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Abstract 
R.  Longo 's definition of in dex ( [1,2] )  is  extended to the case w h ere the 

involved algebras are not factors , assuming they are of type Iloo . M ain 
tools are generalizations of technics used by R. Longo. It i s  shown t hat our  
definition agrees with that of Baillet , Denizeau and H avet for von Nenrn ann 
algebras , and also t h at it is  equivalent to the one given in [AS] by E. An­
druchow y D.  Stojanoff. We obt'ain som e properties about the tower an d t h e  
t u n nel o f  t h e  i n c i l l Rio n . A l so t h e  t.ech n i q l les i n vol v('d al l o w  l i S  to p rov(' S O ITl ! '  
known res ll l t s ,  ge n e ral ly stra.i g h t f"o rwa,rd ly .  Res u l ts o h t ai lH'd art' a. p p l i ( � c I  t o  
i n cl u sion o f  type I I I  v o n  N Cll m an ll algdH<Ls with separa.hl (' p r<�d u aJ. 

1 INTRODU CTION 

1 63 

In his work about Jones' index theory for inclusions of factors ( [L2 , L3] ) ,  R. Longo 
has developed a new defini tion of index and also techniques used t.o prove mallY 
results , ap based strongly OIl the fact that the factors i nvolved are properly i n li n i te .  
In this paper we extend those techniques and the Index definition to the case where 
the inclusion is not any more of factors ,  but of arbitrary type IIoo von Neumann 

algebras with separable predual . This type of algebras are a natural place where to 
make this extension , as they are pro"perly infinite and they have a faithful normal 
semi finite trace , both of this facts bei!1g essential assumptions for the mathematics 
involved in the proofs . 
The generalization made forces the index to be no m o�e a scal ar hi l t  et pos i t i ve 
invertible operator of the center of the algeb l'a , as i n  the work of Y .  \VaLaLani 
( [Wat] ) and Baillet , Denizeau y Havet ( [BDH] ) . 
M ai n  techniques used are the canoni cal endomorphism of R. Longo ( [1,2 ,  L :� ] ) an d 
the existence of a j oint cycl i c  and separat i ng vector for each of the algebras o f  
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the inclusion . This last condition is guarante.ed by the property of the algebras of 
being infinite. These techniques allow us to get new proofs of known results from 
[ BD II ,  Popa] , and let us get more informat ion about  the basic construct ion , the 
tower and the tunnel , in part i cular the rel at ion stahl i shed for each pai r of i n d i ces of 

consecut ive inclus ions of the tower (Theorems 4 . 3  and 4 .'1 ) .  
Let B 5;::; A b e  von Neumann algebras of  type l Ico , with separable predual . Be ing A 
i s  of type lIco , i t  i s  well known that there exi sts faithful normal semifinite trace T 
on A. 
Suppose moreover that. we h ave a fa.i th fu l  and norm al con dit ional expecl. at. i o n  E : 
A -> B,  such that T . 1� = 1". Theorem 2 . 1 assu res that T is also scrni I i n i t e  i n  B .  
A s  A and B are properly irifinite, i t  i s  known by the classi cal standard representation 
theory that we can consider A and B acting over a HilberL space H. where there i s  
a joint cyclic and separating vector D E H. for A and B . We call 

and 

cp = <  . D, D > E A. , 

cp = <p . E E A;- . 

We call the standard cone of A the  set ( see [DL] ) :  

B y  [DL] A . 3 ,  there i s  a posi tive vector represent ing cp, tbat we w ill note 

e E Po (A) .  

