Counterexample to a conjecture of Mujica

Christopher Boyd

Abstract

Let U be an open subset of a Banach space E. In [2] Mujica shows there is a unique Banach space $G^\infty(U)$ and a bounded holomorphic mapping δ_U from U into $G^\infty(U)$ with the property that given any Banach space F every bounded holomorphic function from U into F factors through $G^\infty(U)$ as a continuous linear mappings. The properties the Banach space $G^\infty(U)$ are similar to those of E. In [4] Mujica asks if $G^\infty(U)$ is weakly sequentially complete when E is weakly sequentially complete. In this paper we provide a counterexample to this conjecture.

In [2] Mujica proves the following result:

Theorem 1. (Mujica) Let U be an open subset of a Banach space E then there is a Banach space $G^\infty(U)$ and $\delta_U \in H^\infty(U;G^\infty(U))$ such that the following universal property holds: Given any Banach space F and any $f \in H^\infty(U;F)$, there is a unique continuous linear operator $T_f:G^\infty(U) \rightarrow F$ such that $f = T_f \circ \delta_U$.

The pair $G^\infty(U)$ and δ_U are characterized up to isometric isomorphism by this property. The Banach space $G^\infty(U)$ can be realised as the space of all linear functionals on $H^\infty(U)$ whose restriction to each multiple of the unit ball of $H^\infty(U)$ is continuous for the compact open topology. The holomorphic function δ_U is then defined by $\delta_U(x) = \delta_x$ where $\delta_x(f) = f(x)$. Furthermore $H^\infty(U)$ is isometrically isomorphic to $G^\infty(U)_0^*$, the strong dual of $G^\infty(U)$.

The vector space properties of $G^\infty(U)$ are closely related to those of E. Indeed in [2], Mujica shows that if U is balanced open in E then $G^\infty(U)$ has the approximation property if and only if E has the approximation property, while if B_E is the open unit ball of E then $G^\infty(B_E)$ has the metric approximation property if and only if E has the metric approximation property.

Continuing the study of $G^\infty(U)$ in [4] Mujica poses the following question:

Problem. Let U be a bounded open subset of a weakly sequentially complete Banach space E. Is $G^\infty(U)$ weakly sequentially complete?

We will give an example to show that the answer to this question is no. We begin with the observation that $L^1(\partial \Delta)/H^1_0(\Delta)$ is the unique isometric predual of $H^\infty(\Delta)$ (see [1]) and that this space is weakly sequentially complete and has cotype 2. We shall need the following result of Pisier [5].
Theorem 2. (Pisier) There is a weakly sequentially complete Banach space Z with cotype 2 such that $(L^1(\partial \Delta)/H^1_0(\Delta)) \bigotimes Z$ contains a copy of c_0.

In particular this will mean that $(L^1(\partial \Delta)/H^1_0(\Delta)) \bigotimes Z$ is not weakly sequentially complete and does not have cotype 2.

Clearly we have that $C \bigoplus \infty Z$ is weakly sequentially complete.

By Proposition 2.3 of [2] we see that Z is isomorphic to a complemented subspace of $G^\infty(B_Z)$. By Theorem 6.1 of [3]

$$G^\infty(\Delta \times B_Z) \simeq G^\infty(\Delta) \bigotimes \pi G^\infty(B_Z)$$

which contains $(L^1(\partial \Delta)/H^1_0(\Delta)) \bigotimes Z$ as a complemented subspace. Therefore we see that $G^\infty(\Delta \times B_Z)$ cannot be weakly sequentially complete. The space $C \bigoplus \infty Z$ is also an example of a Banach space with cotype 2 with open unit ball $\Delta \times B_Z$ such that $G^\infty(\Delta \times B_Z)$ does not have cotype 2.

Department of Mathematics,
University College Dublin,
Belfield,
Dublin 4,
Ireland

Recibido : 11 de Febrero de 2000
Aceptado : 22 de Marzo de 2000