.
We call 6 Gt the dual action. In A we have a canonical trace 7, and there is a canonical
constructlon of an expectation £ extending a E and commuting with 7, satisfying

- E(A)=B.
By isomorphism we can consider the inclusions

ACAc.

Takesaki’s duality gives us an isomorphism between A and AQ® F, where F is a

type Is subfactor of B, and this isomorphism takes £ in £ ® id. As A is properly
infinite, it is possible to build and isomorphism between A and A @ I that maps 2

in £ ®id. )
Theorem 6.1 Let B g A be type 111 v;)n Neumann algebras with separable predual,
E . A — B a faithful normal conditional expectation. Then they are equivalent:
(i) E has finite weak indez.
(it) A2 > 0.
(i) Az > 0.
(iv) Aq> 0.
Proof. We consider
/\1 = max{\: E(z) > Az, z € A}}

K= max{\: B (z) > Az, z €Ay)
M =max{\: E®id(z) > Iz, z€ (A ®'F)+}

One has obviously that
’ )\1 Z:\I Z:1= /_\1.
Moreover, the isomorphism between A and A ® I’ shows that

and so 3
A= AL

" We can proceed in the same way with A4, s0 the theorem is proved by reduction to
Theorem 5:6. ' a
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