( 1 . 1 )  

( 1 . 2 )  

�( 1 . 3 )  

This  vector e gives r i se to the Jones projection in this context : we will define the 
.Tones project ion to be the project i on with range equal to [Bel . 
In [L 1 ,  L2 ] , R. Longo introduces what he calls the "canonical endomorphisrn" of A, 
noted "f, the foUowing way :  

( 1 . '1 ) 

where JA and JB are modular conjugations of A and B respectively w i th  respect to 
D .  
The I n dex wi l l  be defi ned t. o  be t.JI(� Radon-N i kodym der i vat i ve ( see [PT] ) o f  t. h e  

t rac i al weight. T ' ''f  wi t. h  res pect.  to T ,  i ll  t. l w  S ( ' II S(' o f  Pedersen an d Ta.k( 's itk i ( T lwol' ( ' n l  
2 . 2 ) .  T h i s  w i l l  g i ve li S  a n  opera.t. o r  w i t. h  t . l t e  r( ,q u i red p rop( � r t. i ( �s , tI l itl. i s  t .o 1 ) ( '  ( : ( ' I \ ( . r i l l 
and invertible. 
In Section 2 we state some results needed in  many of the proofs .  
In Section 3 we define the  Index and show that i s  h as the  usual propert i es 
In Section 4 we show some special properti es of the Index , speci al ly the  ones 
c() n c(� rII i n g  Ll l e  t(Jw( �r  iln d t U IJ l\ e l  o f  t h e  i l l cl u s i o l l . 
I n  section 5 we cons ider the relat ion between t.he newly defined Index an d the other 
definit ions (specially [BDH] ) ,  showing that it extends the previous consi dered cases . 
Main Theorem i s  5 . 6 ,  where equivalence between the finite index notion i s  stated 
for the ca.se considered . 
Finally, in section 6 we apply Theorem 5 . 6  to obt.ain some information both i n  the 
type III and type III case. 
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2 P RELIMINARIES 
In this section we state well known technical results that will be used troughout. this  
paper. 
We start with Takesaki 's theorem stating the existence of a conditional expectation 
( [Tak 2]) . 

Theorem 2 :1 (A;[. Tah�8aki) Let N be a von Neumnnn 811.bnlgeb 1 'l1. of lhe alge iJ 'f'II. AI 
and tp a normal faithful scm,ijinit e weight on M .  Lel  ai be the mot/uta1' gro up of M 
with I'CSpcel to tp .  TheJollowing condit ·iou8 an; cl/,uivu[t: n l :  

(i) the faithful normal weight tp l N+ is  semifinite and ai(N) .� N for cvcry t E m; 
(ii) there exists a faithful normal 'conditional expectation E : M � N such that 

tp(x )  = tp(E(x) )  (x E M+ ) .  
Condition (i) determines uniquely the faithful normal conditional cxpectation E 
M � N . 

Another result that will be useful to us is the Radon-Nikodym theorem of Pedersen 
and Takesaki ( [PT] ) .  . 
Before stat ing the theorem we recall that given a normal weight p and a pos i t ive 
selfadjoint operator k (possibly not bounded ) , we define 

where ks = k(l + 8k)-t , and. it i s  known that the limit exist.s because the net is 
increasing . 
We call 

lvr'P = {x E M :  (7'P (:r )  = x } .  
Theorem 2 . 2  (G. Pedersen and M. Takesaki) Let <p b e  a normal faithful semifinit e 
weight on a von jVeumann algebr'a M .  [f 1/) is a alP-invariant normal scmiJin-ite 
weight on M then there is a unique selfadjoint positive operator h affiliated lOilh 
M"'P such that 1/J = tp( h . ) . 

When tp is a trace , the set M'P i s  al l M an d the  operator h is a ffi l i a.(.cd Iv i t h  t I l e  
center Z(M)  of  M. 

3 D EFINITION OF INDEX 
L.et B � A an inclusion of  type Hoc von Neumann algebras . Consider an  expectation 
E : A � B and a faithful normal semifinite trace T on A such that E commutes 
with T .  
We recall that we  are considering A and B act ing over a Hilbert space 1-{ where t.here 

is a joint cyclic and separating vector n for A and B . This i s  the main advantage 
obtai ned in restricting ourselves t.o the in f inite c as e .  
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Let JA be the modular conjugation of A and J(3 the modular conjugation of B .. 
From now on we will also suppose that T • , is semifinite. If this condition does not 
occur ,  we will say that the index is  infinite. 
As  T y T . , are normal weights and T i s  also tracial and semifinite,  we can apply 
theorem 2 . 2 to obtain a unique invertible operator , selfadjoint and pos i t ive hA , 
affi l i atted to cent er of A, such that 

T . , (x )  = T ( hAX ) .  ( :1 . 1 ) 
It i s  shown in Lemma 2 . 1  of [L2J that hA does not depend on the bicyclic vector 
chosen . This operator hA i s  our can d ici.ate to be the Index . 

D efinition 3 . 1  If the operator hA is bounded, we will say that the expectation E has 
finite index, and we will call the operator Ind(E) = hA the Index of the expectation 
E. If hA is not bounded, we will say that E has infinite Index. 

Let us define a projection 
p = [B�J E B' ,  ( 3 . 2 )  

with , as  in  1 . 3 .  "Ve will state as  a Lemma, without proof, the  following resu l t ,  that 
appears in the proof of 2 . 1  ( see, for instance, [St ] , 10 . 2) :  
Lemma 3 . 2  With the above notations, JAPJA = p . 

As the state cjJ defined in 1 .2 is in B* and it i s  fai thful , the vector ' is sepa:rat ing for · 
B ,  and then the homomorphism 

<I> : B -> Bp 
x 1-+ xp ( :3 . 3 )  

Definition 3 . 3  We say  that t h e  projection p of equation 3. 2 is th e Jones projection 
associated to the expectation E .  

Remark 3 . 4  The projeclion p E L(1-l) satisfies 

p(xe) = E(x)C 
D efinition 3 . 5  The extension of A by E i s  the algebra M = < A, p > .  

Now we can extend T to a trace T of JV/ in  the following way :  as JM = JAJ(3JA , the 
same , of A i s  also the can on ical endomorphism of M .  As hA is i nvert i b le ,  we can 
define, for x E M , 

(3 . 5 ) 
P rop osition 3 . 6  T zs a semifinite trace in JV/ e;riendin.d T ,  and T . I IS also a 
semifinite trace . 
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Proof. Consider two elements x ,  y E M . Then we have 

As k;/ is central in A and T is  a trace, we have 

G i ven x E A, 

so that f extends T .  

f (x ) 

If J< is the (J'- WOT dense subspace of A where T is fin i te , it i s  easi ly verified th at 
J< + "£ J<pJ( i s  den se in M o ,  and then it will be enough to see that f lKpK i s finite .  
Indeed , w e  must prove that if w e  have a n  element apb with a ,  b E A, there i s  a 
net {aipb; } in I< pJ( that converges (J'- WOT . to apb. By density of I< in A and 
Kaplansky 's  density theorem, we can assllme there are bounded net.s { ad and { b; }  
with 

' ai � a, bi � b 
and 

l I ad l $ c for every i 
i n  t he (J'- WOT topology. So,  i f  f1, is a vector in t.he underlying H i lbert. s p ace 'H,  
i t  suffices to show convergence i n  t. h e  S O T  topology, a s  al l the nets and  operators 
involved are bounded . Then 

lI (opb - aipbi ) /t l l  1 1  (apb - 0ipb + (Lipb - (Lipbi ) I', 1 I  
< 1 1 ( 0.  - ai)pbJ1 1 1  + l I a ip( b  - bi )p. 1 I  
< l I ( a � 1I. ; } ]lh/ I. \ I -I- c l l ( h  - h; ) / , \ \  - , D .  

Now let us see that f lKpK is  fin i te .  I f  a ,  b E 1( , we u se the polar i den t ity for the 
b i l ineal map ( a , b) f--+ apb, apb = Ha + b* )p(a + b* ) *  + Ha - ib*)p(a - ib* ) * ,  so that 
apb $ � (a  + b* ) (a + b* ) *  + Ha - ih* ) ( a  - i b* ) * .  In each one of the summands , one 
of the factors i s  in 1{ by lineari ty, and if x E Ii' ) x'x E I< ,  so that all the right 
member i s  i n  I<, arid so f ( apb) < 00. For f " the dense subspacc where i t  is fin i te 
is ,-1 (80) ', where 80 is. the. (J'�wO'r dense subspace of 8 where T is fi n i te .  0 

A s  f is a faithful normal semi fini t.e trace of M ,  there exi sts , by Theore m  2 . 1 a IW'W 
cond i t ional expec t ation 

( 3 . 6 )  
commut ing with f ,  and a posit ive invertible operador h M  of t h e  center of M in  a 
similar m anner as hA before. 



1 68 

4 P ROPERTIES O F  IND (E) 
We start with a Lemma where we  stablish general properties simi lar t o  those appea­
ring in class ical Jones ' Index Theory. 

Lemma 4 . 1  

2 .  B = , (M ) .  

3 .  Mo = A + b ApA i s  WOT dense in Mo. 
Proof. As J,A. p J,A. = p (Lemma 3 .2 ) ,  we can reproduce the proof in Proposition 
3 . 1 . 5  of [J] to obtain 1 and 3 .  To see 2 ,  s imply note that 

,(M ) = J/3J,A.JAB'JAJA J/3 = J/3B' J/3 = B . 

o 

As th i s  Lemma does not depen d on the exis t.ence or a tJ'(1ce , i t  wi l l  remain  t rue for 
general inclusion of infinite algebras . 
Considering B � L(H) , Bp � L(pH) , it is possible to apply the unitary implemen­
tation theorem (see [KR] ,  Theorem 7 .2 . 9 )  to the i somorphism <1> (x )  = xp, to obtain  
a un i tary operator V : H � pH such that 

<1> ( .r )  = Vx V· .  

This  operator V can b e  seen as a parcial i sometry of H satisfying 

and V' V = J .  Moreover, 

so that V E B'.  
r r  :r E A, 

V.r V· = xp, x E B ,  

V x  = VxV* v . = xpV = x V, 

(4 . 1  ) 

( 4 .2 ) 

E(x )  = V* V  E(x)  =' V-' E( J: ) V = V' E(x )pV = V'pJ:pV = V * :I: V. (4 . .<1 )  
Remark 4 . 2  The triple ( id, V, pH) is lhe Slinespr'ing dilation of E .  

'vV( �  a. l so b a.ve ( scc t.b e  p roof o r  P ropos i t . i O I l  ri . 1 o r  [ 1 ,2] , ) t. h at. 

E(x )  = V'x V  = J/3 V* J/3 , (x )  J/3 V JI3 (4 . 5 ) 

If (7  ' , ) IA i s  semifinite, we also h ave that 7 1"1(.)\) is semifinite ,  an d by theorf�rn 2 . 1  
there i s  a faithful normal conditional expectation 

(4 . 6 ) 
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commuting with r ;  in  particular we can repeat the construction made before to 
obtain a projection 

e E A, with "A = <  B ,  e > ,  exe = Eo (x )e , x E B .  (4 .7 )  

Note that from the argument 'above, the canonical endomorphism , allows us to 
construct in  a canonical way a tunnel for the inclusion , as  the properties from the 
original inclusion are preserved . 
'rile  fol l owi n g  Theorem stabl i shes a. rel at. i on hdw(�en cl i frnren t. i n d exes frolTl i n c : l ll ­
s ions i n  the  tower . Briefly, i t  i s  proved that the expect at. ion E " moves dOWJl" the 
i ndex one level .  In particular ,  i t  shows that the downward construction inh�r its  the 
fini tness of the index. 

Theorem 4.3 If E has finite Index , then the expectation Eo defined in equation 
4 . 6  has finite index and Ind(Eo)  = E(Ind(E) ) .  

Proof. It i s  enough t o  see that i f  x E B ,  

and that E takes elements from the cent er of A i n  elements of the cent er of B .  By 
[PT] h8 is unique, so that E(hA)  = hB• 0 

The following result justifies that it is poss i ble to construct t h e  Jones ' tower of the 
i n cl usion preserv i n g  the ma.i n propert ies :  i t . i :-;  shown that fi n i te i n dex in on(' l evd 
implies finite index in every level of the tower . In l .2 . 2 of [Popa] one can find a 
somewhat analogous version of these results related to the weak index . 

Theorem 4 . 4  If E has finite Index, then the expectation EA defined in equation 
3. 6 has finite Index, and moreover I I Ind(EA ) 1 1  = I I Ind(E) I I .  

Proof. We will show that f . , ::; 1 1 hA 1 1  r ,  this i mplies that hM i s  bounded with norm 
lower that 1 1  hA 1 1  by the first part of the proof of Theorem 5 . 1 2  of [PT] . 
Given x E M ,  

(f · ,) (x )  = r (r(x) ) 
= l im r(r(hA ( h.A1 ) <x ) ) ::; (-+0 
< 1 1  hA 1 I 1 im  r (r(  (h.A l } .x ) )  <-+0 
= I I hA l l r (r ( h.A1 x ) )  
= I I hA l l r (x ).. 

We have shown then that I I hM I I ::; I I hA I I , but we also have, by the previous theorem, 
that 

thus proving the equality. o 

In the usual Jones ' Index Theory for inclusions of factors , it is satisfied the relat ion 
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wher'e Ind(E) is in that context a real number greater than 1 .  The {oUowitl g 

proposi tion is the generalization of that result . The limitation appea6ng with 
respect to the fadors ' case is the possibility ofI nd(E,A }  and Ind(E) not to ,be equal . 
Note that when they are equal , that is when Ind{E) belongs to , the center of 8 ,  
Proposition 4 .5  expresses exactly the ment ioned result . 

' 

Proposition 4 . 5  If E ha$ finite Index, then 
E,A (lnd( E,A }p) = 1 

and 
Ind(E)E,A (p) = L 

Proof. As V E 8' ,  Js VJa E 8 , so that if x E A, ' 
T (E(x ) )  = T (Ja V*Js,(x)JaVJa ) = 

= T (-y(X )JpV J8JaV· Ja} = T(-y(Xp)) , (4.8) 
because P = J,ApJ,A . Now, "Y(xp) E 8 �  as xp, i s in M ,  so we can wri te, using t.hat 
T (X ) = T (E(x) ) , 

' 

T (X )  = f ("Y(px) ) = f( hMPX) = f(E,A (hMPX)) :::: r (E,A(hMP)x) . 
We have then , as E,A ( hMP) E A and T « l - E,A( hMP))X) = 0 for every x E A, that 
E,A ( hMP) = 1 .  

" 

To see' the secon� assertion , let .x , E A. Then 

T (E,A (p)x ) = f (px )  = r (-y(hAl px ) )  = T (-y(pxhAl ) ) = T (E(xn:A1 ) = T ( hA1 X) , 

thus proving that E,A {p) = hAl . 

Lemma 4 . 6 · If E has finite Index; then Mp = Ap. 

o 

Proof. The set I< = {ao + Li aipbi : a i ,  bi E A} i s  WOT·dense in M .  Gi ven x E M, 
w e  have a n e t  {x", }a  � Mo such t.hat x "  -+ x w i t h  the  weak operator topology. It i s  
t. r i v i al t hen t. hat J:",]1 -+ J:1). Fo r eael! e lement J:" there exists i.LlI fl ",  E A 'w i t. h  (L",p = 
XaP (using that pyp = E(y)p for every y of A) . By Kaplansky 's density theorem, 
we can assume that the net {xa l .. is norm bounded , that is , I I x .. '1l � c, c E ill, for 
every Q. Then we can write 

So, 

a .. p = x .. P 
E,A (aQlp) - E,A (xaP) 
a a E,A (P) = E,A (xaP) 

aa - E,A (p)-l E,A (x .. p) . 

1 1  a .. 1 1 $ I I E.A (ptl I I I l E,A (x .. p) 1 I $ cI l EA (pt1 11 · 
Ch oos ing a subnet. of {a  .. } that converges to an a E A, we have clearly that ap = xp. 
o 

Remark 4 . 7  The .precedin,fJ proposition is stabZis/tetl i� fA 8J for th e (:(l.�(� W/W7'C th (� 
in clusion has finite weak index. In our app1'Oach, this is nol useful to us, because 
we

' 
want to deduce this fact from our' own (Longo 's, strictly speaking) definition of 

index. 
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5 RELATION BETWEEN IND (E) AND O T H E R  D E F I N I­

TIONS O F  INDEX 
We are in terested in comparing the following number.s : 

Al = max{,\ : E(x)  2: ,\x ,  x E A+ } 
A2 = max{,\ : I I E(x ) 1 I 2: A l l x l l ,  x E A+ }  
A3 :;::: max{,\ : E(x) - AX es completamente posi tivo,  x E A.+ } 
A4 = inf { I I E(q) l I : q E P(A) , } 

that in the finite factor case are equivalent. defi ni t.ions of .lQnes ' i ndex ( [P i Po- 1 ] ,  
section 2) ; In the case consi dered i n  [AS] t hey use Al l as defi ll .i t ion of i ndex.  This  
number A l  coi ncides wi th t.he weak index of E o f  [BDHJ , 

( 5 . 1 ) 
. It is well known ( [BDH] )  that when the index is a scalar and the algebra B if properly 

infin i te , it  happens that 
Al = A2 = A3 = A4 . 

The following lemma, also from B aillet. , Demizeau y Havet , proves that Al = A2 . 

Lemma 5 . 1  ([BDHj) For every positive x E M and A >  DJ I I E (x ) 1 1 2: A l l x l l  if and 
only if E(x) 2: AX . 

Proof. The reverse implication is clear .  To see the other, let y E j'v/ + ,  A > 0 an d 
suppose that 

. I / E(x ) 1 1  2: A I I ·7; 1 / :  
For every n E  IN, let bn = (E(y  * y ) + 1 /n ) - 1 /2 .  Thell 

bny·ybn :::; I I bny· y bn l l :::; I I Y*Y l l l l b�2 1 1  $ 

and we can write 

and 

< A- 1 I i E(y*y) I I I I (E(y'y)  + 1 /nt1 1 l :S A , 

y'y :S A-I (E(y'y ) + 1 /n) for every n E TN 

AY'y :S E(y'y ) 

As a general observat ion , it is seen easily that Al :S A4 .  

o 

Lemma 5 . 2  If A4 > D J or if E has finite Index! then the set  M = { apb : a ,  b E  A } . 
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Proof. Let us call 
Mo = {apb :  a , b E A} . 

It -is  tr ivial that M o  is a *-subalgebra. By Lemma 4 . 6 ,  it suffices then to show that 
the identity can be  reached ,  and in the context we are working i t  is easily seen that 
1 E Mo .  To see this note that V E 13', so that Vo = JA V JA is an isom�try of M 
satisfying: 

Vo* Vo = JA V* JA JA V JA = JA V*V JA = 1 

VoVo* = JA V JA JA V* JA = JA P JA = p. 

( 5 . 2 )  

( 5 . 3 )  

So ,  1 = Vo* p '10 ,  and i t  i s  shown in [AS] that i f  >' 4  > 0 then Mp = Ap (with the 
hypotesi s  of hA being bounded we have the same resul t by Proposit ion 4 .6) ,  so there 
exists m E A with Vo*p = mp , and 1 = mpm* E Mo. 0 

Prop osition 5 . 3  If E has fin ite Index, then E (x ) 2': I I Ind(E) I I - 1 x  for x E A+ .  

Proof. 

By the preced ing Lemma, 1 = moem�, mo E 13 , and by 4 . 6 there· i s  an a E 13 with 
x1 /2moe = ae . Then , 

. x = x1 /2 1 x 1 /2 = xl/2moem�xl /2 = aea* 
< aa* = aE(hAe)a* 
< I l hA l l aE(e )a* = I l hA I I E(aea* ) = I l hA I IE(x ) .  

As E i s  normal ,  the inequal i ty i s  stated for every :c in  A+ . 
We have then that x :S I l hA I I E (x ) .  o 

Prop osition 5 . 4  If E has fin it e  Index, then Ind(E) coincides with the indc:c oJ 
Baillcl , Denizen1L y If avet .  RecipT'Omlly, iJ the expectation .E has finite indel: in the 
sense oJ [J3D!lj, then E' has Jinite flu/ex. 

Proof. Taking m from l emma 5 . 2 ,  i t  i s  easily seen that (m ,  m*) i s  a quas i -base for 

A, because if x E A+ ,  

xp = mpm*xp = mE(m*x)p 
p:l: = IJ:J:n�]lm* = pE(:nn )m.* 

As E is fai thful ,  we can dcdu€c that :1: = mE(m*:c) = E{xm)m* ror every x E A+ 
and ,  by linearity, for every x E A. 
On the other s ide,  

so we have that hA i s  the index of E. 
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To see the reverse implication, let {mi } i  be a quasi base for A. Wc wil l  show that 
hA = L:, m;mi . As in the proof of 4 .5 ,  we have , for x E A, 

= l im T(EA ( (hM ) ,p) � mimi'x )  = t:-tO L.-J 
= L:, lim T(miEA ( ( hM ),p)mix )  = ,->0 
= L: l i m T(EA( (hM ),mipmi x ) )  = ,->0 
= l i m  T (EA ( ( hM ),(,r:, mipmi ) .T ) )  = , -> 0  

l im T (EA ( ( hM )'X ) )  = ,->0 
= lim T ( ( hM )'x)  = 

<->0 
= T ( hMX )  = 
= Tb(x) ) .  

and the assertion i s  proved b y  unic ity of Theorem 2 .2 .  

Proposition 5 .5  If A4  > 0 ,  then E has finite Index. 

o 

Proof. We take again m from the proof of. lemma 5 .2 .  We know that mm" belongs 
to the cent er of A for being (m,  m*) a quasi-base. Proceeding again as in  t he proof 
of 4 . 5 ,  we have , for x E A, 

. 

T (mm*x) lim T(EA ( ( hM) ,p)mm*x )  = ,->0 
l i m  T (mEA ( (hM ) , p)m* x ) = , -> 0  
l im T(EA ( ( hM) ,mpm*x ) )  = ' .... 0 

= l im T(E.A ( (hM )'x ) )  = ,->0 
l im T ( ( hM ),x )  = <->0 

= T( hMx )  = 
T (r ( :r ) ) .  

Once agai n ,  by  unic ity in Theorem 2 . 2 ,  i t  has t o  b e  hA 
bounded. 

mm* , so that hA I S  
o 

Next theorem, conclusion of this section , stablishes that in the context we are 
working we can take any of the numbers Ai as an "scalar defini t ion "  of i ndex , and 
the notion of finite index agre�s with any choice of the definition ,  and also with om 
exten sion of Longo 's  defint i�n � 
Theorem 5 . 6  Let B � A be type n:c von Neumann algebms, E : A ---7 B a 
faithful normal. conditional expectation commuting with a trace T in A.  Then they 
are equivalent:  

(i) E has finite weak index. 

(ii) A2 > O .  

(iii) A3 > o .  
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(iv) A4 > O .  

(v) E has finite Index. 

(vi) E has strong finite index in the sense of Baille t, Denizeau y Havet .  

Proof. It only remains to prove that A4 > 0 implies that E has finite weak index , 
b ut if A4 > 0 ,  then hA i s  bounded by Proposition 5 .5 ,  and so E has obviously fi n i te 
weak i ndex . 0 

6 A N  A P P L I C AT I O N : G E N E RALIZAT I O N  TO I N C L U S I O N S  

O F  TYP E  II I  A N D  TYP E  III A L G E B RAS 

6 . 1  THE TYPE III  CASE 
First  of  all we consider an inclusion B � A of type Ih von Neumann algebras with 
an expectat ion E commuting with the canonical trace of  A. In order to apply 
the · ideas used troughout this paper, we can use the known trick of making tensor 
products with some type loo factor , obtaing thus an inclusion of lIoo algebras . Thi s 
construction preserves the Index, in the sense that if the inclusion has finite index 
in  the sense of [BDHJ , then we have Ind (E ® id) . = ( IndBDHE ) ® 1 (see below ) . 
Moreover , the results stabl ished in 4 .3 ,  4 .4  and 4 . 5  are satisfied . 
Let F be a type lQO factor and defi ne  

( 6 . 1 ) 
and 

(6 .2 )  
with the expectat ion E ® i d ,  So w e  h ave an  ope rator i n dex I nd (  g ® i d ) E Z(.4) . 
Now observe ·that being .4 a tensor product ,  i ts  cent er is also the tensor product  of 
the centers of the algebras , so 

. 

Z(.4) = zeAl ® c ,  ( 6 . 3 )  
as  F i s  a factor . So the  operator Ind ( E  ® i d )  i s  only an  amplificat ion h ® 1 o f  a.n 
operator h E ZeAl . This prpv,ides us with a way to define the index of a Ih inclusion 
even though there i s  no quasi base. 

6 . 2  T H E  TYPE I I I  CASE 
We consider now an  inclusion B ;; A of type In von Neumann algebras with 
separable predual,  and a fai thful normal conditional expectation E : A:-:-t B. In this 
context we wi l l  he able t� stahlish a resul t con cern i n g efluival en ce of the "Rcalar" 
de fi n i t ions of i n dex . Tt i s  not obv ioUR  to sta.te ci de fi n i t. i on  o r  I n dex  i l l  t. he  S( ' I I S ( �  of 
Lon go here because of the lack of a trace , wh idt i s  essent ia l  in the dCfi n i t io ll a.nd  
propertiell of  Ind (E ) .  
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Followil1g t.he construction in sect ion 4 of[t2J , we consider a fai thfu l normal state 
<Po E B* . The state <P E A* given by <P = <Po ' E has modu lar group arP that leaves B 
stable and we have an inclusion of semifmite von Neumann algebras A � E ,  wh ere 
E = B ><J ,,<I>o IR, A = A ><J ,,<I> 1R, are the crossed products of B y A respecti vely by 
their modular groups with respect to the states <Po and <p.  R. Lon go proves t h at t h e  
i nclus ion E .�  A does not depend o n  <P o  up t o  isomorph ism ,  because i r 1/J o  i s  another 

fai thful state of B and 1/J = 1/Jo . E, then' the Connes cocycle 

is in B .  
We call at the dual action . I n  A we have a canoni cal trace r ,  an d t here i s  a canon i cal , -
construction of an expectation E extendi ng a E and commuting with r, satisfyi ng 
£(A) = E.  
By isomorphism we  can consider the inclusions 

Takesaki ' s  duality gives us an isomorphism between A and A ® F', where F is a 

type loo subfactor of B ,  and this i somorphism takes it in E 0 id .  As A is properly 
infin i te , i t  is poss ib le  to bui ld an d isomor p h i s m  between A and A 0 F t h at m aps I� 
in E ® id. 
Theorem 6 . .  1 Let B <;;; A be type III von Neumann algebras with separable p redual, 
E : A -4 B a faithful normal conditional expectation. Th en th ey are equivale n t :  

(i) E h a s  finite weak index. 

(ii) A2 > O .  

(i'ii) A 3  > O .  

(iv) A 4  > O .  

Proof. We consider 

� 1 = max{.\ : £(x ) 2: .\x , x E A+ } 
;1= max {.\ : E (x)  2: "x ,  x EA+ } 

).1 = max{.\ : E ® id ( x) 2: "x ,  x E (A ® F)+ } 
One has obviously that: 

Al 2: �1 2:;1 = ).1 ' 
Moreover, the i somorphism between A and A ® F shows that 

A l = ).1 , 
and so 

Al = �1 ' 
. We can proceed in the same way with �4 ' so the theorem is proved by reduction to 

Theorem 5 ,6 .  0 
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